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ABSTRACT 
Phase I/II gene therapy trials for the treatment of cystic fibrosis (CF) lung disease have demonstrated that CFTR cDNA transfer into 
respiratory epithelial cells is feasible, but a clinical effect is still far from reality. In addition, the duration of gene expression has been 
shown to be limited, lasting 1-4 weeks only. Nonviral cationic lipids and polymers, used as carriers of the CFTR gene, and recombinant 
viruses encounter anatomical, cellular and immunological barriers in the process of delivering genes to the relevant target cells, i.e. the 
epithelium lining the conducting airways. New nonviral vectors (among which polycations and chitosans) have been studied, which give 
higher levels of transfection in airway epithelial cells. Alternative and safer delivery methods of these nonviral vectors (magnetofection, 
electroporation, ultrasound) are being developed. Among recombinant viral vectors, adeno-associated viruses and lentiviruses are 
considered good candidates for achieving prolonged transgene expression in the airways. New model systems that are more representative 
of the barriers to gene transfer in the human airways are clearly needed to develop protocols and vectors for gene therapy of CF. The pig, 
sheep and ferret models are discussed. The final goal of CF gene therapy is to correct target cellular compartments in a lasting way. This 
could be only accomplished by introducing the CFTR gene in a staminal/progenitor niche in the respiratory epithelium. It has been 
demonstrated in mice and humans that engraftment of bone marrow-derived hematopoietic stem cells (HSCs) and mesenchymal stem 
cells (MSCs) in epithelia-lined organs can occur, provided that damage to the epithelium is done. The possibility of using HSCs and 
MSCs (and embryonic stem cells) in cell therapy of CF is discussed. 
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INTRODUCTION 
 
Cystic Fibrosis (CF) is the most common life-shortening 
autosomal recessive disorder in Caucasian populations and 
its clinical symptoms are the consequence of mutations in 
the CF transmembrane conductance regulator (CFTR) gene 
on chromosome 7. 

CF affects the epithelial cells of several organs, inclu-
ding the respiratory tract, exocrine pancreas, intestine, vas 
deferens, hepatobiliary system and the exocrine sweat gland. 

Lung disease is the chief cause of morbidity and mortality 
in CF patients and current therapies are aimed at controlling 
the respiratory symptoms by antibiotic and anti-inflamma-
tory treatments (Ratjen and Doring 2003). In patients with 
end-stage lung disease, lung transplantation is the ultimate 
therapeutic choice. Although the median age of survival 
rose from 14 years in 1969 to 35.1 years in 2004 (Cystic 
Fibrosis Foundation 2005), it is mandatory to find a cura-
tive treatment for CF patients. 

In this review, we will focus on the barriers that oppose 
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to an efficient gene transfer to the CF respiratory epithe-
lium and attempts to overcome them. In the second part, we 
will discuss the strategies to achieve a long-term expression 
of the CFTR protein in the airways and the search for the-
rapeutic end-points alternative to electrophysiologic mea-
surements. Recent work has indicated that adult bone mar-
row-derived hematopietic and mesenchymal stem cells 
have the ability to repopulate a damaged lung epithelia. We 
will consider the perspectives of achieving permanent cor-
rection of the CF genetic defect by means of bone marrow-
derived stem cells as well as of embryonic stem cells. 
 
GENETICS AND PATHOPHYSIOLOGY OF CYSTIC 
FIBROSIS 

 
CFTR is a member of the ATP-binding cassette (ABC) 
transporter superfamily and serves as a protein kinase A 
(PKA)-regulated epithelial ion transporter of chloride. 
CFTR also regulates the airway surface liquid depth 
through regulation of other proteins, most prominently the 
epithelial sodium channel (ENaC). The missing downreg-
ulation of ENaC results in increased absorption of sodium 
ions and fluid across airway epithelia leading to the dep-
letion of the perciliary liquid layer and to the depression of 
mucus clearance (Stutts et al. 1995; Matsui et al. 1998). 
CFTR also regulates other transport proteins, including K+ 
channels, ATP-release mechanisms, anion exchangers, sod-
ium-bicarbonate transporters, and aquaporin water channels 
(Mehta 2005). Considering all these functional interactions, 
it is not surprising to find that CFTR is expressed in several 
functionally diverse tissues, including kidney, pancreas, in-
testine, heart, vas deferens, sweat duct and lung (Crawford 
et al. 1991; Trezise and Buchwald 1991; Engelhardt et al. 
1992; Trezise et al. 1992). In the airways, CFTR expression 
depends on the cell type: high levels have been found in 
serous cells of submucosal glands (Engelhardt et al. 1994), 
at the apical surface of ciliated cells in submucosal gland 
ducts and in the apical plasma membrane of all ciliated epi-
thelial cells in the superficial epithelium (Kreda et al. 2005). 
In very recent reports it was demonstrated that CFTR is ex-
pressed in human lung alveolar epithelial type II cells (Fang 
et al. 2006; Leroy et al. 2006). CFTR is also expressed by 
cells of the immune system, like human lymphocytes (Mc 
Donald et al. 1992), human and murine alveolar macro-
phages (Di et al. 2006), and human neutrophils (Painter et 
al. 2006). Although it has been recongnized that each of 
these cell types display a biochemical or a functional defect 
linked to CFTR (Conese et al. 2003), the role of CFTR in 
the immune system is still an open question. 

Over 1,400 mutations have been identified in the CFTR 
gene (Cystic Fibrosis Mutation Database: http://www.genet. 
sickkids.on.ca/cftr/), and a single mutation, deletion of phe-
nylalanine at position 508 (�F508) is present in at least one 
chromosome in 50-90% of CF patients (Riordan et al. 
1989). Mutations in the CFTR gene disrupt CFTR function 
by six different mechanisms (Gibson et al. 2003; Mishra et 
al. 2005; Rowe et al. 2005) identifying six classes: 1) pre-
mature transcription termination (class I); 2) missense mu-
tations, including �F508-CFTR, causing protein misfolding 
and premature degradation (class II); 3) abnormal channel 
activation by ATP (class III); 4) reduced capacity to conduct 
chloride ions across membranes (class IV); 5) abnormal or 
alternative splicing with reduction of the amount of func-
tional protein (class V); 6) alteration in CFTR stability at 
the plasma membrane (class VI). CFTR mutations are clas-
sified as severe or mild, depending on the effect on the 
functional protein and clinical effect (Zielenski 2000). Ge-
nerally, severe mutations result in no synthesis or blocked 
processing (Class I, II, and III), whereas mild mutations 
show altered conductance or reduced synthesis (Class IV, V 
and VI). 

CFTR is synthesized in the endoplasmic reticulum (ER) 
and transported to the Golgi complex where, after N-glyco-
sylation, it becomes a mature protein that via the secretory 
pathway reaches the plasma membrane. The folding of 

CFTR occurs by complex interactions between newly syn-
thesized CFTR and chaperones such as heat shock cognate 
(Hsc) 70 and, later, the ER chaperones calnexin and heat 
shock protein 70 (Hsp70) (Yang et al. 1993; Pind et al. 
1994; Meacham et al. 1999). The ER quality-control mecha-
nisms allow to export the wild-type CFTR but retain �F508-
CFTR, and target it for degradation by the 26S proteasome 
(Cheng et al. 1990; Ward et al. 1995). While the interactions 
of these chaperones with wild-type CFTR are transient, 
interactions with �F508-CFTR are more stable. The �F508 
mutation has other consequences, i.e. the �F508-CFTR has 
reduced capacity to transport chloride ions (Denning et al. 
1992) and its half-life is decreased in polarized human air-
way epithelial cells (Swiatecka-Urban et al. 2005). The 
search for a drug to treat cystic fibrosis is focused on iden-
tifying substances that allow �F508-CFTR to escape out of 
the ER (“correctors”) (Pedemonte et al. 2005; Servetnyk et 
al. 2006) and to activate �F508-CFTR channels that reach 
the plasma membrane (“potentiators”) (van Goor et al. 
2006; Verkman et al. 2006). 

