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ABSTRACT 
Prostate cancer is one of the leading causes of cancer death in men. A number of local curative treatments are available for patients with 
early localized prostate cancer. These include radiation therapy, radical prostatectomy, cryotherapy or branchytherapy. Locally advanced 
prostate cancer requires the addition of hormone therapy in addition to radiation therapy or radical prostatectomy. Many such patients go 
on to develop hormone refractory cancer or distant metastases. In such patients, gene therapy or cell therapy may be useful modalities in 
addition to or as alternatives to chemotherapy. In this review, we discuss various gene therapy vectors and the new cell based approaches 
as well as the pre-clinical and clinical data that are available for prostate cancer management. 
_____________________________________________________________________________________________________________ 
 
Keywords: adenovirus, cell therapy, gene therapy, liposomes, sleeping beauty transposons, SV40, vaccinia virus 
 
CONTENTS 
 
INTRODUCTION AND BACKGROUND ................................................................................................................................................. 80 
MOLECULAR BIOLOGY OF PROSTATE CANCER ............................................................................................................................... 81 
AN OVERVIEW OF GENE AND CELL THERAPY VECTORS............................................................................................................... 82 
CANCER GENE THERAPY....................................................................................................................................................................... 82 
VIRAL VECTORS....................................................................................................................................................................................... 83 

Adenovirus .............................................................................................................................................................................................. 83 
Retroviruses............................................................................................................................................................................................. 83 
Herpes-Simplex Virus (HSV) .................................................................................................................................................................. 83 
Vaccina Virus (VV) ................................................................................................................................................................................. 83 
SV40 Virus .............................................................................................................................................................................................. 84 

NON-VIRAL VECTORS............................................................................................................................................................................. 84 
Liposomes and polycations...................................................................................................................................................................... 84 
Sleeping Beauty transposons ................................................................................................................................................................... 84 

PHYSICAL METHODS .............................................................................................................................................................................. 85 
CELLULAR THERAPY.............................................................................................................................................................................. 85 

T cells ...................................................................................................................................................................................................... 85 
Dendritic cells.......................................................................................................................................................................................... 85 

REFERENCES............................................................................................................................................................................................. 86 
_____________________________________________________________________________________________________________ 
 
 
INTRODUCTION AND BACKGROUND 
 
Prostate cancer is the most commonly diagnosed cancer in 
men and is the second leading cause of cancer death after 
lung cancer. Early stage, low risk prostate cancer (PSA <10, 
T1/T2 N0, Gleason score <7) is treated using external beam 
radiation therapy (EBRT), brachytherapy, radical prostatec-
tomy, or cryotherapy either alone or infrequently as a com-
bined modality approach. Intermediate and high risk pros-
tate cancer (PSA >10, Gleason score>7, T3/T4 ± nodes) is 
treated generally using a multimodality approach that may 
include a combination of surgery, radiation, hormones and 
chemotherapy. 

Historically, surgery has been the earliest treatment 
used in the management of prostate cancer and was used 
initially to relieve urinary obstruction. There was, however, 
no systematic technique for removal of the prostate until 
the pioneering work of Hugh Hampton Young (Young 
1905) who in 1904, performed the first radical perineal 
prostatectomy at the Johns Hopkins Hospital. Thereafter, 
advances in surgical techniques including retropubic, nerve 

sparing, laparoscopic and robotic techniques have revol-
utionized the surgical treatment of prostate cancer. 

The history of radiation therapy for prostate cancer 
dates almost from the time of the discovery of radium by 
Madame Curie (Curie et al. 1898) at the end of the 19th cen-
tury. The very first use of the newly discovered ‘‘X-rays’’ 
was to alleviate the pain of bony pelvic metastases. The first 
attempts to use radiation to treat localized prostate cancer 
were limited to introduction of radium sources into the ure-
thra and rectum. At present, external radiation is delivered 
using advances linear accelerators and brachytherapy treat-
ments are given using radioactive isotopes. External Beam 
radiation therapy (EBRT) involves delivery of high energy 
X-ray beams to the prostate as well as areas considered at 
risk of microscopic disease. The areas at risk may include 
the periprostatic tissue, seminal vesicles or lymph nodes. 
Commonly used radiation dose to the prostate is in the 
range of 7000-8100 cGy. Patients are immobilized on the 
treatment table and radiation is delivered in multiple frac-
tions over a period of several weeks. Brachytherapy in-
volves the introduction of radioactive pellets (seeds) into the 
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prostate. The radioactive seed placement is done under loc-
al, regional or general anesthesia utilizing ultrasound guid-
ance. Commonly used radioactive seeds such as Iodine-125 
(I-125) and Palladium-103 (Pd-103) emit low energy radia-
tion that is absorbed in the tissue immediately surrounding 
the seeds. Anywhere from 40 to 130 seeds may be placed in 
the prostate. However, the exact seed number is determined 
based on the prostate volume. 

Radical Prostatectomy is the surgical removal of pros-
tate gland and possibly seminal vesicles and the surroun-
ding nerves and veins. A part of the urethra traveling 
through the gland’s transitional zone is also removed. The 
two ends of the remaining urethra are reattached to form an 
anastomosis. Depending on the type of surgical technique, 
prostatectomy could be open, laparoscopic or robotic. 
Based on the site of surgical incision, prostatectomy could 
be retropubic or perineal. In retropubic approach, incision is 
made in the lower abdomen and lymph node dissection as 
well as nerve sparing operation can be performed, while the 
incision is in perineum in the latter approach.  

