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ABSTRACT 
Potassium channels (KCh) are a large and diverse family of membrane voltage regulators. More than eighty different K+ channel genes 
have been identified which are expressed in virtually all living cells. Impaired expression and function of KCh is involved in neurological 
and cardiovascular diseases, giving rise to the medical discipline known as “channelopathies”. KCh are involved in the regulation of a 
variety of biological functions ranging from the control of cell excitability to the regulation of cell volume and proliferation. Furthermore, 
an important number of studies involve KCh and cancer progression. The list of KCh related to neoplastic diseases is constantly growing, 
indicating that these proteins will be future targets in the treatment of the pathology. The aim of this review is to provide an updated 
overview of KCh during cancer development. Although cancer is far from being considered a channelopathy the potential use of KCh as 
pharmacological targets when developing new strategies for cancer therapy is warranted. 
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INTRODUCTION 
 
Potassium channels (KCh) are the most diverse and ubiqui-
tous class of ion channels. They control membrane poten-
tial and contribute to nerve and cardiac action potentials 
and neurotransmitter release. K+ is not in equilibrium 
between the cell cytoplasm and the extracellular milieu, 
leading to a driving force for K+ efflux at physiological 
membrane voltages. KCh open in response to depolari-
zation of the membrane voltage. Such depolarization can be 
described as accumulation of positive charges generated by 
Ca2+ and Na+ ions. Efflux of K+ will drive back the mem-
brane potential toward the resting potential. Thus, KCh 
channels terminate the strong depolarization caused by acti-
vation of voltage-dependent cation influx and the genera-
tion of the action potential waveform. Therefore, an in-
crease in KCh activity leads to more efficient termination 
of depolarization (usually shortening or eliminating action 
potentials) and vice versa. This functional ability of KCh 

also modulates the action potential firing frequency playing a 
key role in neuronal function (Hille 2001). Furthermore, KCh 
are also involved in physiological functions such as insulin 
release, differentiation, activation and proliferation among 
others (Hille 2001). 

 
Potassium channels and insulin release 
 
KCh play a crucial role in pancreatic beta cells. The mecha-
nism of coupling between depolarization and secretion is 
very similar in beta cells and in neuronal synaptic transmis-
sion. Like neurons, pancreatic endocrine cells respond to 
stimulation with plasma membrane depolarization and action 
potential firing, which leads to vesicle exocytosis (controlled 
by elevation of Ca2+ concentration, mediated by ion channels) 
and insulin secretion. Ion channels play a major role in a 
network of cellular and molecular feedback mechanisms that 
produce these dynamics. Different kinds of KCh are involved 
modulating the depolarization and their activity leads to 
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repolarization and termination of exocytosis (Huopio et al. 
2002). 
 
Skeletal muscle differentiation 
 
KCh also control myoblast differentiation by a sequential 
mechanism involving different KCh. Authors suggest that 
after moderate hyperpolarization, of around -30 to 40 mV, 
generated by voltage-dependent K+ channels, inward-recti-
fier channels strongly hyperpolarize the cell to almost K+ 
equilibrium potential values. This leads to the induction of 
T-type Ca2+ channels, generating a window current that 
promotes myotubular fusion (Fischer-Lougheed et al. 
2001; Grande et al. 2003). 
 
Activation and proliferation 
 
KCh play a pivotal role in proliferation (Fig. 1). Their acti-
vity may be important in the early stages of G1, during the 
G1/S transition and even during the G2 phase (Wonderlin 
and Strobl 1996; Felipe et al. 2006). Some channels have 
been unequivocally shown to be required for cellular proli-
feration during cell growth in many cell types. This is the 
case for Kv1.3 in immune system cells (Vicente et al. 
2003; Villalonga et al. 2007). Although no direct evidence 
has been provided, the use of pharmacological tools sug-
gests that the mechanism may involve some CDK inhibi-
tors such as p21 and p27 (Renaudo et al. 2004).  