CFTR chloride channel activity is regulated at the plas-
ma membrane through several signalling mechanisms, in-
cluding those involving phosphorylation and dephospho-
rylation. CFTR assembles into large, dynamic macromole-
cular complexes that contain signaling molecules, kinases, 
transporters, ion channels, myosin molecular motors, Ras, 
GTPases, and PDZ-domain-containing proteins (Guggino 
and Stanton 2006). PDZ domains are modular protein inter-
action domains of ~90 amino acids known by the acronym 
of the first three PDZ-containing proteins identified: the 
postsynaptic protein PSD-95/SAP90, the Drosophila septate 
junction proteins Discs-large, and the tight junction protein 
ZO-1 (Hung and Sheng 2002). PDZ-containing proteins are 
typically involved in the assembly of supramolecular com-
plexes that are involved in localized signaling. The last four 
amino acids of CFTR (Asp-Thr-Arg-Leu) constitute a con-
sensus sequence known to bind to PDZ domain proteins. 
The Na+/H+ exchange regulatory factor isoform 1 
(NHERF1) is able to bind to the C-terminus of CFTR 
through its PDZ1 domain (Short et al. 1998; Wang et al. 
1998b). In addition, NHERF1 binds to several members of 
the ezrin/radixin/moesin (ERM) family of cytoskeletal 
adaptors. In this way, NHERF1 can cross-link multiple 
transmembrane proteins to the cytoskeleton to form a pre-
apical membrane platform scaffold that can serve as a 
docking site for polarized membrane traffic. Because 
NHERF1 associates with ezrin, which binds to the regu-
latory subunit of PKA (Dransfield et al. 1997), it has been 
hypothesized that NHERF1 targets PKA near CFTR (Short 
et al. 1998). Indeed, NHERF1 plays a key role in the pola-
rization of CFTR to the apical plasma membrane in epi-
thelial cells (Moyer et al. 1999) and NHERF1 binding to 
CFTR also increases the open probability of CFTR channel 
(Raghuram et al. 2001). Importantly, over-expression of 
NHERF1 in human airway epithelial cells endogenously ex-
pressing �F508-CFTR increased both apical CFTR expres-
sion and apical PKA-dependent CFTR-mediated chloride 
efflux (Guerra et al. 2005). 

Overall, these observations highlight that CFTR bioge-
nesis and stability are complex processes, which depend on 
multiple pathways and proteins. An essay of this complexity 
has been presented recently by a proteomic approach to 
identify those proteins which interact with CFTR (called the 
CFTR interactome) (Wang et al. 2006). Therefore, most of 
the strategies aimed to correct the basic CF defect are un-
likely to form treatments for all CF patients.The ultimate 
goal of research in this area is to provide a basis for the dis-
covery of target-specific drugs that can cure or treat CF 
patients. 

Lung disease in CF patients reflects chronic infection of 
the conducting airways with a surprisingly low number of 
bacterial species. Staphylococcus aureus and Haemophilus 
influenzae are early colonizers, whereas Pseudomonas ae-
ruginosa and Burkholderia cepacia complex (Bcc) often 
occurs later, resulting in progressive loss of lung function 
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and premature death. Several hypotheses link mutations in 
CFTR to development of lung disease in CF, whose hall-
marks are bacterial infection with opportunistic pathogens 
and a vicious neutrophil-dominated chronic inflammatory 
response (Chmiel et al. 2002; Ratjen and Doring 2003; 
Boucher 2004; Rowe et al. 2005). Available data support 
the “low volume” hypothesis which postulates that due to 
absent chloride transport and increased sodium absorption 
the height of the ASL is reduced, leading to impaired muco-
ciliary clearance (Matsui et al. 1998). Reduced mucociliary 
clearance leads to formation of thickened dehydrated mu-
cus, which provides an ideal environment for bacterial 
growth, leading to chronic inflammation and ultimately 
organ failure in the CF lung. Recently, it has been proposed 
that bacterial colonization and infection might be facilitated 
by this pathologic environment. Bacteria invading the CF 
lung are trapped in the viscous mucus layer on top of res-
piratory epithelial cells, in which they encounter microaero-
philic or anaerobic growth conditions attributable to abnor-
mally high oxygen consumption of the CF cell (Worlitzsch 
et al. 2002). These growth conditions trigger a switch of S. 
aureus and P. aeruginosa from non-mucoid to mucoid cell-
types, the latter representing the main phenotype in cystic 
fibrosis lungs (Hoiby 1995). In an in vitro model mimic-
king CF (8% solids) vs. normal (2.5% solids) airway mucus, 
bacteria grew in both mucus concentrations, but macroco-
lony formation was detected only in the CF-like mucus 
(Matsui et al. 2006). Biophysical and functional measure-
ments revealed that concentrated mucus exhibits properties 
that restrict bacterial motility and small molecule diffusion, 
resulting in high local bacterial densities with high autoin-
ducer concentrations. Concentrated ("thick") mucus inhi-
bited also neutrophil migration and killing (Matsui et al. 
2005), demonstrating that this is a component in the failure 
of defence against chronic airways infection in CF. 

Whether inflammatory pathways are dysregulated in 
CF airways independent of infection, or whether the in-
flammatory response following bacterial infection is exag-
gerated and disproportional, has been widely debated, but a 
conclusive consensus has not been reached (Chmiel et al. 
2002). 
 
GENE THERAPY OF CYSTIC FIBROSIS 
 
Gene therapy might be the definitive cure for the CF lung 
disease. Shortly after the CF gene was first identified, it 
was shown that CFTR gene transfer in vitro could correct 
the biochemical defect demonstrating that gene therapy for 
CF was feasible (Drumm et al. 1990). Gene augmentation 
studies in CF transgenic mice demonstrating the correction 
in vivo of the chloride transport defect (Whitsett et al. 1992; 
Alton et al. 1993; Hyde et al. 1993) paved the way to 
human clinical trials. The first clinical trials in CF patients 
were carried out in 1993 and to date about 30 trial protocols, 
most of which completed, have been published (see 
www.wiley.co.uk). In these phase I/II clinical trials the 
CFTR gene transfer to the airways has been achieved 
mostly with nonviral (cationic liposomes) or viral (adeno-
viruses) vectors. Both kinds of gene therapy agents have 
failed to give a therapeutic correction of the basic defect 
and persistent expression in human CF nose and lungs 
(Bragonzi and Conese 2002; Griesenbach et al. 2002b, 
2004a, 2004b). However, these clinical trials provided 
proof-of-principle that the CFTR gene could be transferred 
to the airway epithelium, detection being accomplished 
either by means of molecular (DNA or mRNA detection) or 
electrophysiological (mainly by nasal potential difference) 
techniques. With both cationic lipids and adenoviruses, the 
expression was shown to last 1-4 weeks. In the following 
section we review the most recent clinical trials performed 
in CF patients with viral and nonviral vectors. 

Preclinical studies demonstrated that recombinant 
adeno-associated virus (rAAV) was capable of achieving 
long-term gene transfer and expression in the bronchial epi-
thelium of rabbits and nonhuman primates, despite the fact 

that vector genomes appeared to persist predominantly in 
the episomal state (Flotte et al. 1993, 1994; Afione et al. 
1996; Conrad et al. 1996). AAV vectors with serotype 2 
(AAV2) were tested in phase I and phase II clinical trials, 
which demonstrated dose-related DNA transfer and showed 
some indication of gene expression (Flotte 2005). In the last 
trial published, clinical benefit after repeated doses of aero-
solized CFTR-AAV2 in the lower respiratory tract was 
partial and transient, with decrease in induced sputum inter-
leukin (IL)–8 and improvement in FEV1 observed at day 14 
and 30 respectively in the rAAV-CFTR recipient group 
(Moss et al. 2004). Gene transfer but not CFTR mRNA ex-
pression was detected in bronchial brushings. In an attempt 
to understand the relationship between AAV molecular 
action and the observed clinical improvement, CFTR ex-
pression and functional correction was studied in primary 
cultures of bronchial and nasal respiratory cells harvested 
from rAAV2-CFTR recipients of the gene therapy trial pre-
viously performed (Flotte et al. 2003). A correlation be-
tween the presence of rAAV2-CFTR vector DNA, CFTR 
mRNA expression and cAMP–activated chloride channel 
activity was demonstrated (Flotte et al. 2005). These results 
suggest that the vector DNA is capable of providing a size-
able correction of the CF defect with low levels of mRNA 
expression. The physiological level of endogenous CFTR 
mRNA in normal individuals is only about one copy per cell 
(Trapnell et al. 1991). Thus, although the copy number of 
vector-derived CFTR mRNA was not calculated, it could be 
that the assay used in the original study (Flotte et al. 2003) 
was not sensitive enough to detect very low levels of exoge-
nous CFTR mRNA. Alternatively, the very low level of 
CFTR mRNA implies the primary role of CFTR as a regu-
lator of other chloride channels rather than a mass-action 
chloride channel. 

A nonviral ‘DNA nanoparticle’ has been recently deve-
loped: it consists of polyethyleneglycol-substituted 30-mer 
lysine peptides. In preclinical studies, gene transfer to as 
many as 60-75% of murine bronchial epithelial cells has 
been observed after a single intrapulmonary dose (Ziady et 
al. 2003a). No side effects or histological abnormalities 
were evident (Ziady et al. 2003b). The DNA nanoparticle 
small size (<20 nm) is thought to facilitate the transport of 
genetic material through the nuclear pore. Compacted DNA 
nanoparticles infused onto the nasal epithelium of CFTR 
knockout mice generated significant NPD correction, which 
was correlated with the transfection efficiency (Ziady et al. 
2002). A Phase I clinical trial completed in 2004 demons-
trated in most patients evidence of partial to complete cor-
rection of the electrophysiological defect after nasal dosage 
(Konstan et al. 2004). Placebo (saline) or compacted DNA 
was superfused onto the inferior turbinate of the right or left 
nostril. Twelve subjects were enrolled: 2 in dose level I 
(DLI) (0.8 mg DNA), 4 in DLII (2.67 mg), and 6 in DLIII 
(8.0 mg). No serious adverse events occurred. Day 14 vec-
tor PCR analysis showed a mean value in DLIII nasal scra-
ping samples of 0.58 copies per cell. Partial to complete 
nasal potential difference isoproterenol responses were ob-
served in eight subjects. Corrections persisted for as long as 
6 days (1 subject to day 28) after gene transfer. Aerosols of 
compacted DNA can be formulated, and these complexes 
retain structural integrity and full biological activity (Oette 
et al. 2004). A follow-on clinical trial looking at single-dose 
aerosol delivery of DNA nanoparticles is currently planned. 
 