The goal of cryotherapy is to ablate tissues using ex-
tremely cold temperatures. The major advances in the past 
15 years have included the use of real-time transrectal ultra-
sound (TRUS) monitoring of probe placement and freezing 
(Onik et al. 1988), the simultaneous use of multiple cryo-
probes, and the standard use of urethral warming catheters 
(Saiken et al. 2002). Another significant recent develop-
ment is the introduction of cryotherapy probes based on 
argon gas rather than liquid nitrogen. Argon rapidly cools 
the probe tip to -187°C (-304.6°F) and can be rapidly ex-
changed with helium at 67°C (152.6°F) for an active thaw-
ing phase, producing a faster response to operator input and 
significantly speeding 2-cycle treatment (de la Taille et al. 
2000). Moreover, argon-based probes have a much smaller 
diameter, thus permitting direct, sharp transperineal inser-
tion, avoiding the need for tract dilation and facilitating 
more conformal cryosurgery by allowing placement of 
more probes (Zisman et al. 2001). 

The treatment of metastatic and advanced prostate can-
cer may include hormones, chemotherapy and radiation the-
rapy. High risk prostate cancer patients have a high risk of 
nodal and systemic recurrence despite surgery and radiation 
treatments. Studies have demonstrated a suppression of sys-
temic disease and an increase in local control (Lawton et al. 
2001; Pilepich et al. 2001; Hanks et al. 2003; Roach et al. 
2003) and survival (Bolla et al. 2002) with addition of hor-
mones and radiation. One advantage of adding androgen 
ablation during radiation is the cytoreduction caused by 
hormones, and radiation has in consequence less tissue to 
eradicate. Chemotherapy is another option to control sys-
temic and local disease. Several early studies showed 
benefit of adding chemotherapy to radiation (Kumar et al. 
2004; Swanson et al. 2006). In the management of meta-

static prostate cancer refractory to hormone treatments, che-
motherapy has been shown to have a modest effect with 
some studies reporting an overall response rate of ~9% (Ya-
goda et al. 1993). A recent randomized trial comparing doc-
etaxel plus prednisone vs. mitoxantrone plus prednisone in 
metastatic prostate cancer showed a 2.4 month median sur-
vival benefit in the docetaxel group (Tannock et al. 2004). 
A PSA response in 45% and pain response in 35% was seen 
in the better group. Another phase II study showed that a 
combination of docetaxel, vinorelbine and zolendronic acid 
in hormone-refractory prostate cancer is associated with 
improve-ment in biochemical, objective and pain response 
and is well tolerated as a first line therapy for such patients 
(di Lorenzo et al. 2007). A recent pre-clinical study eval-
uated the antiproliferative and cytotoxic effects of a com-
bination of selective inhibitors of EGFR (epidermal growth 
factor receptor) tyrosine-kinase and smoothened hedgehog 
signaling element gefitinib and cyclopamine with docetaxel 
in prostate cancer cell lines (Mimeault et al. 2007). The 
results indicated that the drugs alone or in combination in-
hibited the growth of both androgen dependent and inde-
pendent prostate cancer cell lines and could be used for 
high-risk hormone refractory patients. Table 1 lists the stan-
dard therapies for prostate cancer and the toxicities associ-
ated with them. 

In addition to the above mentioned ‘standard’ therapies 
for prostate cancer, there is laboratory and clinical evidence 
of the efficacy of complementary and alternative therapies 
for treatment and prevention of this disease. These therapies 
include carotenoids, Vitamins A, C, D, E, dietary fat, phyto-
estrogens, selenium and herbs such as PC-SPECS (Wilkin-
son et al. 2003). 

The treatment of metastatic prostate cancer is palliative 
that may include hormones, chemotherapy and radiation 
therapy. Despite the recent development of more effective 
chemotherapeutic regimens, the overall prognosis of high 
risk and metastatic prostate cancer is poor. This has led to 
the investigations of novel cell and gene-based approaches 
to treat both localized and disseminated prostate cancer. 
 
MOLECULAR BIOLOGY OF PROSTATE CANCER 
 
Studies have demonstrated multiple alterations in tumor 
suppressor genes in human prostate cancer including alte-
rations in p53, PTEN1, Mxi-1 and Kai-1. In addition, loss of 
heterozygosity (LOH) at polymorphic loci on 8p, 10p, 16q 
and 18q (Effert et al. 1992; Veronese et al. 1996; Jenkins et 
al. 1998; Whang et al. 1998; Verma et al. 1999) has also 
been reported. An important regulator of PSA expression is 
androgen receptor (AR). Human AR is a ligand-dependant 
nuclear transcription factor that controls expression of genes 
responsible for growth and development of normal and ma-
lignant prostate tissue. AR activity is repressed by p53. A 

Table 1 Toxicity associated with standard therapies for prostate cancer. 
Treatment Toxicity 
Radiation Genitourinary (GU): Cystitis/uretheritis, hematuria, urethral stricture, bladder contracture 

Gastrointestinal (GI): Diarrhea, tenesmus, rectal and anal strictures, hematochezia, bowel ulceration, obstruction or perforation 
Sexual: Erectile dysfunction, impotency, leg or genital edema, pain during ejaculation, hematospermia 
Second cancers, fatigue 
Complication associated with anesthesia (brachytherapy) 