Several hypotheses could explain the control of the cell 
cycle: Ca2+ signalling, membrane potential and cell volume 
(Conti 2004; Pardo et al. 2005; Felipe et al. 2006). Cal-
cium is important in cell physiology. Certain thresholds are 
crucial to promoting or inhibiting several signal transduc-
tion pathways. During lymphocyte proliferation, it has 
been shown that induction of KCh triggers enough hyper-
polarization to promote the exit of Ca2+ from internal reser-
voirs and to activate plasma membrane Ca2+ channels.  
This intracellular rise in Ca2+ initiates appropriate signal-
ling, leading to lymphocyte activation and proliferation. 
Three types of KCh are involved in this process: Ca2+ 
dependent K+ channels (KCa3.1); voltage-dependent K+ 
channels; Kv1.3 and inward rectifier potassium channels 
(Kir2.1). Some studies demonstrate that proliferation is at-
tenuated by the inhibitors of the three proteins: charybdo-
toxin for KCa3.1; margatoxin for Kv1.3; and divalent cat-
ions for Kir2.1. In fact, margatoxin and barium are additive, 
indicating that both channels are involved in the process 
(Vicente et al. 2003). 

On the other hand, membrane potential changes during 
cell cycle progression. Highly proliferating cells are more 
depolarized than normal or quiescent cells. Although KCh 
mostly generate hyperpolarization by extrusion of K+, 
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Fig. 2 Schematic representation of two different KCh-related dis-
orders. (A) Long QT syndrome. LQT syndrome is a cardiac disorder that 
causes arrhythmias, syncope and sudden death. It is genetically hetero-
geneous, being caused by mutations in ion channels (Na+ and K+) and 
some regulatory subunits genes. LQT syndrome is characterized by a 
prolonged QT interval in the electrocardiogram (ECG). Prolonged action 
potentials predisposes to arrhythmias and sudden death. LQT syndrome 
could not be inherited but acquired by the use of antiarrthymic agents. 
(B) Ion channels in T lymphocytes. In normal cells antigenic stimulation 
through the TCR leads to Ca2+ release from internal stores via the 
PLC/IP3 pathway. The depletion of internal Ca2+ stores activates CRAC 
channels. Ca2+ influx from the extracellular space results in depolariza-
tion. Voltage-gated Kv1.3 channels open by depolarization, and K+ efflux 
hyperpolarizes the membrane. In addition, the rise in internal Ca2+ 
concentration activates a Ca2+-activated K+ channel (KCa). The activity of 
the two KCh generates the adequate driving force for a sustained Ca2+ 
influx through CRAC channels. The sustained Ca2+ signal is required to 
activate nuclear factors, such us NF-AT (nuclear factor of activated T-
cells) and stimulate IL-2 production. In autoimmune KCh-related dis-
orders, a disregulated increase in the activity of Kv1.3 triggers a sustai-
ned activation. TCR, T-cell receptor; IL-2, interleukin 2; DAG, diacyl-
glycerol; IP3, inositol 1,4,5-trisphosphate; NF-AT, nuclear factor of acti-
vated T-cells; PKA, protein kinase A; TK, tyrosine kinase; ER, endo-
plasmic reticulum. 
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during the first phases of the cell cycle - G1 or G1/S trans-
ition – partial hyperpolarization as a result of KCh, and Kv 
in particular, may be needed. A rational explanation would 
be that KCh are needed to control a specific check point 
during these stages. 

Finally, other studies indicate that KCh also contribute 
to cell volume control. KCh are involved in K+ transport 
across the cell membrane, and ion movements are related 
to water homeostasis. The activity of KCh allows the cell 
to regulate cell volume during the cell cycle. The cell 
growth involves changes in cell size, as the volume has to 
increase considerably and KCh contribute to regulatory 
volume control during the cell cycle. 

Proliferation and activation are associated in T-lym-
phocytes. KCh play a pivotal role during lymphocyte activ-
ation (Cahalan and Chandy 1997). A schematic represen-
tation of how KCh are involved in this process is depicted 
in Fig. 2B. In addition, work from our laboratory demons-
trates a crucial role for KCh during activation in mononuc-
lear phagocytes (Vicente et al. 2003, 2005, 2006; Villa-
longa et al. 2007). 
 