Barriers to efficient gene delivery to the CF 
airways 
 
It is clear from the clinical trial results that gene transfer 
vectors have to overcome anatomical and cellular barriers 
prior to delivery of the DNA to the relevant site, i.e. the 
nucleus of target cells. Many investigators have therefore 
pursued the aim to understand which are the most relevant 
hurdles to efficient gene delivery to the airway epithelial 
cells in CF. Gene transfer vectors are blocked by the blan-
ket-like mucus, by apical membrane glycocalyx, by the lack 
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of appropriate receptors in the same location, by the tight 
junctions between the cells, by the intracellular endosomo-
lysosomal compartments (Zabner et al. 1995; Coonrod et al. 
1997), where their degradation eventually occurs, and final-
ly by the nuclear membrane (Mortimer et al. 1999; Escriou 
et al. 2001) (Fig. 1). 

The airway surface liquid (ASL) consists of at least two 
layers, a mucus layer and a periciliary liquid layer (PCL). 
The mucus layer consists of high-molecular weight, heavily 
glycosylated macromolecules, products of at least two dis-
tinct genes (MUC5AC and MUC5B), that behave as a tang-
led network of polymers. It appears that mucin macromole-
cules are well adapted to binding and trapping inhaled par-
ticles for clearance from the lung, at least in part because of 
the extraordinary diversity of their carbohydrate side chains 
(Lamblin et al. 2001). Most delivered vectors alighting on 
airway surfaces is promptly lost via airway mucociliary 
clearance mechanisms by epithelial cell cilial beating (Bou-
cher 2002; Knowles and Boucher 2002). Mucociliary clear-
ance, assisted by cough clearance, is remarkably effective 
in preventing airway particles, including gene vector par-
ticles, from reaching airway epithelial cells. In CF airways 
inspissated mucus and mucus plaques will enhance the 
barrier to airway gene transfer even further. The CF mucus 
is extremely thick and viscoelastic due to the presence of 
high amounts of DNA, proteins (albumin, actin and mu-
cins), phospholipids, and inflammatory products, which ori-
ginate from lysed neutrophils, bacteria and exfoliated epi-
thelial cells (Lethem et al. 1990; Sheils et al. 1996; Sanders 
et al. 2001). Hydrogen bonds, disulphide bonds, van der 
Waals’ forces, ionic bonds and physical entanglements 
between the polymeric components maintain the viscoelas-
ticity of CF sputum and form a network that sterically hin-

ders the diffusion of macromolecular drugs and colloidal 
drug carriers (Sanders et al. 2000a). Liposomal and adeno-
viral vectors are not efficient in the presence of CF mucus in 
a model of native sheep respiratory epithelium (Kitson et al. 
1999). Sanders et al. have shown that CF sputum blocks the 
transport of anionic nanoparticles and cationic lipoplexes in 
a size-dependent fashion (Sanders et al. 2000b, 2003). CF 
sputum with high concentrations of linear DNA caused dis-
sociation of plasmid DNA from lipoplexes (Sanders et al. 
2001), likely causing inhibition of cationic liposome-medi-
ated gene transfer. Both CF sputum and a mixture of DNA, 
mucin and actin, the three main component of CF sputum, 
have been shown to retard the diffusion of carboxylated 200 
nm nanospheres, which were used to model the size of lipo-
somal gene therapy vectors (Broughton-Head et al. 2006). 
Interestingly, this study also showed that the synthetic 
mucus sample hampered nanosphere diffusion less effec-
tively than it was observed for CF sputa. These results 
underline the role of additional components in CF sputum 
such as alginate, phospholipids, plasma proteins and other 
debris of the inflammatory response that might increase the 
microviscosity of sputum samples. Although actin did not 
contribute to the barrier function of mixtures of DNA and 
mucin, it inhibited the ability of the mucolytics DNase and 
N-acetylcystein to enhance nanosphere diffusion through 
these mixtures (Broughton-Head et al. 2006). Overall this 
study indicates that none of the mucolytics tested, either 
alone or in combination, are likely to improve delivery of 
liposomal gene therapy vectors through CF sputum, thus 
indicating that alternative approaches are needed. 

The efficiency of viscoelastic gel formulations of dif-
ferent viral vectors in human airway epithelial cells and in 
murine airways was evaluated by Sinn and colleagues (Sinn 
et al. 2005c). Gene transfer with Ad, AAV5, FIV and HIV-
1-derived lentiviral vectors was enhanced by formulating 
them in viscoelastic gels (methylcellulose, carboxymethyl-
cellulose sodium, poloxamer 407 polymer) which increased 
the vector residence time into epithelia by slowing the muc-
ociliary clearance. 

Recently, we have shown that addition of human serum 
albumin (HSA) to preformed polyethylenimine (PEI)/DNA 
complexes increased gene transfer efficiency of PEI by 500-
1000 fold in immortalised airway epithelial cells (Carrabino 
et al. 2005). The ternary complexes determined detectable 
CFTR gene transfer and expression at the apical membrane 
in polarized CFT1-C2 cells, as evaluated by confocal mic-
roscopy. CF sputum inihibits PEI-mediated gene transfer, 
whereas in the presence of albumin PEI showed increased 
levels of gene transfer. The presence of HSA in the com-
plexes may have impeded interaction between positively 
charged PEI polyplexes and negatively charged albumin 
exuded in the CF sputum. 

Beside its function as a physical barrier, CF mucus can 
inhibit adenovirus (Ad)- and AAV-mediated gene transfer by 
the presence of preexisting antibodies (Perricone et al. 
2000) and elevated levels of neutrophil defensins (Virella-
Lowell et al. 2000), respectively. 

Particles that do successfully evade the mucus barrier 
may still be captured by the glycocalyx on the airway epi-
thelium lumenal surface. The glycocalyx is composed of 
several families of carbohydrate-rich molecules, including 
glycoproteins (most notably the mucins) (Pickles et al. 
2000; Wang et al. 2002). A major component of the airway 
glycocalyx are the “tethered” mucins, particularly the large 
(>1 megadalton), heavily glycosylated MUC1 and MUC4 
glycoproteins. With respect to airway gene transfer, sialo-
glyconjugaytes (including MUC1) expressed on the apical 
surface of polarized epithelial cells inhibit Ad- (Arcasoy et 
al. 1997; Pickles et al. 2000) and retroviral-mediated gene 
transfer (Wang et al. 2002). 

Tight junctions (TJs) and uneven expression of viral 
receptors are formidable barriers for most viral vectors 
(Pilewski 2002). The TJ protein complex separates the 
apical from the basolateral domain and regulates permea-
bility in epithelial and endothelial layers, acting as a selec-

• Glycocalyx

• Lack of apical receptors

• Presence of tight junctions

• Endosomal compartements

• Nuclear membrane

Adenovirus Liposome

• Mucus layer

viral and nonviral gene transfer vectors

Cellular barriersExtracellular barrier

• Glycocalyx

• Lack of apical receptors

• Presence of tight junctions

• Endosomal compartements

• Nuclear membrane

Adenovirus Liposome

• Mucus layer

viral and nonviral gene transfer vectors

Cellular barriersCellular barriersExtracellular barrierExtracellular barrier

Fig. 1 Viral (adenovirus) and nonviral (cationic liposomes) gene trans-
fer vectors do not succeed in entering the airway epithelial cells 
because of the presence of both extra-cellular (a thick mucus layer) 
and cellular barriers (the apical membrane glycocalyx, the lack of 
appropriate receptors in the same location, the tight junctions 
between the cells, the intracellular endosomo-lysosomal compart-
ments where vectors degradation eventually occurs, and the nuclear 
membrane). 
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tive barrier to passage of ions and other non-charged mole-
cules (Anderson 2001). It has been established that the ex-
pression of viral receptors is more abundant on the baso-
lateral than on the apical surface of the airway epithelium 
(Wang et al. 1998, 1999). In vitro and in vivo studies have 
indeed demonstrated that both adenovirus- and retrovirus-
mediated gene transfer was enhanced by ethylene glycol-
bis(�-aminoethylether)-tetraacetic acid (EGTA) pretreat-
ment (Wang et al. 1998, 2000; Chu et al. 2001). The airway 
lumen-facing columnar cell is relatively resistant to non-
viral transfer agents. This has been attributed to a decrease 
in binding of the cationic lipid and/or to a decline in the rate 
of internalization of bound complexes (Matsui et al. 1997; 
Jiang et al. 1998; Chu et al. 1999). 