Surgery Complication associated with anesthesia 
Blood loss, rectal injury, deep vein thrombosis 
Urinary incontinence 
Bladder neck and anastomotic strictures 
Impaired bowel function including diarrhea, rectal urgency, fecal incontinence 
Erectile dysfunction 

Hormones Impotence, hot flashes, osteoporosis, anemia, loss of libido, weight gain, muscle wasting, diarrhea, breast and nipple tenderness, 
liver toxicity, gynecomastia 

Chemotherapy Docetaxel; Cytopenias, nausea/vomiting, hair loss, edema, liver functions, skin 
Mitoxantrone: Cytopenias, nausea/vomiting, hair loss, cholestasis, cardiac 

Cryotherapy Impotence, incontinence, tissue sloughing, pelvic-rectal pain, penile numbness, recto-urethral fistula, urethral stricture, 
hydronephrosis, small bowel obstruction 
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mutation of p53 disrupts the p53 negative activity on the 
AR (Shenk et al. 2001). Some studies have implicated 
alleles at the CAG and GGC trinucleotide repeats of the AR 
gene with high-grade, aggressive prostate cancer (Kittles et 
al. 2001). E-cadherin and �-catenin are components of ad-
herens junctions which mediate calcium dependent cell-cell 
adhesion in a homotypic manner. Reduced levels of E-cad-
herin have been reported in advanced prostate cancer (Nel-
son 1995). Several genes have been found to be over-ex-
pressed in prostate cancer. These include �-catenin, an ad-
hesion junction-associated protein that promotes cell scat-
tering and prostate-specific membrane antigen (PSMA/ 
FOLH1) (Burger et al. 2002). Prostate stem cell antigen 
(PSCA) a 123 amino-acid glycoprotein is strongly expres-
sed in the prostate and has been shown to be over-expressed 
by more than 80% of prostate cancers and is correlated with 
an aggressive phenotype and a high gleason score (Gu et al. 
2000). Annexin1 is a calcium-dependent binding protein 
down-regulation of which is a common finding in high-
grade prostatic intraepithelial neoplasia and prostate cancer 
(Kang 2002). 

Novel genes that have been identified in the pathoge-
nesis of prostate cancer include tumor suppressor genes 
LAPSER1 (Sudo et al. 2007) and Deleted in Liver Cancer-
3 (DLC-3) (Durkin et al. 2007), SIM2 (Halvorsen 2007), 
type III TGF-beta receptor (TbetaRIII or betaglycan) (Tur-
ley et al. 2007) and Prosaposin (Koochekpour et al. 2007). 
 
AN OVERVIEW OF GENE AND CELL THERAPY 
VECTORS 
 
Gene therapy involves the transfer of a transgene to the tar-
get using a viral or a non-viral vector. The main objectives 
of gene therapy are (a) augmentation of a missing gene, (b) 
expression of pharmacologic gene products e.g. suicide 
genes in cancer gene therapy, (c) interference of an unwan-
ted gene expression and (d) expression of genes that are 
not normally expressed in the tissues to produce the des-
ired therapeutic effect. Commonly used viral vectors in-
clude adenoviruses, adeno-associated viruses, retroviruses 
(e.g. lentivirus), herpes-simplex virus (HSV), vaccinia 
virus (VV) and SV40 virus (simian virus) (Kay et al. 2001). 
Many of these viral vectors display a high efficiency in 
gene transfer and expression. However, their major limita-
tions such as toxicity, immunogenicity, limited DNA car-
rying capacity, production and packaging problems, re-
combination and high cost, hamper their successful clinical 
applications (Tenenbaum et al. 2003; Brunetti-Pierri et al. 
2004; Trajcevski et al. 2005). 

In contrast, non-viral vectors are relatively less immun-
ogenic than viral vectors and are easier to produce on a lar-
ger scale, but display a less-efficient gene transfer to the 
tissues and have a limited period of gene expression. Non-
viral vectors can be (a) chemical {e.g. liposomes and F-
proteins} and (b) physical (e.g. electroporation, gene guns, 
nucleofection) (Foley et al. 2004). 

Cellular vectors involve the use of dendritic cells 
(DCs), macrophages and T-cells from peripheral circula-
tion to migrate into tumors. For example, in ex-vivo gene 
transfer, cells are isolated from a patient, transfected with 
the required gene, and are injected back into the same pa-
tient. 
 
CANCER GENE THERAPY 
 
Numerous in-vitro and preclinical animal model studies 
have shown remarkable efficacy of cancer gene therapy to 
induce cancer cell lysis and death, and decrease blood sup-
ply to the cancer cells in various types of cancer (Tseng 
2002; Prieto et al. 2004). Cancer gene therapy can be 
broadly divided into gene transfer, oncolytic virotherapy 
and immunotherapy. 