Other physiological roles 
 
KCh are involved in a variety of physiological functions. 
These channels interact with other proteins and respond in 
a particular way. Thus, KCh are also involved in apoptosis 
and may act as oxygen sensors. Proliferation and apoptosis 
are opposite events but both involve KCh activation. 
Whilst experimental data indicate that proliferation is fully 
inhibited when cell volume increases, cell shrinkage is one 
of the hallmarks of apoptosis. Intracellular K+ and Cl- ef-
flux accompanying water efflux and cell shrinkage triggers 

a reduction in cytosolic K+ and relief of apoptotic inhibition. 
This loss of intracellular ions also plays a primary role in 
caspase activation and nuclease activity during apoptosis. 
These evidences lead researches to suggest a dual role for 
KCh during cell growth and apoptotic death (Lang et al. 
2004). 

KCh also contribute to vasoconstriction following hy-
poxia. Specific oligomeric association of different subunits 
generates an O2-sensitive K+ current in pulmonary arteries, 
which suggest a role in response to hypoxia (Hulme et al. 
1999). 
 
Potassium channels and disease 
 
KCh are responsible for some neurological and cardio-
vascular diseases and have given rise to a new medical 
discipline: channelopathies. Their role in congenital deaf-
ness, multiple sclerosis, episodic ataxia, LQT syndrome and 
diabetes has been demonstrated (Ashcroft 2000). Chan-
nelopathies range from the Long QT syndrome, which is one 
of the most studied (Chiang and Roden 2000; Khan 2002), to 
recently identified KCh-related autoimmune pathologies 
(Beeton et al. 2006). See Tables 1 and 2 for an extensive list 
of human pathologies associated with impaired KCh func-
tion. KCh-related diseases may be caused by a decrease in 
activity, mostly generated by mutations (inherited) or drug-
induced (adquired), which dramatically inhibits function.  
However, an increase in activity is also involved in auto-
immune KCh-related disorders. Since the list of channelo-
pathies is constantly growing we address the reader to 
specialized works (Ashcroft 2000), only mentioning here, as 
examples, two opposite pathologies characterized by either 
decrease or increase in function (Fig. 2). Long QT syndrome 

Table 1 Potassium channels involved in human inherited disorders or experimental pathologies. Human inherited disorders associated with known muta-
tions and impaired functions of genes encoding pore-forming (alpha) subunits of K+ channels are indicated. Inherited disorders, diseases associated with 
known impaired functions; Proteins involved, isoforms associated with these KCh-related disorders. 
Family Proteins involved Inherited disorders References 
Voltage-dependent     

Kv1 Kv1.1 Myokimia with periodic ataxia, episodic ataxia (EAM, EA1) Browne et al. 1994 
 Kv1.3 Multiple Sclerosis 

Rheumatoid Arthritis  
Type I Diabetes Mellitus 

Beeton et al. 2006 

Kv7 Kv7.1 
 

Long QT syndrome type 1 (LQT1, Ward-Romano syndrome).  
Jervell and Lange Nielsen syndrome. 

Duggal et al. 1998; Tyson et al. 2000 

 Kv7.2 Epilepsy, benign neonatal type 1 (EBN1, BFNC1) Singh et al. 1998 
 Kv7.3 Epilepsy, benign neonatal type 2 (EBN2, BFNC2) Charlier et al. 1998 
 Kv7.4 Deafness, autosomal dominant type 2 (DFNA2) Kubisch et al. 1999 
Kv11 Kv11.1 Long QT syndrome type 1 (LQT2) Curran et al. 1995 

Calcium-dependent    
KCa2 KCa2.1 Muscular Distrophy Behrens et al. 1994 
KCa3 KCa3.1 Diamond-Blackfan anaemia Ghanshani et al. 1998 

Inward rectifiers    
Kir1; Kir4; Kir7 Kir1.1 Bartter syndrome Karolyi et al. 1998 
Kir2; Kir5 Kir2.1 Andersen-Tawil syndrome Davies et al. 2005 
Kir3; Kir6 Kir6.2 Persistent hyperinsulinaemic, hypoglycaemia of infancy, PHH1) de Lonlay et al. 2002; Ohkubo et al. 2005

 
Table 2 Potassium channel modulatory subunits. Human inherited disorders associated with known mutations of genes encoding regulatory subunits of 
K+ channels are indicated. � subunit partner, pore-forming subunit whose association has been certified. Inherited disorders, human diseases associated 
with known mutations. 
Family �-subunit partner Inherited disorders References 
Voltage-dependent    