Uptake, intracellular trafficking and transport to the 
nucleus represent the major cellular impediments to suc-
cessful gene delivery. There are no specific reviews dedi-
cated to these barriers in the airway epithelium, however 
recent reviews cover these subjects for both nonviral (Dean 
et al. 2005; Lechardeur et al. 2005; Khalil et al. 2006; 
Rejman et al. 2006; van der Aa et al. 2006) and viral vec-
tors (Anderson and Hope 2005; Campbell and Hope 2005; 
Ding et al. 2005). 
 
Inflammation and immunity limit the efficiency 
and duration of gene transfer by viral and nonviral 
vectors 
 
Immunological defence mechanisms can limit gene deli-
very and expression mediated by viral vectors (Thomas et 
al. 2003). Results from studies in experimental animals and 
clinical trials have shown that inflammation, antibody and 
T cell responses can limit the duration of transgene expres-
sion and as well as the therapeutic value of repeated admi-
nistration of the gene transfer vector. Reported strategies 
aimed at overcoming these immunological hurdles to lung 
gene therapy include pharmacological treatments (immuno-
suppressant drugs, corticosteroids), induction of tolerance, 
and modification of the vector backbone, especially in the 
case of adenovirus (reviewed in Ferrari et al. 2003b). 

Gene transfer into the murine airway epithelium with 
viral vectors (E1/E3 deleted Ad and AAV2/5) complexed 
with the anti-inflammatory cationic lipid dexamethasone-
spermine (DS) was studied by Price and collegaues (Price 
et al. 2005). After intranasal instillation in mice, formula-
tion of an Ad vector with cationic steroid liposomes con-
taining DS/dioleoylphosphatidylethanolamine (DOPE) and 
DC-Chol/DOPE resulted in transgene expression limited to 
the airway epithelial cells, with poor expression in alveolar 
cells, whereas Ad vector alone mediates high alveolar trans-
duction. The dexamethasone and DS/DOPE formulation 
reduced airway inflammation compared to vector alone, 
while DC-Chol/DOPE did not. Formulation of vectors with 
DS/DOPE improves targeting to the airway epithelium in 
vivo and reduces vector-induced inflammation through the 
anti-inflammatory activity of dexametahsone-spermine. 

In the search for formulations of AAV vectors alter-
native to serotype 2 (see below), it has been established that 
AAV vectors bearing capsid proteins from AAV type 5 or 6 
show high transduction rates in rodent lungs and in cultured 
human epithelia, with transduction rates achieved by AAV6 
in the range estimated to be sufficient for treating CF (Zab-
ner et al. 2000; Halbert et al. 2001). In order to understand 
whether preexisting immunity may limit AAV5 and AAV6-
mediated gene therapy for CF, Halbert and colleagues have 
measured neutralizing antibodies against AAV type 2, 5, 
and 6 vectors in serum from children and adults with CF 
(Halbert et al. 2006). More than 70% of CF adults and 
more than 85% of CF children lack serum neutralizing 
antibodies against AAV type 2, 5, or 6. Furthermore, 95% 
of CF children aged 0–10 years lacked serum neutralizing 
antibodies against AAV type 5 or 6. The prevalence and 
strength of the immune responses indicate that vectors 
made with AAV5 and AAV6 capsids will be most useful for 
avoiding preexisting immunity during lung gene therapy. 

Although nonviral vectors generally do not elicit a spe-
cific humoral immune response, an inflammatory response 
is frequently observed with increased levels of TNF-�, IL-6 
and IL-12 cytokines (Tousignant et al. 2000). These nonspe-
cific responses increase the lethality of such systems, se-
verely limiting their therapeutic potential as gene delivery 
vectors. Indeed, proinflammatory cytokines down-regulate 
the commonly used viral promoters (Paillard 1997). To 
avoid the use of viral promoters and to increase the duration 
of CFTR gene expression, which usually lasts for 1-4 weeks, 
Gill and coworkers substituted a human housekeeping pro-
moter for the commonly used viral promoters (Gill et al. 
2001). By using such a promoter (ubiquitin C) the duration 
of expression was extended to 6 months or more after a 
single administration to the murine lung. 

In the first trial of lipsosome-mediated CFTR transfer to 
the lower airways, all patients showed mild flu-like symp-
toms over a few hours immediately after nebulisation to the 
lungs (Alton et al. 1999). This unfavourable outcome might 
be related to the unmethylated CpG dinucleotide motifs pre-
sent in bacterial DNA. Recognition of these motifs by the 
host leads to a pleiotropic inflammatory response that in-
cludes the activation of B cells, monocytes, macrophages, 
dendritic cells, and natural killer cells. The immunostimu-
latory CpG motifs within the plasmid DNA vector contri-
bute substantially to the induction of proinflammatory cyto-
kines by cationic lipid-DNA complexes instilled into the 
lungs (Freimark et al. 1998; Li et al. 1999; Yew et al. 1999). 
The current strategy is aimed at the design of plasmids with 
a minimal such motifs (Yew et al. 2000). However, it has 
been shown that, unlike adenovirus, lipoplexes can be read-
ministered successfully in CF patients without apparent loss 
of efficacy (Hyde et al. 2000), even if inflammatory effects 
due to CpG motifs in plasmid DNA are observed (Ruiz et al. 
2001). 

We refer the readers to recent state-of-the-art articles 
that have reviewed the field of cystic fibrosis gene- and cell-
based therapeutic approaches (Anson et al. 2006; Davies 
2006; Griesenbach et al. 2006b). Here we give an overview 
of the most recent advances in viral and nonviral vectors as 
well as in delivery systems to the lung. In the last part, we 
will review recently acquired knowledge about stem cell 
capacity to differentiate into a fully differentiated airway 
epithelium and its application in cystic fibrosis. 
 
New viral vectors 
 
In the last three years an ample variety of new viral vectors 
have been developed and tested in animal models. They are 
summarized in Table 1. Here we focus on brief discussion 
concerning each type of viral vectors currently used. 

The availability of vector pseudotypes in which a com-
mon AAV2-based genome is packaged in capsids from dif-
ferent AAV isolates has brought to the evaluation of these 
serotypes in the respiratory system. The most efficient in 
transducing cells of airway epithelium were shown to be 
AAV5 (Zabner et al. 2000), AAV6 (Halbert et al. 2001), and 
AAV1 (Wilson 2004; Virella-Lowell et al. 2005). Recombi-
nant AAV2 requires access to the basolateral surface of air-
way epithelial cells where its main receptor, heparan sulfate 
proteoglycan, is most abudant (Duan et al. 1998b). The re-
ceptor for rAAV 5/5, 2,3-N-linked sialic acid, is expressed 
on the apical surface of airway epithelial cells (Zabner et al. 
2000; Walters et al. 2001). Recenltly, it has been shown that 
rAAV5/5 is more efficient than rAAV2/2 and gives pro-
longed transgene expression (up to 32 and 52 weeks in the 
nose and the lung, respectively) (Sumner-Jones et al. 2006). 
Sustentacular cells of the olfactory epithelium in the nose 
and alveolar type 2 cells in the lung were found almost ex-
clusively to express the transgene. 

Limberis and colleagues have recently shown that 
AAV2/9 is equally effective in transduction of polarized air-
way cells after apical or basolateral application (Limberis 
and Wilson 2006). AAV2/9-mediated nuclear �-galactosi-
dase gene transfer in nasal and lung airways was relatively 
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Table 1 Recent research on viral vectors and airway epithelium in animal models and in vitro. 
Vector Study Reference 
1) In vivo studies 

AAV2/2, AAV2/5 and AAV2/9 
serotypes  

Transduction efficiency in human airway epithelial cells, efficiency and persistence in the 
mouse lung and nasal epithelium. Feasibility of repeated administration. 

Limberis and 
Wilson 2006 

AAV1, AAV2, AAV5 serotypes  Efficiency of AAV vectors with capsid serotypes with greater tropism for the apical surface of 
respiratory cells (rAAV1 and rAAV5) and with strong promoter (CMV enhancer / �actin 
hybrid promoter) in murine airway epithelia. 

Virella-Lowell et al. 
2005 

AAV2 serotype  Transgene expression with serial doses of aerosolized AAV2 vector in Rhesus Macaques. Fischer et al. 2003
AAV5, FIV- and HIV-1-derived 

LV vectors pseudotyped with 
the baculovirus Autographa 
californica GP64 envelope 

Efficiency of viscoelastic gel formulations of different viral vectors in human airway epithelial 
cells and in murine airways. 

Sinn et al. 2005c 

E1/E3 deleted Ad and AAV2/5  Gene transfer into the murine airway epithelium with viral vectors complexed with the anti-
inflammatory cationic lipid dexamethasone-spermine. 

Price et al. 2005 

HD-Ad containing an epithelial- 
cell specific expression  
cassette cytokeratin 18     
(CK 18)  

Efficiency and persistence of gene expression in murine airway epithelium. Toietta et al. 2003

HD-Ad with a nuclear 
localization signal, under the 
control of a human CK 18 
expression cassette  

Aerosol delivery of an improved version of a HD-Ad vector expressing �-galactosidase  
reporter gene and formulated with LPC into rabbit respiratory tract using intratracheal  
catheter. 