Gene transfer involves the transfer of a foreign gene 
into cancer cells or the surrounding tissues. Genes that 
have been selected for this kind of treatment include sui-

cide genes such as herpes simplex virus type 1- thymidine 
kinase gene (HSVtk) (Sadeghi et al. 2005) and anti-angio-
genesis genes (e.g. sFLT1 and statin-AE) (Ohlfest et al. 
2005). The most common viral vector that has been used 
for gene transfer is the replication incompetent adenovirus 
though the type of vector depends on the effect for which it 
is being utilized. In suicide gene therapy, the presence of 
the herpes simplex virus type 1 (HSVtk) gene in transduced 
cells allows to eliminate, by ganciclovir (GCV) treatment, 
any cell that may have undergone transformation (Sadeghi 
et al. 2005). A recently reported phase I trial utilized intra-
prostatic injections of lytic replication competent adenovi-
ruses that delivered cytosine deaminase (CD) and HSVtk to 
malignant cells. Vector delivery was followed by 1-2 week 
delivery of prodrugs 5-fluorocytosine (5FC) and GCV. Bio-
logical response was seen as evidenced by a decrease in 
PSA and tumor cell destruction histologically (Freytag et al. 
2002). Solid tumors such as prostate, lung (nineteen pati-
ents with nonmetastatic non-small cell lung cancer who 
were not eligible for chemoradiation or surgery were treat-
ed with radiation therapy to 60 Gy over 6 weeks in con-
junction with three intratumoral injections of Adenovirus-
p53 (INGN 201)-tumor regression was seen at primary in-
jected tumor) and pancreatic tumors (adenovirus vector en-
coding a soluble form of Flk1 (Flk1-Fc), a receptor for vas-
cular endothelial growth factor, in 3 murine models of pan-
creatic adenocarcinoma-tumor regression seen after injec-
tion of the viral vector) and brain cancers (xenograft-bear-
ing mice showed tumor regression on delivery of soluble-
vascular endothelial growth factor receptor and angiostatin-
endostatin fusion gene using sleeping beauty (SB) transpo-
son coadministered with SB-transposase encoding DNA) 
have been treated successfully in various models using a 
variety of gene transfer methods (Tseng 2002; Swisher et al. 
2003; Ohlfest et al. 2005; Satoh et al. 2005). 

Oncolytic gene therapy vectors are viruses that have 
been genetically engineered to infect and destroy cancer 
cells through the propagation of the virus, expression of 
cytotoxic proteins and cell lysis (Mullen et al. 2003). The 
key issue to use this strategy is the “conditional” oncolytic 
virus, that is, the virus is altered to specifically target a de-
sired cell type or attenuated in a way that the desired target 
cells are much highly sensitive to its oncolytic cell lysis 
than non-targeted cells. A number of different viruses have 
been used for this purpose, including VV, adenovirus, HSV 
type I, Reovirus and Newcastle disease virus (Mullen et al. 
2002). G207, a multi-mutated HSV, that was genetically 
modified and has a deletion of both ICP34.5 genes and an 
insertion inactivation of the ICP6 gene, permits replication 
within cancer cells but limits replication in normal cells 
(Mineta et al. 1995). In a nude mice model of xenograft 
human prostate tumors, intratumoral injection of G207 
caused a reduction of tumor size and a complete eradication 
of >22% of tumors and intravenous injection of G207 sup-
pressed distant subcutaneous tumor growth (Walker et al. 
1999). 

Immunotherapy involves boosting the immune system 
to destroy cancer cells. Cancer cells are harvested from the 
patient or from established cancer cell lines and then are 
grown in vitro. These cells are then engineered to be more 
recognizable to the immune system by the addition of one 
or more genes, which are often cytokine genes that produce 
pro-inflammatory immune stimulating molecules, or highly 
antigenic protein genes. These altered cells are grown in 
vitro and killed, and the cellular contents are incorporated 
into a vaccine (Kowalczyk et al. 2003). GVAX® is a cel-
lular vaccine generated from the 2 allogeneic cell lines 
LNCaP and PC-3, which have been genetically modified to 
secrete GM-CSF and then irradiated to prevent further cell 
division. Two phase II trials have shown clinical response 
to GM-CSF tumor cell vaccine in metastatic and hormone 
refractory prostate cancer patients (Brand et al. 2006). Si-
puleucel-T (Provenge®) is another immunotherapy cellular 
product consisting of autologous peripheral blood mono-
nuclear cells that have been cultured in vitro with a recom-
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binant fusion protein composed of prostatic acid phospha-
tase (PAP) and GM-CSF. This has also shown clinical res-
ponse in phase II (P-16) and phase III (D-9901 and D-
9902A) clinical trials for hormone refractory prostate can-
cer patients (Brand et al. 2006). 
 
VIRAL VECTORS 
 
Adenovirus 
 
Adenovirus is a double stranded DNA virus and has a 
DNA genome of ~38 kb. Serotypes 5 and 2 are most com-
monly used as vectors. The viral capsid is non-enveloped 
and consists of the following proteins: Hexon that binds to 
the Coxsackie and Adenovirus Receptor (CAR) on the tar-
get cell surface and Penton that binds to the �v�3,5 integrins 
on the target cell surface. The adenovirus genome has four 
early transcription units (E1-4) and a late unit that codes 
for structural proteins. In the first generation of adenoviral 
vectors, E1 region was removed to insert the therapeutic 
gene and inhibit viral replication. However, despite the re-
moval of this region, there was still a low level of trans-
cription of viral genes that led to host cellular immune res-
ponse against the virus resulting in limited gene expression. 
Later generations of adenoviral vectors have deletions of 
E2a, E2b and E4 that further reduce immunogenicity and 
help to generate replication-competent viruses (Relph et al. 
2005). A third generation of viruses has been generated 
(utilizing helper viruses-viruses that provide necessary pro-
teins in trans) in which virtually all viral genes have been 
deleted except for the packaging signal (gutless vectors) 
(Parks et al. 1996). 