KCNE1 Kv7.1; Kv11.1 Long QT syndrome type 5 (LQT5) 
Jervell-Lange-Nielsen 2 

Chiang and Roden 2000 

KCNE2 Kv11.1 Long QT syndrome type 6 (LQT6) Chiang and Roden 2000 
KCNE3 Kv7.1; Kv7.4; 

Kv11.1; Kv3.4 
Hyperkalemic periodic paralysis 
Thyrotoxic hypokalemic periodic paralysis 

Dias da Silva et al. 2002; Jurkat-Rott and 
Lehmann-Horn 2004 

KCNE5 unknown Alport syndrome Piccini et al. 1999 
Calcium-dependent    

KCNMB1 KCNMA1 Diastolic Hypertension Fernandez-Fernandez et al. 2004 
Inward rectifiers    

ABCC8 Kir6.1; Kir6.2 Persistent hyperinsulinaemic, hypoglycaemia of infancy (PHH1), 
Diabetes Mellitus II 

Ohkubo et al. 2005 

ABCC9 Kir6.1; Kir6.2 Dilated cardiomyopathy Bienengraeber et al. 2004 
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is caused by mutations that lead to a marker decrease in K+ 
currents and the prolongation of the QT interval in the car-
diac action potential. On the contrary, autoimmune disea-
ses, such as multiple sclerosis and rheumatoid arthritis, are 
generated by an increased Kv1.3 activity in immunitary 
system cells triggering hyperactivation (Fig. 2).  

Furthermore, a large body of information suggests that 
KCh play a role in cell cycle progression (Fig. 1), and it is 
now accepted that cells require KCh to proliferate (Won-
derlin and Strobl 1996; Wang 2004; Kunzelmann 2005; 
Felipe et al. 2006; Villalonga et al. 2007). Therefore, KCh 
expression has been studied in a number of tumours and 
cancer cells (Conti 2004; Pardo et al. 2005; Felipe et al. 
2006). 

Cancer is a multifactor process that involves several 
temporal steps. Cells first acquire a phenotype through the 
altered expression of proteins and genes. Afterwards, tu-
mour cells proliferate massively and do not undergo apop-
tosis (Kunzelmann 2005). Chemotherapy and radiosensiti-
zation have been used to block this progression. Nucleoside 
analogues have been widely used as a first attempt to 
control the cell cycle, these molecules being taken up by 
the cells by means of membrane transport systems. Nucleo-
side derivatives (i.e. fludarabine or gemcitabine, among 
others) used in cancer and antiviral therapies interfere with 
nucleoside metabolism and DNA replication, thus inducing 
their pharmacological effects (Pastor-Anglada et al. 1998). 
However, the use of these therapies is not synonymous with 
success. Novel technologies such as genomics and proteo-
mics have increased the number of human genes known to 
be differentially expressed in normal and malignant tissues. 
Several ion channels have been related to tumour progres-
sion and KCh play an important role in health and disease. 
In this scenario, the systemic inflammatory response pro-
duces cytokines further modulating KCh genes (Coma et al. 
2003; Vicente et al. 2004; Argiles et al. 2005). Indeed, over 
the last few years an interesting relationship between KCh 
and cancer has emerged, and there is a large body of evi-
dence indicating that KCh could play a relevant role in 
cancer therapy (Conti 2004; Kunzelmann 2005; Pardo et al. 
2005; Felipe et al. 2006).  

More than 80 different genes have been classified as 
potassium channels and their regulatory subunits. KCh 
conduct the flux of potassium ions through the membranes 
of virtually all living cells and generate either inward or 
outward currents (Hille 2001). According to the IUPHAR 
compendium (http://www.iuphar-db.org/iuphar-ic/ionChan-
nel.html) they are distributed in four superfamilies. Kv 
(Kv1 to Kv12) families are voltage-dependent; KCa (KCa1-
5) families are Ca-dependent; K2P (K2P1-7, 9, 10, 12, 13, 
15-18) families are members of the two-pore domain group; 
and Kir (Kir1-7) isoforms show inward rectification (Fig. 
3). These �-subunits coassemble to form homo- or hetero-
multimeric channels. In addition to these pore-forming 
subunits, KCh channel diversity may be enhanced by the 

formation of oligomers with auxiliary subunits (Martens et al. 
1999; Vicente et al. 2005). In this review, we will sum-
marize the latest update information regarding the expression 
of KCh in cancer. Each superfamily will be described inde-
pendently. Following a brief description of the superfamily, 
we will provide an update of information concerning the 
most relevant K+ channel expression in tumours and cancer 
cells.  