Koehler et al. 2005

HD-Ad and first generation Ad 
type 5  

Persistence of transgene expression and humoral immune response to the vector after 
readministration of an helper dependent adenovirus into the mouse lung. 

Koehler et al. 2006

Canine Ad type-2, HD-Ad5 and 
Ad. All the vectors were 
deleted of the E1 region  

Efficiency and persistence of gene transfer in vivo to the murine airways and ex vivo in well-
differentiated human airway epithelia. Immune response elicited by CAV2. 

Keriel et al. 2006 

FIV-derived LV pseudotyped 
with the JSRV envelope 
glycoprotein  

Gene transfer into polarized primary cultures of human respiratory epithelial cells and rabbit 
respiratory tract. 

Sinn et al. 2005b 

FIV-derived LV  Persistence of gene transfer into the mouse nasal epithelia. Sinn et al. 2005a 
HA or EIAV pseudotyped HIV-1-

derived LV vector  
Transduction efficiency in models of human and mouse airway epithelium. McKay et al. 2006

HIV-1-derived LV pseudotyped 
with VSV-G  

In vivo gene transfer into the tracheobronchial tree of fetal rabbits. Skarsgard et al. 
2005 

SIN HIV-1-derived LV 
pseudotyped with VSV-G  

Safety and efficiency of intrapulmonary fetal gene transfer into rhesus monkeys. Tarantal et al. 2005

First generation E1-E3 deleted 
serotype 5 Ad vectors  

Intra-amniotic injection of Ad vectors into mice. Buckley et al. 2005

Non transmissibile, replication 
competent recombinant SeV 
developed by deleting the 
envelope Fusion (F) gene 
(SeV/�F)  

Gene transfer into respiratory epithelial cells, in ex vivo models of differentiated airway 
epithelium and in vivo in murine airways. 

Ferrari et al. 2004

Neuroaminidase-deficient 
influenza virus  

Gene transfer into murine airways to study the feasibility of delivery of foreign protein and 
production of vaccines against infectious disease. 

Shinya et al. 2004

SeV deleted of matrix (M) and 
fusion (F) genes (SeV/�M�F)  

Production and propagation of SeV/�M�F vector in packaging cell line, cytotoxicity and gene 
transfer efficiency in murine airways in vivo. 

Inoue et al. 2004 

2) In vitro studies 
AAV5 Development of a short adeno-associated virus expression cassette for CFTR gene transfer to 

differentiated CF airway epithelia. 
Ostedgaard et al. 

2005 
AAV2 and AAV5  Characterization of proteasome modulating agents for their ability to enhance AAV 

transduction. 
Yan et al. 2004 

AAV2 and AAV2/5  Investigation of pharmacological strategies to improve efficiency of CFTR gene delivery with 
AAV vectors while simultaneously inhibiting ENaC activity into CF cells. 

Zhang et al. 2004 

AAV, E1 deleted Ad vector and 
LV vector  

High-throughput screening of 23,000 compounds and natural product extracts able to enhance 
transduction mediated by different vectors encoding the luciferase or green fluorescence 
protein reporter gene. 

Sorscher et al. 2006

AAV2  Role of heparan sulfate in AAV2 transduction of human airway epithelial cells. Boyle et al. 2006 
AAV2 and AAV5  Comparison of transduction efficiency of AAV2 and AAV5 in mouse and human air liquid 

interface (ALI) cultures. Evaluation of the utility of ALI epithelia derived from �F508 mice 
for studies of CFTR complementation. 

Liu et al. 2006b 

AAV2  Evaluation of alternative serotypes and promoters to enhance transduction mediated by AAV 
vectors. 

Sirninger et al. 2004

rAAV2 and rAAV5  Rescue of CFTR chloride conductance in polarized human CF airway epithelial cells, using a 
spliceosome-mediated RNA trans-splicing (SMaRT) approach. 

Liu et al. 2005 

HD-Ad Gene transfer into sweat glands in human skin organ culture. Lee et al. 2005 
First generation and E1 deleted 

Ad, HD-Ad-CMV and HD-Ad-
CK18 

Activity of CMV promoter and CK18 regulatory elements in CFTR gene transfer and 
expression of functional CFTR Cl- channels in airway epithelia. Study of the level of CFTR 
expression required for correction of the epithelial Cl- transport defect. 

Farmen et al. 2005

HIV-1–derived VSV-G 
pseudoytyped LV vector 

Recostitution of well differentiated human airway surface epithelium with lentiviral transduced 
cells derived from fetal human tracheas or airway xenografts and cultured in 3-D spheroid 
structures. 

Castillon et al. 2004
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stable for 9 months. AAV2/9 transduced mainly alveolar 
cells and few conducting airway cells, whereas AAV2/5 
transduced cells of both the alveoli and conducting airways 
at levels greater than that observed with AAV2/9. AAV2/9 
could be readministered in the presence of high levels of 
serum-circulating neutralizing antibodies as early as 1 
month after initial exposure, with minimal effect on overall 
reporter gene expression, rendering AAV2/9 a promising 
gene transfer vector candidate for use in humans. 

Helper-dependent (HD)-Ad vectors, which are depleted 
of all viral genes, are less immunostimulatory and have im-
proved safety profiles compared to first- and second-gene-
ration viruses, which have only a subset of viral genes dele-
ted. Following intranasal instillation in mice of a HD-Ad 
containing an epithelial cell-specific expression cassette cy-
tokeratin 18 (CK 18), transgene (�-galactosidase) expres-
sion was observed in airway epithelia (basal and ciliated 
cells) and submucosal glands for up to 28 days, with poor 
expression in alveolar cells (Toietta et al. 2003). In contrast 
with first-generation Ad vectors inflammation was negligi-
ble. This study suggests that epithelial cell specific promo-
ter CK 18 drives transgene expression in CF target cells 
(airway cells and submucosal glands), with limited trans-
duction of alveolar cells. The epithelial specificity mini-
mizes expression in antigen-presenting cells, resulting in 
less immune stimulation and increased persistence of trans-
gene expression in target cells. Aerosol delivery of an imp-
roved version of a HD-Ad expressing nuclear �-galactosi-
dase reporter gene to rabbit respiratory tract was accom-
plished when formulated with L�-lysophosphatidylcholine 
(LPC) (Koehler et al. 2005). All type of cells of the surface 
epithelium were transduced; in the trachea 66% of cells 
were transduced after 0.1% LPC administration, while pre-
treatment with 0.01% LPC resulted in transduction of 24% 
of cells. Re-adiministration of HD-Ad to murine airways in 
mice resulted in minimal loss of transgene expression, as 
compared to readministration of a first generation Ad vector 
(Koehler et al. 2006), indicating that these vectors would be 
suitable for repeated administration to the lung. 

Lentiviral (LV) vectors derived from human immuno-
deficiency virus type 1 (HIV-1) and feline immunodeficien-
cy virus (FIV) are retroviruses which can be adequately 
pseudotyped and efficiently tranduce the airway epithelium 
(Copreni et al. 2004; Wilson 2004). In the nose of CF mice, 
they can mediate CFTR gene expression and correction of 
the electrophysiological defect up to 110 days (Limberis et 
al. 2002). Lack of receptors for LV vectors on the apical 
surface of the airway epithelium limit their use so far. Pseu-
dotyping with heterologous envelopes (Sinn et al. 2005a, 
2005b; McKay et al. 2006) and modification of the paracel-
lular permeability (Sinn et al. 2005c) are the strategies cur-
rently used to overcome the paucity of lentiviral receptors 
on the apical surface of the respiratory epithelium and to 
reach the basolateral membrane receptors. Recent studies 
have explored the feasibility of lentiviral vector mediated 
gene expression in the fetal airway epithelium, considering 
the advantage of a therapeutic intervention before clinical 
onset and in the absence of a functional immune response 
(Skarsgard et al. 2005; Tarantal et al. 2005). 

Recombinant Sendai virus (SeV) is a murine paramixo-
virus which requires short contact time with the target cells 
for internalization and replicates in the cytoplasm of trans-
duced cells, circumventing the nuclear membrane barrier. 
SeV transduced airway epithelial cells in a variety of animal 
models efficiently in vivo (Yonemitsu et al. 2000; Griesen-
bach et al. 2002a). Preliminary data show that SeV carrying 
the CFTR cDNA is able to partially correct the characteris-
tic CFTR-dependent chloride transport defect in the nasal 
epithelium of CF knockout mice (Ferrari et al. 2003a). 
However, gene expression mediated by recombinant Sen-
dai-based vectors is transient and repeated administration 
seems not feasible because of the neutralizing antibodies 
developed following the first vector administration (Ferrari 
et al. 2004; Griesenbach et al. 2006a). 
 