There is a requirement of targeted adenoviral vectors in 
clinical applications in order to allow systemic administra-
tion, reduce normal tissue toxicity and reduce immune res-
ponse. There are two main approaches for targeted expres-
sion: transductional targeting and transcriptional targeting. 
The identification of the route by which cells take up ade-
noviral vectors is called transductional targeting. The ade-
novirus anchors on to the cell surface by means of CAR 
and interaction of capsid penton proteins and integrins �v�3 
and �v�5 allows internalization of the vector (Wickham et 
al. 1993; Bergelson et al. 1997). CAR expression is higher 
in metastatic prostate cancer cells compared to primary 
tumors, and therefore makes adenoviruses suitable vectors 
for gene transfer and metastatic prostate cancer (Rauen et 
al. 2002). A phase I clinical trial showed that intraprostatic 
delivery of CV706 (a conditionally replicative adenovirus) 
could be safely administered to patients even at high doses 
and it resulted in a clinical response shown by a decrease 
in PSA (de Weese 2001). In transcriptional targeting, tar-
geting of gene expression to specific cell types can be 
achieved through the use of a tumor or tissue-specific pro-
moter. For example, replication-competent adenovirus, 
CV706, has been developed with a selective toxicity for 
PSA-positive prostate cancer cells, using minimal enhan-
cer/promoter constructs derived from the 5� flank of the 
PSA gene, to drive the E1A gene (Rodriguez et al. 1997). 
A single intratumoural injection of the virus destroyed 
large LNCaP tumors and abolished PSA production in 
mice. 
 
Retroviruses 
 
Retroviruses are RNA viruses that replicate through a 
DNA intermediate facilitated by a RNA-directed DNA 
polymerase. Members of the retroviridae family have three 
common features, a receptor-mediated uptake of a mem-
brane-coated viral particle into target cells and reverse 
transcription of a plus-stranded RNA genome into a dou-
ble-stranded DNA that is integrated into cellular chromo-
somes, as well as cytoplasmic assembly of particles with 
incorporation of the full-length retroviral mRNA as the 
mobile form of genetic information (Miller et al. 1992; 
Baum et al. 2006). The genes required in the process are 

gag (encoding viral matrix, capsid, and nucleocapsid pro-
teins), pol (encoding a protease, reverse transcriptase, and 
integrase), and env (encoding a bipartite membrane-an-
chored surface protein mediating target cell recognition and 
particle uptake). Replication-competent retrovirus vectors 
contain genes in addition to the gag–pol–env genome (Tai 
2005). The replication-deficient retroviral vectors are gene-
rated by coexpressing the basic retroviral trans-acting 
genes from transcripts that are not intended to be incorpo-
rated into retroviral particles. The transgene is encoded 
within a transcript that contains all cis-regulatory sequences 
required for its retroviral packaging (Baum et al. 2006). 
The following three genera of retroviruses have been stu-
died extensively: (1) simple gamma-retroviruses with vec-
tors derived from murine leukemia virus (MLV), (2) com-
plex lentiviruses with the vectors derived from the human 
immunodeficiency virus type 1 (HIV) and (3) spumaviruses 
with vectors derived from ‘human’ foamy virus (HFV). The 
reverse-transcribed DNA poxviruses are integrated into the 
host genome and DNA is then transcribed using the host 
machinery. Although this integration is beneficial for long 
term viral gene expression, it has potential adverse effects 
including insertional mutagenesis and the activation of 
proto-oncogenes. Except for Lentiviruses, retroviruses re-
quire actively dividing cells to complete their lifecycle. The 
limitation of retroviruses other than their potential mut-
agenic potential is the limited size of their genome (<10 
kbp of DNA) and difficulty in achieving high viral titers for 
in-vivo gene transfer. Lentivirus vectors have been known 
to infect prostate cancer cells and induce cell death effici-
ently in vitro and in vivo (Bastide et al. 2003). 
 
Herpes-Simplex Virus (HSV) 
 
HSV-1 is a large double-stranded DNA viruses (152 Kb) 
whose capsule is surrounded by a thick protein layer and a 
lipid bilayer. HSV-1 is attractive for cancer therapy because 
of, (a) its ability to infect a broad range of cell types and 
species, (b) it is cytolytic by nature, (c) the 152 kb genome 
that can be replaced with multiple therapeutic transgenes, 
(d) many anti-herpetic drugs are available as a safeguard 
against unfavorable replication of the virus and (e) the virus 
remains as an episome within the infected cell, even during 
latency decreasing the risk of insertional mutagenesis as is 
seen in retroviruses (Varghese et al. 2002). Following in-
fection, the viral DNA circularizes in the nucleus and viral 
transcription starts with five immediate early genes that en-
code factors responsible for the transcription of the remain-
ing viral genes and for evasion of the host immune system. 
Early gene expression initiates the onset of viral DNA syn-
thesis and many early viral proteins are responsible for 
DNA metabolism while the late genes encode virion struc-
tural proteins (Roizman et al. 1996). Oncolytic HSV is 
highly effective against experimental prostate cancer both 
in vitro and in vivo. A conditionally replicating HSV-1 
G207 has been shown to efficiently destroy DU-145 and 
PC-3 prostate cancer cell lines within 7 days of infection. In 
addition, subcutaneous inoculation in athymic mice bearing 
prostate cancer xenografts showed a significant reduction in 
tumor growth (Oyama et al. 2000; Cozzi et al. 2002). 
 