 
Voltage-dependent potassium channels (Kv) 
 
Kv possess six transmembrane domains and may be further 
subdivided into seven conserved gene families (Fig. 4). 
These comprise the voltage-dependent channels Kv1-4 (Sha-
ker, Shab, Shaw, Shal-like subunits), the so-called KCNQ 
channels (Kv7), the silent Kv5, Kv6, Kv8 and Kv9 subunits 
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10 

Fig. 3 Phylogenetic tree of the potassium channel superfamily. Tree 
was constructed using a protein distance matrix method with the program 
Protdist and Fitch. The scale bar is calibrated in PAM units. 

Fig. 4 Membrane topology of voltage-dependent potassium channels 
(Kv) and phylogenetic trees. (A) Kv possess six transmembrane do-
mains. (B) Phylogenetic tree of Kv1 to Kv9 families. (C) Phylogenetic 
tree of Kv10-12 families. The tree has been constructed separately since 
the protein distance between Kv10-12 and the rest of Kv is noticeable. 
See Fig. 3 for details. While transmembrane domains are represented by 
cylinders, the invaginated link between transmembrane domains 5 and 6 
indicates the ionic pore. 
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(modulators), and the eag-like channels (Kv10-12) (Gut-
man et al. 2005). The Kv, KCNQ and eag-like K+ channels 
are typically closed at the resting potential of the cell, but 
open on membrane depolarization. They are involved in the 
repolarization of the action potential, and thus in the 
electrical excitability of nerve and muscle. They also modu-
late synaptic transmission, activation (leukocytes), diffe-
rentiation (myocytes) and secretion from endocrine cells 
(pancreatic �-cells) (Hille 2001). Mutations in the genes 
encoding members of these Kv channel subfamilies clearly 
lead to a number of human diseases, such as episodic ataxia, 
long QT syndrome and epilepsy (Ashcroft 2000).  

Pharmacological tools have opened the way to under-
standing the role of K+ channels in cell proliferation. Ex-
perimental evidence in cellular physiology and pharmaco-
logy demonstrates that Kv are involved in the proliferation 
of normal and tumour cells (Felipe et al. 2006). Indeed, the 
physiological role of K+ channels in cell growth has been 
confirmed by a number of experiments in which. the num-
ber of normal or tumour cells diminished when K+ channels 
were blocked with toxins or drugs (Felipe et al. 2006). In 
addition to the role of Kv during cell growth, highly proli-
ferating cancer cells either up- or down-regulate Kv (Conti 
2004; Pardo et al. 2005; Felipe et al. 2006). Furthermore, 
the expression of Kv is impaired in several types of tu-

mours. It has been demonstrated that a certain degree of 
malignancy correlates with the expression of Kv. Although 
several types of Kv have been associated with a highly 
proliferative state only a few types have clearly oncogenic 
effects. Thus, only the eag (Kv10.1) generates oncogenic 
phenotypes when introduced into healthy animals (Pardo et al. 
1999). 

Altered expression of members of all Kv groups has 
been found in different types of tumours and cancer cells. 
Whilst Kv1.3 is the most documented of the Kv1 (Shaker) 
family and is overexpressed in breast, colon and prostate 
cancer (Ouadid-Ahidouch et al. 2000; Abdul and Hoosein 
2002b; Abdul et al. 2003), Kv1.1 and Kv1.5 show impaired 
expression in breast and glioma malignant cell lines, respect-
tively (Ouadid-Ahidouch et al. 2000; Preussat et al. 2003). 
An increase of Kv7.1 (KCNQ1) and KCNE1 subunits has 
been detected in germinal tumours (Tsevi et al. 2005). In ad-
dition to the oncogenic properties of Kv10.1 (see above), 
members of the Kv10 (eag) and Kv11 (erg) families are also 
expressed in a number of tumour and cancer cell lines 
(Arcangeli 2005; Pardo et al. 2005; Camacho 2006). Thus, 
Kv10.1-2 are expressed in breast and neuroblastoma cancer 
while Kv11.1 has been detected in gastrointestinal, endome-
trial, neuroblastoma and leukaemia cancer and cell lines 
(Table 3). In addition, epigenotyping paediatric studies have  