New nonviral vectors 
 
There is a constant search for new nonviral vectors with op-
timal efficiency/toxicity profile that are able to deliver the-
rapeutic genes to the lung. Table 2 summarizes the most re-
cent studies in this field. The use of polymers instead of 
lipids confers several advantages, due to their ease of prepa-
ration, purification and chemical modification as well as 
their enorrmous stability (Lungwitz et al. 2005). Among the 
variety of cationic polymers, polylysine, PEI, and chitosans 
seem to be the most promising gene transfer agents to the 
lung. 

A modified polylysine-based vectors has been shown to 
be efficient and safe when administered to the airways in 
pre-clinical animal models for CF and in CF patients and it 
has been discussed in a previous section (Ziady et al. 2003a, 
2003b; Konstan et al. 2004). 

The polymer PEI has been shown to be one of the more 
effective agents for DNA delivery to the lung of animal 
models (Lemkine and Demeneix 2001). Various forms of 
PEI have been tested in the airways, with a more favourable 
therapeutic index (i.e. less toxicity with increased effici-
ency) than cationic lipids (Gautam et al. 2001; Smolarczyk 
et al. 2005). Recently, Dif and colleagues have shown that 
within 18-20 hours after injection through the tail vein, 
DNA/PEI complexes have already crossed the capillary bar-
rier resulting in high levels of expression of reporter genes 
in the lungs (Dif et al. 2006). Transgene expression is ob-
served in endothelial cells, in type I and type II pneu-
mocytes, and in septal cells. Coexpression of the transgene 
and of the endogenous Cftr gene was observed in some of 
the targeted epithelial cells. Levels and sites of expression 
were similar in normal and in CFTR-mutant mice. 

To overcome the limited transgene expression in the 
lung obtained with nonviral vectors, a new gene delivery 
vector based on the Sleeping Beauty (SB) transposase was 
used. The SB transposase is an enzyme that recognizes the 
ends of a transposon (indirect repeats, IRs), excises the 
transposon from its location in the genome, and reinserts it 
elsewhere into chromosomal DNA. By introducing a thera-
peutic gene between transposon IRs and supplying the 
transposase function, it is possible to use this transposon as 
a vector for gene therapy. Belur and colleagues demons- 

Table 1 (Cont.) 
Vector Study Reference 
HIV-1-derived lentivirus 

pseudotyped with JSRV 
envelope glycoprotein  

Evaluation of transduction efficiency in primary and immortalized human lung epithelial cells Liu et al. 2004 

Ad2 and Ad5 Role of glycocalix and tethered mucins in restriction of Ad transduction from the apical 
membrane of respiratory epithelial cells 

Stonebraker et al. 
2004 

E1/E3 deleted Ad  Expression and activity of functional GFP-tagged CFTR  Vais et al. 2004 
Ad5   Phage biopanning in CFTR deficient human tracheal glandular cells (CF-KM4) to find specific 

peptide ligands that confer cell target specificy and enhance gene transfer mediated by Ad5 
vector 

Gaden et al. 2004 

Ad = adenovirus; AAV = adeno-associated virus; HD-Ad = helper-dependent adenovirus; CK 18 = cyokeratin 18; EIAV = Equine infectious anemia virus; FIV = feline 
immunodeficiency virus; HA = hemoagglutinin; HIV-1 = human immunodeficiency virus type 1; JSRV = Jaagsiekte sheep retrovirus; LPC = L�-Lysophosphatidylcholine; LV
= lentivirus; SeV = Sendai virus; SIN = self inactivating. 
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Table 2 Recent research on nonviral vectors and airway epithelium in animal models and in vitro. 
Cationic lipid/cationic 
polymer/molecular conjugate 

Study Reference 

1) Studies with CF mice 
Linear PEI 22 kDa,  branched 

PEI 25 kDa, branched PEI 50 
kDa 

Efficiency of gene expression in the airways after intranasal instillation. Efficacy study in 
CF-null mice. 

Wiseman et al. 2003

PEI 22 kDa  Localization of transfected cells at the level of the lung after ntravenous in wild-type and 
CF mice.  

Dif et al. 2006 

2) In vivo studies 
PEG-substituted poly-L-lysine Efficiency of gene expression in the mouse lung after intratracheal and intranasal 

instillation.  
Ziady et al. 2003a 

PEG-substituted poly-L-lysine Safety (lung and systemic inflammation) after intranasal instillation in mice. Ziady et al. 2003b 
Nonionic amphiphilic block 

copymers  
Efficiency and safety after intratracheal injection and aerosolization in mice. Desigaux et al. 2005

Lipofectin (L), integrin-targeting 
peptide (I), DNA (D)  

Efficiency and safety after intratracheal instillation in mice. Repeated administrations. Jenkins et al. 2003 

Lipofectin (L), integrin targeting 
peptide (I), DNA (D)  

Effect of EGTA pretreatment on the efficiency of the vector administered via intratracheal 
injection in mice. 

Meng et al. 2004 

Cationic lipid GL67 Efficiency and toxicity following bronchoscopic instillation in lung segments of sheep. Emerson et al. 2003
Cationic lipid GL67, PEI 25 kDa Efficiency, dose-response effect and toxicity following aerosol delivery into the ovine lung. McLachlan et al. 

2007 
Cationic lipid GL67 Efficiency and efficacy study (on ENaC) in mice following intranasal instillation of 

antisense oligonucleotides and synthetic siRNAs. 
Griesenbach et al. 

2006c 
DOTAP/cholesterol protamine, 

naked DNA 
Efficiency and distribution of oligonucleotides following intravenous delivery in mice. 
Effect of inflammatory mediators. 

Holder et al. 2006 

TAT peptide-PEG-PEI  Efficiency and toxicity of the vector administered via intratracheal injection in mice. Kleemann et al. 2005
PEI 25 kDa, chitosan  Study of gene expression by microarray analysis after intratracheal administration to mice. Regnstrom et al. 

2006 
PEI 25 kDa  Efficiency and biodistribution of DNA complexes after aerosol and intratracheal in mice. Rudolph et al. 2005
PEI 25 kDa Biodistribution and clearance from the lungs after nebulization in different mouse strains. Dames et al. 2006 
PEI/albumin  Cytokine levels in blood after intravenous injection in mice. Effect of dexamethasone. Smolarczyk et al. 

2005 
Chitosan Structure-function relationship. Comparison of chitosan and high-molecular-weight 

chitosan in vitro and after intratracheal administration to the mouse lungs. 
Koping-Hoggard et 

al. 2003 
Chitosan Comparison of chitosan and high-molecular-weight chitosan after intratracheal 

administration to the mouse lungs. 
Koping-Hoggard et 

al. 2004 
Chitosan, PEI Efficiency study with a new nebulization catheter device. Comparison with intratracheal 

instillation. 
Koping-Hoggard et 

al. 2005 
Thiolated chitosan Biophysical characterization of nanoparticles. Efficiency of transfection after intranasal 

administration in BAL cells. 
Lee et al. 2007 

Trisaccharide-substituted 
chitosan oligomers 

Efficiency in vitro and after intratracheal administration to the mouse lungs. Issa et al. 2006 

Poly (4-vinylimidazole) (P4V), 
PEI  

Expression of human osteoprotegerin (hOPG) in the spleen and the lung after intravenous 
injection in mice. 

Ihm et al. 2005 

Lipofectamine 2000 or cationic 
lipid 67 (GL67) coupled to 
superparamagnetic particle 
TransMAGPEI  

Perfusion of nasal cavity with TransMAGPEI in mice. Xenariou et al. 2006

PEI 22 kDa/Sleeping beauty 
transposase 

Duration of gene expression in the lung after a single intravenous injection in the mouse. Belur et al. 2003 

PEI 22 kDa/Sleeping beauty 
transposase 

Delivery of a transposon encoding the human gene indoleamine-2,3-dioxygenase to the rat 
lung via intratracheal injection. Therapeutic efficacy in a model of lung allograft. 

Liu et al. 2006a 

3) In vitro studies 
PEI 25 kDa  Transfection efficiency and viability of immortalised CF airway epithelial cells in the 

presence of low molecular weight heparin (3 kDa). 
Dragomir et al. 2004

PEI 25 kDa/albumin  Efficiency of PEI/DNA complexes added with HSA in human airway epithelial cells in the 
presence of CF mucus. 

Carrabino et al. 
2005 

Cationic phosphonolipids Efficiency and toxicity of KLN 30 in primary airway epithelial cells obtained from non-CF 
and CF �F508 nasal polyps. 

Expression of wild-type CFTR. 

Montier et al. 2004

Poly-lysine peptides  Efficiency of the alkylated-Cys-Trp-Lys18 (CWK18) DNA condensing peptide in HepG2 
and CF/T1 cells. Effect of the proteasome inhibitors. 

Kim et al. 2005b 

Lactosylated PEI 25 kDa (Lac-
PEI), glycosylated polylysines  

Efficiency in CF-KM4 cells and primary bronchial epithelial cells. Fajac et al. 2003 

Lac-PEI  Efficiency in �CFTE29o- and primary bronchial epithelial cells. 
Analysis of transcription rates. 