Vaccina Virus (VV) 
 
VV is a member of the genus Orthopoxvirus of the family 
Poxviridae. The VV genome is a linear, double-stranded 
DNA molecule with hairpin loop at each end: the two 
strands are joined at the ends, essentially resulting in a sin-
gle stranded circular DNA molecule (Baroudy et al. 1982). 
Several features of VV make it an excellent choice as a 
gene delivery vehicle in vivo. These include the ability to 
have a wide host range, ability to infect almost all human 
cell types efficiently, the ability to accommodate at least 25 
kb of foreign DNA sequence. This quantity could be further 
expanded by deleting viral DNA that is not required for 
replication in cultured cells. In addition, VV replication oc-
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curs exclusively in the cytoplasm, eliminating the possib-
ility of chromosomal integration thereby significantly re-
ducing the chances of insertional mutagenesis. VV vectors 
can infect both dividing and non-dividing cells. These viru-
ses have been used to generate a protective immune res-
ponse to pathogens as well as humoral response against 
certain types of cancer. For example, insertion of the PSA 
gene can be used to induce an immure response against the 
expressed protein. A phase II clinical trial utilizing vac-
cinia-PSA vaccine in prostate cancer patients showed sig-
nificant freedom from clinical progression as well as mini-
mal toxicity (Kaufman et al. 2004). 
 
SV40 Virus 
 
Recombinant SV40 (rSV40) viruses can potentially be 
used for gene therapy of prostate cancers. Vectors are 
made from wild type (wt) SV40 by modifying the viral 
genome to delete some or all SV40 genes, and replacing 
these genes with the gene or genes to be delivered. Ad-
ditional promoters, transcriptional stop signals, etc., may 
also be added (Strayer et al. 2005). The maximal total 
DNA that can be packaged in a rSV40 vector using this ap-
proach ~5.7 kb. rSV40 vectors are generally highly effici-
ent gene delivery vehicles. In vitro, at virus: cell ratios >10, 
they will deliver their genes to virtually every target cell 
available (Strayer et al. 2002). In vivo, high transduction 
efficiencies require repeated administrations (e.g., to the 
liver), but effectiveness of gene delivery to such solid or-
gans as the liver can exceed 90% of cells (Sauter et al. 
2000). rSV40s appear to be equally effective in trans-
ducing cells that are actively cycling as in cells that are not. 
rSV40-derived vectors can be and have been administered, 
and multiply, without generating detectable neutralizing 
immune responses. This observation, which has been docu-
mented by several different investigators, represents a 
unique feature of rSV40 vectors that endows them with 
several important properties. Like oncoretroviruses, SV40 
integrates at random into cellular DNA. In so doing, it may 
activate or inactivate cellular genes. Disruption of a critical 
gene may cause a cell to become dysfunctional or die. 
BxPC3 and Capan-1 pancreatic cancer cells were effici-
ently transduced using SV40 vectors generated by combin-
ing an hTR tumor-specific promoter with sst2 somatosta-
tin receptor tumor-suppressor gene. In vitro cell prolifera-
tion was strongly impaired following administration of SV 
(hTR-sst2). In vivo, intratumoral gene transfer of sst2 using 
rSV40 vectors resulted in a marked inhibition of Capan-1 
tumor progression, and proliferation (Cordelier et al. 2007). 
 
NON-VIRAL VECTORS 
 
Non-viral vectors generally are less immunogenic than 
viral vectors and are easier to produce on a large scale. 
However, they have limited transfection efficiencies and 
have limited application in anti-cancer gene therapies. 
 
Liposomes and polycations 
 
Liposomes are in vitro-generated, self-enclosed vesicles 
consisting of a spherical lipid bilayer and a hydrophilic in-
ner compartment. The versatility of liposomes permits drug 
or antigen for delivery to be integrated into the lipid mem-
brane, encapsulated by the vesicle, or both. With a stable 
and inert liposomal formulation, encapsulated material is 
protected from rapid extracellular degradation. In terms of 
improving drug delivery, encapsulation may decrease the 
required dose and increase the efficacy of the entrapped 
drug at the target organ or tissue (Gabizon et al. 1998). 
Modification of the liposome surface with antibodies or 
ligands recognized by specific cell types can enhance tis-
sue targeting and modulation of antigen processing as well. 
Liposomes are easy to produce in large numbers and are 
non-immunogenic. The route of administration can affect 
the physical properties and the transfection ability of the 

lipoplex. Prostate specific membrane antigen (PSMA) is a 
membrane antigen of the prostate epithelium and prostate 
cancer cells, and the expression of PSMA in prostate cancer 
cells is characterized by its upregulation under androgen 
ablation conditions (Wright et al. 1996). Anti-PSMA-lipo-
some complex containing a suicide gene, thymidine kinase, 
demonstrated a selective growth-inhibitory effect on 
LNCaP cells in vitro. Significant enrichment of plasmid 
DNA was observed in LNCaP xenografts with anti-PSMA-
liposome complex in comparison with normal IgG-lipo-
some complex in xenograft model of LNCaP cells in nude 
mice. Anti-PSMA-liposome complex exerted a significant 
inhibitory effect on the growth of LNCaP xenograft, in con-
trast to normal IgG-liposome complex (Ikegami et al. 2006). 