Table 3 Kv channels in tumour and cancer cells. 
Channel Tumour  Characteristics Expression References 
Kv1.1 Breast  Marked expression in cell lines. � Ouadid-Ahidouch et al. 2000 
Kv1.3 Breast Biopsies and cell lines. 

Openers stimulate growth. Aminodarone inhibits proliferation. 
� Abdul et al. 2003 

 Colon Biopsies and cell lines. 
Openers increase cell growth while blockers inhibit cell 
proliferation. 

� Abdul and Hoosein 2002a 

 Prostate Biopsies and cell lines. 
Openers increase PC3 proliferation whereas blockers inhibit 
growth. 

� Abdul and Hoosein 2002b 

Kv1.5 Glioma Inverse correlation with malignancy (astrocytoma, 
oligodendroglioma and glioblastoma). 

� Preussat et al. 2003 

Kv2.1 Cervical squamous carcinoma Kv2.1/Kv9.3 heteromer as a major component.  
Hanatoxin suppresses growth. 

� Suzuki and Takimoto 2004 

Kv3.4 Oral squamous cell carcinoma 4-aminopyridine and antisense oligonucleotides inhibit cell 
growth. 

� Chang et al. 2003; Lew et al. 2004

Kv7.1 Germinal Seminoma characterized by undifferentiated germ cells. � Tsevi et al. 2005 
Kv9.3 Cervical squamous carcinoma Kv2.1/Kv9.3 heteromer as a major component. Growth 

suppressed by hanatoxin. 
� Suzuki and Takimoto 2004 

Kv10.1-2 Breast hEAG promotes cancer progression. � Pardo et al. 1999 
 Endometrial High correlation with malignancy. � Farias et al. 2004; Camacho 2006
 Glioma Expression in neuroblastoma. Antisense oligonucleotides inhibit 

cell proliferation. 
� Meyer and Heinemann 1998; 

Meyer et al. 1999 
 Sarcoma Aberrant expression in soft tissue sarcoma biopsies. � Mello de Queiroz et al. 2006 
Kv11.1 Aldosteronoma High correlation with the expression of the 897T variant.  � Sarzani et al. 2006 
 Colon Colorectal cancer. Correlation with invasive phenotype. � Lastraioli et al. 2004 
 Endometrial High expression in adenocarcinoma in association with KCNEs � Cherubini et al. 2000; Suzuki and 

Takimoto 2004 
 Oesophageal Early step of the progression. � Lastraioli et al. 2006 
 Glioma Neuroblastoma cell lines. � Bianchi et al. 1998; Crociani et al. 

2003; Masi et al. 2005 
 Leukaemia Constitutively present in leukaemic cell lines. 

Blockers inhibit cell proliferation.  
Expression of a truncated form. 

� Pillozzi et al. 2002; Smith et al. 
2002 
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Fig. 5 Membrane topology of Ca++-depen-
dent K+ channels (KCa) and phylogenetic 
trees. (A) Similar to Kv, KCa2-3 possess six 
transmembrane domains. (B) Phylogenetic 
tree of KCa2-3 isoforms. (C) KCa1,4-5 pos-
sess seven transmembrane domains. (D) 
Phylogenetic tree of KCa1,4-5- isoforms. The 
tree has been constructed separately since 
the protein distance between families is 
noticeable. See Figs. 3 and 4 for details. 
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revealed that aberrant methylation of Kv7.1 correlates with  
a risk of developing childhood tumours (Bliek et al. 2004). 
 