Grosse et al. 2004 

Lac-PEI, glycosylated polylysines Electron microscopy study in �CFTE29o- and primary bronchial epithelial cells. Grosse et al. 2005 
Uronic acid-PEI and uronic acid-

PEI-PEG copolymers 
Efficiency and receptor-mediated endocytosis study in 16HBE14o-, HeLa and HepG2 
cells. 

Weiss et al. 2006 

Lipofectin (L), integrin-targeting 
peptide (I), DNA (D)  

Efficiency in 1HAEo- and 2CFSMEo- cells. Effect of EGTA. Meng et al. 2004 

Cationic lipids  Effect on CFTR and RANTES expression in polarized CF human bronchial epithelial cells. Tucker et al. 2003 
BAL=bronchoalveolar lavage; DOTAP= 1,2-dioleoyl-3-trimethylammonium propane; PEG= polyethyleneglycol; PEI=polyethylenimine; siRNA=small interference RNA; 
TAT=trans-activating transcriptional activator from HIV-1 
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trated transgene expression after 24 hours in the lungs of all 
animals intravenously injected with the luciferase transpo-
son complexed to PEI (linear 22 kDa), but expression up to 
3 months required co-delivery of a plasmid encoding the 
SB transposase (Belur et al. 2003). Transgene expression 
was localized to the alveolar region of the lung, with trans-
fection of mainly type II pneumocytes. 

SB-mediated gene delivery was recently shown to be 
therapeutically useful in rat model of lung allograft fibrosis 
(Liu et al. 2006). An improved SB transposon encoding the 
human gene indoleamine-2,3-dioxygenase (IDO), an en-
zyme that possess both T cell-suppressive and antioxidant 
properties, was complexed with linear PEI and delivered to-
gether with a tranposase plasmid to the donor lung via 
intratracheal injection 24 hours prior to transplantation. 
IDO activity produced in lung allografts showed a remar-
kable therapeutic response, as evident by near pulmonary 
function, histological appearance, and reduced collagen 
content in lung allografts. 

Chitosans, a family of linear binary polysaccharides 
comprised of (1-4) linked 2-amino-2-deoxy-�-D-glucose 
(GlcN) and the N-acetylated analogue (GlcNAc) are bio-
compatible cationic polymers, suitable for plasmid DNA 
gene delivery to the lung, with low cytotoxicty (Koping-
Hoggard et al. 2001). Recently, the most effective gene 
delivery after lung administration in vivo was seen with chi-
tosan oligomers with a number-average degree of polymeri-
sation (DPn) of around 18 monomer units (DPn18) (Ko-
ping-Hoggard et al. 2003, 2004). The oligomer-based poly-
plexes had reduced viscosity and were less prone to aggre-
gation in the more concentrated solutions used for in vivo 
application. Importantly, these polyplexes released plasmid 
DNA more easily than conventional high molecular weight 
chitosans, resulting in a faster onset and higher levels of in 
vivo gene expression. 

Recent approaches to increase gene transfer mediated 
by nonviral vectors include the addition of a ligand to medi-
ate cellular uptake, such as serpin enzyme complex receptor 
(SecR) (Ziady et al. 2002) or glycids (Grosse et al. 2005; 
Issa et al. 2006), the synthesis of polymer conjugates with 
HIV-1 TAT-derived peptides (Kleemann et al. 2005), or the 
addition of a protein moiety (Smolarczyk et al. 2005). 
 
New delivery systems for nonviral vectors 
 
A variety of nonviral vectors, including cationic lipids, 
polycationic polymer complexes, and proteolipidic vectors, 
have been developed for administering DNA by inhalation 
(Densmore 2006). Recently, it has been reported that the 
branched form of PEI stabilised DNA during the nebuliza-
tion process and exhibited a higher degree of specificity for 
the lungs, with virtually no evidence of plasmid DNA in 
other tissues after this mode of delivery (Densmore et al. 
2000; Gautam et al. 2000; Koshkina et al. 2003). Inhalation 
of PEI-DNA complexes resulted in higher level of trans-
gene expression in the lungs than cationic lipid-based for-
mulations, without inducing high levels of proinflammatory 
cytokines (Gautam et al. 2001). 

The delivery of the CFTR gene to the target cells of the 
airways, e.g. by nebulization, might be enhanced by a vari-
ety of adjunctive physical interventions including electro-
poration or magnetofection (Griesenbach et al. 2004a). 
Magnetic targeting of gene delivery is achieved by applica-
tion of a magnetic field to superparamagnetic iron oxide 
particles associated with the gene vectors (Scherer et. al. 
2002; Plank et al. 2003). In this technique, cationic polymer 
PEI coated superparamagnetic nanoparticles are complexed 
to plasmid DNA under the addition of free PEI 
(TransMAGPEI). Magnetofection was compared with con-
ventional nonviral gene transfer methods such as lipofec-
tion and polyfection in permanent and primary airway epi-
thelial cells (Gersting et al. 2004). Magnetofection was 
shown to deliver DNA to the cells more rapidly than PEI-
polyfection and led to increased vector accumulation in the 
target cells. Magnetofection was the most efficient when 

applied to primary human airway epithelial cells. It also led 
to significant gene expression at very short incubation times 
in an ex vivo porcine airway epithelium organ model. How-
ever, a recent study has failed to demonstrate a positive ef-
fect of magnetoparticles and magnetic field on the in vivo 
efficiency of the cationic lipid GL67 (Xenariou et al. 2006). 
In experiments performed with perfusion of the mouse nasal 
cavity, the authors showed a decrease in gene expression for 
GL67 coupled to TransMAGPEI compared to non-magnetic 
particles. Better formulations and probably other animal 
models will be required to optimize the magnetofection 
technique in vivo. 

In vivo gene transfer to the lung has been attempted by 
electroporation. After intratracheal instillation of naked 
plasmid DNA, mice were given a series of eight wave elec-
tric pulses each at an optimal field strength of 200 V/cm 
through electrodes placed on the chest (Dean et al. 2003). 
Gene expression was detected already one day after electro-
poration and further increased reaching its maximum 
between 2 and 5 days. By the day 7, expression was back to 
baseline. In contrast, essentially no gene expression was de-
tected in the absence of electric pulses. The cell types ex-
pressing gene product include alveolar type I and type II 
epithelial cells. No inflammation or injury was observed in 
the lung neither after 1 nor 24 hours after electroporation, as 
detected by histology and cytokine measurements. 

A further improvement of this method has been applied 
to the rat lung (Machado-Aranda et al. 2005). Purified plas-
mid was delivered to the lungs of anesthetized rats through 
an endotracheal tube, and a series of square-wave pulses 
were delivered via electrodes placed on the chest. Relatively 
uniform gene expression was observed in multiple cell types 
and layers throughout the lung, including airway and alve-
olar epithelial cells, airway smooth muscle cells, and vas-
cular endothelial cells. Gene expression was dose- and pulse 
length-dependent. Most importantly, no inflammatory res-
ponse was detected. To demonstrate efficacy of this ap-
proach, the �1 subunit of the Na+, K+-ATPase was trans-
ferred to the lungs of rats with or without electroporation, 
and 3 days later, alveolar fluid clearance was measured. 
Animals electroporated with the �1 subunit plasmid showed 
a two-fold increase in alveolar fluid clearance and Na+,K+-
ATPase activity as compared with animals receiving no 
electroporation. 

A recent study combined in vivo electroporation and a 
long-acting promoter system for gene transfer to the lung 
(Gazdhar et al. 2006). Plasmids expressing luciferase under 
the control of the cytomegalovirus immediate-early promo-
ter/enhancer (CMV-IEPE) or human polyubiquitin c (Ubc) 
promoter suspended in water were instilled into the left lung 
of anesthetized rats, followed by left thoracotomy and elec-
troporation of the exposed left lung. Gene expression with 
the CMV-IEPE promoter was highest 24 hours after gene 
transfer and returned to baseline by day 3; at day 5 no ex-
pression was detected, whereas gene expression under the 
Ubc promoter was detected up to day 40. Arterial blood gas 
(PaO2), histological assessment and cytokine measurements 
showed no significant toxicity neither at day 1 nor at day 40. 
Overall, these studies provide evidence that in vivo electro-
poration is a safe and effective tool for nonviral gene deli-
very to the lungs. If this method is used in combination with 
a long-acting promoter system, sustained transgene expres-
sion can be achieved. 

Recently, it has been assessed if high-frequency ultra-
sound (US) can enhance nonviral gene transfer to the mouse 
lung (Xenariou et al. 2007). Cationic lipid GL67/pDNA, 
PEI/pDNA and naked plasmid DNA were delivered via 
intranasal instillation, mixed with Optison microbubbles. 
Subsequently, the animals were exposed to 1 MHz US. Ad-
dition of Optison alone significantly reduced the transfec-
tion efficiency of all three gene transfer agents. US exposure 
did not increase GL67/pDNA or PEI/pDNA gene transfer 
compared to Optison-treated animals. However, it increased 
naked pDNA transfection efficiency by approximately 15-
fold compared to Optison-treated animals, suggesting that 
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despite ultrasound being attenuated by air in the lung, suf-
ficient energy penetrates the tissue to increase gene transfer. 
However, it should be noticed that the application of US 
induced lung haemorrhage, assessed histologically. The left 
lung was more affected than the right and this was mirrored 
by a lesser increase in naked pDNA gene transfer. The posi-
tive effect of US was dependent on Optison, as in its ab-
sence US did not increase naked pDNA transfection effici-
ency. Further refinement of US-mediated gene transfer by 
cationic vectors in the murine lung is needed. 
 