Liposomes can also be used to transfer chemicals and 
drugs into tumor cells. One such chemical against prostate 
cancer that has recently been studied is betulonic acid (Sa-
xena et al. 2006). Betulinol is extracted from the outer bark 
of the white birch tree. The structure of betulinol is based 
on a 30-carbon skeleton comprising of four, six-member 
rings and one 5-member E-ring containing an a-isopropyl 
group. Betulonic acid, a derivative of betulinol, showed 
high cytotoxicity in vitro in an MTT assay and significant 
inhibition of colony and tumor growth in an AIG assay on 
LNCaP, DU-145 and PC-3 human prostate cells, with little 
effect on normally proliferating fibroblast cells. The hydro-
phobic nature of betulonic acid and consequent lack of so-
lubility in aqueous solvents had remained a limitation in 
achieving full expression of its anti-cancer activity in vivo. 
Hence, a lysinated derivative of betulonic acid was synthe-
sized to yield a more hydrophilic compound. The higher ac-
tivity of lysinated-betulonic acid against prostate cancer 
was further confirmed by using xenograft tumors in vivo. 
Lysinated-betulonic acid, at a dose of 30 mg/kg body 
weight, showed up to 92% growth inhibition of the LNCaP 
xenograft tumors transplanted in athymic male mice (Sax-
ena et al. 2006). 

RNA interference (RNAi) has the ability to silence 
gene expression in a sequence-specific manner and shown 
enormous potential as a powerful therapeutic strategy for 
treating various gene-related diseases (McManus et al. 
2002; Lieberman et al. 2003). RNAi is induced by 21–23bp 
short interfering RNA, which elicits RNA-mediated endo-
nucleolytic cleavage of a target mRNA by incorporating 
into RNA-induced silencing complex (RISC). However, 
due to its inherent instability and poor permeability across 
biological membranes, the successful application of small 
interference RNA (siRNA) in mammalian cells largely de-
pends on the development of safe and efficient carriers for 
its delivery (Oishi et al. 2005). Several polycations have 
been introduced as non-viral gene carriers with a capability 
of forming stable complexes by electrostatic interaction 
with siRNA. A reducible poly (amido ethylenimine) (SS-
PAEI) synthesized by addition copolymerization of trie-
thylenetetramine and cystamine bis-acrylamide (poly 
(TETA/CBA)) was used as a carrier for siRNA. Poly 
(TETA/CBA) could efficiently condense siRNA to form 
stable complexes under physiological conditions and per-
form complete release of siRNA in a reductive environment. 
When formulated with VEGF-directed siRNA, poly 
(TETA/CBA) demonstrated significantly higher suppres-
sion of VEGF than linear-polyethylenimine (PEI) (L-PEI, 
25 kDa) in human prostate cancer cells (PC-3). 
 
Sleeping Beauty transposons 
 
Transposons are mobile genetic elements that can mediate 
transgene integration. Sleeping Beauty (SB) transposon is 
referred to as a synthetic transposon, as it was resurrected 
experimentally. SB is member of the Tc1/mariner super-
family of transposons and is a two-part system consisting of 
a transposase enzyme and a transposon DNA substrate. SB 
transposase binds to specific DNA sequences in the inver-
ted repeat/direct repeat (IR/DR) termini of the transposon 
substrate as a homodimer, and mediates integration of the 
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transposon into a TA dinucleotide (Ivics et al. 1997). This 
technology has the potential to transfer and integrate anti-
tumor genes (e.g. against prostate cancer) thereby resulting 
in continuous bombardment of tumor with anti-tumor pro-
teins. 
 
PHYSICAL METHODS 
 
Electroporation is a technique of exposing cells to a strong 
electrostatic field that temporarily alters the structure of 
cell membrane, facilitating entry of naked DNA. The opti-
mal electrical parameters have to be defined for each tissue 
type. Electrodes are placed in the tissue of interest fol-
lowed by application of an external electric field leading to 
an increase in transmembrane conductivity and diffusive 
permeability. This method of nonviral gene delivery is 
gaining popularity and has been used to mediate gene 
transfer into tumors (Cemazar et al. 2004). Because gene 
expression and protein production from plasmids are de-
pendent on viable cells, it is critical that the majority of 
cells being transfected are not killed. Therefore, the opti-
mal electroporation conditions are a subtle balance be-
tween enhancing permeability without causing extensive 
cell death and tissue trauma. In a mouse model, evaluation 
of the CD8(+) T lymphocyte response to a prostate cancer 
DNA vaccine encoding prostate-specific antigen (PSA) 
after intradermal electroporation was performed. A signi-
ficantly increased gene expression (100- to 1000-fold) and 
higher levels of PSA-specific T cells, compared to DNA 
delivery without electroporation, was demonstrated (Roos 
et al. 2006). Nucleofection is a new electroporation-based 
technique that uses a combination of electrical parameters 
and cell-type specific solutions to achieve the delivery of 
plasmid DNA into cell nucleus trigger rapid expression of 
transgenes (Zaragosi et al. 2007). The advantage of this 
technique is the ability to transfect non-proliferating and 
primary cells such as DCs and monocytes. It has been suc-
cessfully applied to hematological and immunological cells 
and also to embryonic and adult stem cells and may find an 
application in gene or plasmid transfer in prostate cancer 
cells. 