Ca2+-dependent potassium channels (KCa) 
 
Calcium-activated potassium channels (KCa) belong to the 
group of channels consisting of six/seven transmembrane 
domains (Fig. 5). KCa are mostly gated by intracellular Ca2+ 
ions and their activity is responsible for part of the repola-
rization that follows an action potential or a train of action 
potentials in neurons. This generally suppresses membrane 
excitability. KCa are also important in non-neuronal cells 

such as epithelia and visceral smooth muscle, where they 

regulate secretion and contractility (Stocker 2004; Cox 
2005). In addition, KCa play a pivotal role controlling acti-
vation and proliferation of leukocytes (Rader et al. 1996; 
Jensen et al. 1999). According to their single-channel con-
ductance in symmetrical K+ solutions, KCa channels can be 
classified as BK (KCa1, KCa4, KCa5), SK (KCa2) or IK 
(KCa3) (large, small and intermediate conductance, respect-
tively) (Wei et al. 2005). The pharmacology is specific for 
each isoform. While iberiotoxin is selective for BK and 
apamin for SK channels, the antifungal agent clotrimazole 
selectively blocks IK channels (García et al. 1997; Kos-
chak et al. 1997). 

KCa are widely distributed in both excitable and non-
excitable cells (Gribkoff et al. 1997) and mutations in SK 
and IK channels may underlie a wide range of disorders 
(Litt et al. 1999). SK3 channels have been implicated in 
muscular dystrophy (Behrens et al. 1994) and IK channels 
in Diamond-Blackfan anaemia (Ghanshani et al. 1998). As 
regards neoplastic diseases, the expression of KCa1.1 (BK) 
and KCa3.1 (IK) is also abundant in neuroblastoma and 
prostate cancer among other disorders (Table 4). 
 
Inward-rectifier K+ channels (Kir) 
 
Inwardly rectifying K+ (Kir) channels, which only possess 
two transmembrane domains (Fig. 6), show the property of 
inward rectification, an inward current evoked by hyper-
polarizations from the potassium equilibrium potential. 
Rectification is not an inherent property of the channel 
protein itself, but reflects strong voltage dependence of 
channel block by intracellular cations such as Mg2+ and 
polyamines. Kir channels regulate the membrane potential 
and are involved in K+ transport across membranes. They 
control cell differentiation, modulate neurotransmitter 
release, may act as hypoxia sensors and regulate cerebral 
artery dilatation. In addition, these channels are important 
in the regulation of insulin secretion, proliferation and the 
control of vascular smooth muscle tone. Kir channels play 

an important physiological role in the function of many 

organs including brain, heart, kidney, endocrine cells, ears, 
and retina (Reimann and Ashcroft 1999; Hille 2001). Muta-
tions in Kir channels trigger neuronal degeneration, failure 
of renal salt absorption and defective insulin secretion (Ash-
croft 2000). In humans the two major diseases linked so far 
to mutations in a Kir channel or associated protein are persis-
tent hyperinsulinemic hypoglycemia of infancy, a disorder 
affecting the function of pancreatic � cells, and Bartter’s 
syndrome, characterized by hypokalemic alkalosis, hypercal-
ciuria, increased serum aldosterone, and plasma renin acti-
vity (Karolyi et al. 1998; Ohkubo et al. 2005). The Kir 
superfamily comprises seven subfamilies (Kir1-Kir7) (Kubo 
et al. 2005). Although these proteins play a role in cell 
growth (Vicente et al. 2003), little information is available 
concerning Kir channels and cancer (Table 5). An increase 
of Kir proteins has been described in breast and lung cancers 
(Sakai et al. 2002; Plummer et al. 2004, 2005). However, in 
glioma, whilst Kir2.1 expression is inversely correlated with 

Table 4 KCa channels in tumour and cancer cells.  
Channel  Tumour  Characteristics Expression References 
KCa1.1 Astrocytoma Iberiotoxin inhibits proliferation. � Basrai et al. 2002 
 Glioma Tumours and cell lines. 

Iberiotoxin inhibits cell migration. 
Expression correlates with malignancy. 

� Ransom and Sontheimer 2001; Liu et al. 2002; 
Weaver et al. 2004 

 Lung Discoordinate expression with MRP1. � Lam et al. 2006 
KCa2 Breast Mediator of cell migration. � Potier et al. 2006 
KCa3.1 Glioblastoma Proliferation in culture inhibits currents. � Fioretti et al. 2006 
 Lung Marker expression in lung tumours. 