Gene Gun Transfection or Particle Mediated Transfec-
tion, entails coating very small gold particles with plasmid 
DNA and using pressured gas or an electrical current to 
bombard a tissue with the gold/DNA particles at high velo-
city (Cheng et al. 1993). The transfection efficiency is gen-
erally low and varies from 1% to 20% depending on the 
type and depth of the tissue. However, gene gun inocula-
tion of DNA vaccine pSLC-3P-Fc induced a strong anti-
tumor response in a mouse tumor model, which signifi-
cantly inhibited tumor growth and prolonged the survival 
time of the tumor-bearing mice (Qin et al. 2006). 
 
CELLULAR THERAPY 
 
This approach utilizes cells that are known to migrate into 
tumor cells readily. These include T-cells, macrophages 
and DCs. Cells are isolated from a given patient, transfec-
ted ex-vivo and injected back into the same patient. There-
fore, these cells are recognized as ‘self’ by a patient and 
are non-immunogenic. Some forms of bacteria are also 
being utilized to infiltrate and grow preferentially in tum-
ors. 
 
T cells 
 
Cancer vaccines are capable of expanding tumor reactive 
T-lymphocytes through immunization. These vaccines rely 
on the activation and expansion of host CD8 cytotoxic T 
lymphocytes (CTLs) and CD4 helper T cells that bind to 
specific tumor antigens in context with human leukocyte 
antigen (HLA) class I or II molecules. T-cell activation and 
expansion is determined, to a large extent, by the inter-
action between the T cell and antigen-presenting cells 
(APCs), such as dendritic cells (DCs), during which anti-

gen-derived peptides complexed with the APC’s HLA mo-
lecules are presented to the T cell’s antigen receptor (TCR) 
(Steinman et al. 2002). T-cells with specificity for tumor-
associated antigens can kill tumors directly by releasing 
proteolytic enzymes, such as perforins and granzymes. 
Other cells of the innate immune system (i.e., macrophages 
or neutrophils) may be attracted to the tumor site, thereby 
further enhancing the inflammatory anti-tumor response 
(Kubler et al. 2006). Vaccine-mediated T-cell stimulation 
can lead to the establishment of immunologic memory in 
vaccinated cancer patients, thus making anti-tumor respon-
ses more durable and sustained (Su et al. 2005). A novel 
strategy is to use genetically engineered T cells to accele-
rate the generation of tumor-specific T cells. Chimeric anti-
gen receptors (CARs) are essential constituents of this new 
armamentarium. Unlike the physiologic T-cell receptor, 
CARs encompass immunoglobulin variable regions or re-
ceptor ligands as antigen-recognition elements, thus per-
mitting T cells to recognize cell surface tumor antigens in 
the absence of HLA expression. T-cell activation is medi-
ated by the cytoplasmic domain of the CAR, which is typi-
cally derived from the CD3~ chain or the FcRIg chain. In 
vivo function of Pz1, a CAR-targeting human PSMA (pros-
tate specific membrane antigen) was evaluated in three 
tumor models, orthotopic, s.c., and pulmonary and it was 
shown that PSMA-targeted T cells effectively eliminate 
prostate cancer (Gade et al. 2005). 
 
Dendritic cells 
 
Dendritic cells (DC) are the only cells in the body that sti-
mulate naive T cells, and can activate B-cells to trigger anti-
body formation. DC can be isolated by leucophoresis of mo-
nocyte precursors and acquire the form of mature DC after 
culture with cytokines such as GMCSF and IL-4 (Sallusto et 
al. 1994). DCs are the most efficient cell type for processing 
exogenous antigen to major histocompatibility complex 
(MHC) class I and II pathways. In a phase I clinical trial 
using vaccination with DCs loaded with a cocktail consis-
ting of HLA-A0201-restricted peptides derived from five 
different prostate cancer-associated antigens, prostate-spe-
cific antigen (PSA), prostate-specific membrane antigen 
(PSMA), survivin, prostein, transient receptor potential p8 
(trp-p8), 8 hormone-refractory prostate cancer patients re-
ceived a total of four vaccinations every other week (Fues-
sel et al. 2006). Apart from local skin reactions, no side ef-
fects were noted. One patient displayed a partial response 
(PR; PSA decrease >50%) and three other patients showed 
stable PSA values or decelerated PSA increases. In 
ELISPOT analyses, three of four PSA responders also 
showed antigen-specific CD8+ T-cell activation against pro-
stein, survivin, and PSMA. 

In another phase I/II trial performed to demonstrate fea-
sibility, safety and induction of antigen-specific immunity 
by vaccination with DCs presenting prostate stem cell anti-
gen (PSCA) and PSA peptides in patients with hormone- 
and chemotherapy-refractory prostate cancer (Thomas-Kas-
kel et al. 2006), patients received 4 vaccinations with a me-
dian of 2.7 x 107 peptide-loaded mature DC subcutaneous in 
biweekly intervals. Twelve patients completed vaccination 
without relevant toxicities. Six patients had stable disease 
after 4 vaccinations. One patient had a complete disappear-
ance of lymphadenopathy despite rising PSA. Four patients 
with stable disease and 1 progressor developed positive de-
layed-type hypersensitivity (DTH) after the 4th vaccination. 
With a median survival of all patients of 13.4 months, DTH-
positivity was associated with significantly superior survival 
(p = 0.003). HLA tetramer analysis detected high frequen-
cies of peptide-specific T cells after 2 vaccinations in 1 pati-
ent who was also the sole responder to concomitant hepatitis 
B vaccination as an indicator of immune competence and 
survived 27 months after start of vaccination. Table 2 is a 
list recent clinical trials using viral, non-viral and cell based 
therapies for prostate cancer. 
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