Required for mast cell migration. 
� Cruse et al. 2006 

 Pancreas Blockers inhibit cell growth. � Jager et al. 2004 
 Prostate Openers increase cell growth. 

Blockers inhibit cell proliferation. 
� Parihar et al. 2003 

Table 5 Kir channels in tumour and cancer cells. 
Channel  Tumour  Characteristics Expression References 
Kir2.1 Glioma Inverse correlation with malignancy. � Brismar and Collins 1988, 1989 
 Lung Marked expression in cell lines. � Sakai et al. 2002 
Kir3.1 Breast Correlation with breast cancer specimens and cell lines. � Stringer et al. 2001; Plummer et al. 2004 
 Lung GIRK1-4 differential expression. � Plummer et al. 2005; Dhar and Plummer 2006 
Kir4.1 Glioma Proliferating cells. � Ma et al. 1999 

Kir1.1

Kir4.1 Kir4.2

Kir7.1

Kir5.1

Kir2.3

Kir2.2
Kir2.1Kir2.4

Kir6.1

Kir6.2

Kir3.2

Kir3.4

Kir3.3

Kir3.1

10 

A
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Fig. 6 Membrane topology of inward-rectifier potassium channels 
(Kir) and the phylogenetic tree. (A) Kir possess two transmembrane 
domains. (B) Phylogenetic tree. See Figs. 3 and 4 for details. 
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malignancy, an increased expression of Kir4.1 has been 
documented (Brismar and Collins 1989; Ma et al. 1999). 
 
Two-pore domain K+ channels (K2P) 
 
The K2P channel family is structurally unique in that each 
subunit possesses two pore-forming domains and four 
transmembrane segments (Fig. 7). These channels have 
properties of leak K+ channels and therefore play a crucial 
role in setting the resting membrane potential and reg-
ulating cell excitability. Their activity can be modulated by 
polyunsaturated fatty acids, pH and oxygen, and some are 
candidate targets of volatile anaesthetics. In addition, K2P 
channels are involved in cell apoptosis and tumorigenesis 
(Patel and Lazdunski 2004). However, despite their poten-
tial as targets for novel drugs for human health, little is 
known about the molecular basis of their diverse physio-
logical and pharmacological properties. This family is 
constantly being up-dated and at the time of writing this 
review consisted of fifteen known members (http://www. 
iuphar-db.org/iuphar-ic/ionChannel.html). Altered expres-
sion of K2P9.1 has been observed in breast, colon, mela-
noma and lung cancers which correlate with malignancy in 
cell lines (Table 6). In addition, K2P9.1 is tumorigenic, 
since overexpression in cell lines promotes tumour growth 
(Mu et al. 2003; Pei et al. 2003). Point mutations in the 
channel impair K+ channel activity and eliminate the onco-
genic potential (Pei et al. 2003). 

CONCLUDING REMARKS 
 
In recent years KCh have been shown at the molecular level 
to be directly involved in tumour and cancer progression 
(Conti 2004; Pardo 2004; Kunzelmann 2005; Pardo et al. 
2005; Felipe et al. 2006). Potassium channels in cell mem-
branes regulate cellular excitability and proliferation, and this 
pivotal role has made them the target of several channelo-
pathies (Ashcroft 2000). Although the mechanism by which 
ion channels modulate tumour growth is unknown, many 
drugs and toxins specifically modulate the activity of KCh 
controlling cell growth, thereby inhibiting tumour progres-
sion. In light of the increasing amount of evidence showing 
that KCh are involved in cell proliferation and tumour growth, 
it seems that these proteins may serve as a pharmacological 
tool during cancer progression and pathology. Indeed, the 
pharmacological use of KCh in combination with other ther-
apies could improve therapy strategies (Conti 2004; Duflot et 
al. 2004; Chen et al. 2005). A large body of data indicates 
that tumour cells up-regulate KCh when undergoing dedif-
ferentiation, which may also suggest that these proteins can 
be used as tumour markers (Camacho 2006; Felipe et al. 
2006; Stühmer et al. 2006). In conclusion, although cancer is 
far from being considered a channelopathy, the data indicate 
that KCh may well be future targets in anticancer therapies. 
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