New animal models 
 
Designing and implementing new gene transfer protocols of 
relevance to human clinical trials demands assessment 
using appropriate in vivo model systems. For initial screen-
ing, the mouse is the preferred animal model, due to its 
small size and usefulness to obtaining large experimental 
numbers. However, one should be aware that barriers, 
which might impede gene transfer in the murine lung, differ 
from those found in the human lung. Human lungs possess 
abundant submucosal glands in bronchi which mice do not, 
which leads to the production of fewer secretions in the mu-
rine lung than in human. Furthermore, CFTR mRNA levels 
are lower throughout murine pulmonary epithelium than in 
the human lung. Experimental data indicate that Cl– secre-
tion in murine lung is performed predominantly by an alter-
native Cl– channel (Rochelle et al. 2000). Therefore, CF 
mice do not develop the severe inflammatory response and 
thickened mucus associated with CF lung disease, which 
limits their value for the assessment of efficacy of gene 
therapy for CF lung disease (Grubb and Boucher 1999). 

Recently, a new murine animal model was created. To 
study the mechanistic links between the altered ion trans-
port processes and pathogenesis of CF lung disease mice 
with airway-specific overexpression of � subunit of ENaC 
were generated (Mall et al. 2004). The increased airway 
Na+ absorption in vivo caused ASL volume depletion, in-
creased mucus concentration, delayed mucus transport and 
mucus adhesion to airway surfaces. Defective mucus trans-
port caused a severe spontaneous lung disease sharing fea-
tures with CF, including mucus obstruction, goblet cell 
metaplasia, neutrophilic inflammation and poor bacterial 
clearance. This study reveals that increasing airway Na+ 
absorption initiates CF-like lung disease and produces a 
model for studying novel therapeutic approaches in the pre-
sence of mucus. It is important to note that CFTR expres-
sion and function is normal in this animal model. Double 
transgenic mice (knock out for CFTR and over-expressing 
�ENAC) should give an answer about the relevance of 
these mice for the comprehension of CF lung disease and 
for application of therapeutic interventions. 

Pigs and sheep seem to be better animal models to de-
velop protocols and vectors for gene therapy of CF. Pig 
lungs share many anatomical and physiologycal similaraties 
with those of human lungs. Their bronchi show similar pat-
terns of branching and histology, possess a similar abun-
dance of submucosal glands and have similar patterns of 
glycoprotein synthesis and secretion (Hartmann et al. 1984; 
Mills et al. 1986). Similarities have also been reported in 
the immune system in the lungs of the pigs and humans that 
may be relevant to the evaluation of inflammatory and im-
mune responses to vector treatment (Pabst and Binns 1994; 
Pabst 1996). Moreover, pigs express CFTR in their bron-
chial epithelium and submucosal glands, which mediates 
secretion of chloride and bicarbonate anions and liquid, si-
milar to humans (Ballard et al. 1999). Bronchoscopic admi-
nistration of a nonviral vector to the right lower lobe of 
piglets resulted in high efficiency of gene transfer with 46% 
of large bronchi staining positively (Cunningham et al. 
2002). There was no evidence for vector-specific inflamma-
tion assessed by leukocytosis and TNF-� production. The 
successful production of cloned piglets by somatic cell nuc-
lear transfer (SCNT) (Polejaeva et al. 2000) has opened up 
the possibility of generating genetic knockouts (Rogers et 

al. 2006), which surely will play a role in designing efficient 
and safe gene therapy vectors for CF. 

Both anatomical and physiological features make the 
sheep lung an attractive model for gene therapy Primary and 
secondary bronchioles consist of basal, intermediate, cili-
ated, and nonciliated (Clara) cells and in general the fine 
structure, localization, and composition of cellular popula-
tions of the bronchiolar and alveolar epithelium are similar 
to those of other mammalian species (Boulijhard and Liei-
pold 1994). Moreover, there is a very high degree of evolu-
tionary and functional similarity between the human and the 
sheep CFTR gene (90% identity at the protein level; (Teb-
butt et al. 1995). The ovine model was used to test the rela-
tive efficacy of different gene transfer agents by direct ins-
tillation into the lung (Emerson et al. 2003). A recent study 
demonstrated distribution and reporter gene expression 
throughout the lung after aerosol administration of plasmid 
DNA complexed to the cationic lipid GL67 or PEI 
(McLachlan et al. 2007). GL67 and PEI achieved signifi-
cant levels of gene expression compared to controls in the 
more distal region of the lung. Importantly, a major differ-
ence between aerosol and instillation delivery of DNA/ 
GL67 relates to toxicity. Instillation caused a severe airway-
centric acute inflammatory response, which often extended 
to the peribronchiolar interstitial tissue leading to consolida-
tion, bronchiolar destruction, extensive alveolitis, and alve-
olar neutrophil exudates (Emerson et al. 2003). Aerosol de-
livery resulted in consistently less severe pathological chan-
ges than instillation, as previously observed in mice (East-
man et al. 1997). This is probably due to the improved dis-
tribution and absence of pooling effects. 

Importantly, it has been recently demonstrated that spe-
cific anti-human CFTR antibodies can detect vector-derived 
human CFTR in sheep trachea after instillation of plasmid 
DNA/PEI complexes or in cryosections of sheep airways 
after whole lung aerosol delivery of DNA/PEI complexes 
(Davidson et al. 2006). 

The domestic ferret, Mustela putorius furos, has proven 
to be an excellent animal model for studying CFTR lung 
biology In contrast to mice, the ferret lung has marked simi-
larities to the human lung in terms of physiology, airway 
morphology, and cell types (Plopper et al. 1980; Leigh et al. 
1986; Oldham et al. 1990; Duan et al. 1998a; Kishioka et al. 
2001; Wang et al. 2001). Moreover, the expression of CFTR 
in the ferret airway epithelium and submucosal glands is 
identical to that in humans (Engelhardt et al. 1992; Sehgal 
et al. 1996). In addition, amino acid identity between ferret 
and human nucleotide binding domain 1 (NBD1) of CFTR 
is a striking 97% (Sehgal et al. 1996), which is just as high 
as for non-human primates (96%, Macaca nemestrina) and 
is significantly higher than for rodents (80%, rat and mouse). 
Fourth, the ferret had been a useful model for viral and 
bacterial lung infections seen in humans (Leigh et al. 1995a; 
Kishioka et al. 1999). Furthermore, the ferret, with a gesta-
tion period of 42 days and 6 months to sexual maturity, has 
obvious advantages over larger animal models. These fea-
tures make the ferret an ideal choice for modeling genetic 
lung disease such as CF (Li and Engelhardt 2003). Recently, 
Engelhardt’s group has reported the successful production 
of live cloned, reproductively competent, ferrets using spe-
cies-specific SNCT methodologies (Li et al. 2006). 
 
The search for new therapeutic end-points 
 
In clinical trials, the primary endpoints to evaluate effici-
ency include quantification of vector DNA, mRNA, and 
protein (mostly as chloride channel activity). Although the 
“gold standard” for gene therapy of CF lung disease is the 
measure of nasal and bronchial potential difference (Grie-
senbach and Boyd 2005), some concerns have been raised. 
The question is whether the change of few millivolts ob-
tained upon application of CFTR-bearing vectors may be 
considered to represent successful gene therapy (Zeitlin 
2000). Thus, alternative functional secondary assays have 
been searched for, in particular ones directed towards eva-
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luation of the inflammatory response and bacterial infection. 
None of the several mouse models produced thus far 

was found to develop the lung disease characteristic of CF 
spontaneously (Davidson and Rolfe 2001), although it was 
soon discovered that lung disease could be induced by ex-
posure to high levels of bacteria (Davidson et al. 1995). 

Koehler et al. have developed a HD-Ad vector which 
harbors control elements from CK 18 to express CFTR 
(Koehler et al. 2001). Wild-type mice repeatedly instilled 
with Burkholderia cepacia complex (Bcc) cleared the bac-
teria within 9 days, whereas CF knock out mice retained 
Bcc and succumbed to severe bronchopneumonia, exhibit-
ing many of the histological signs of human CF lung di-
sease including neutrophilia (Saijan et al 2001). CFTR-/-

mice receiving HD-Ad-CFTR 7 days before Bcc challenge 
had less severe histopathology, and the number of lung bac-
teria was reduced to the level seen in CFTR+/+ littermates 
(Koehler et al. 2003). 

van Heeckeren et al. observed that pretreatment of gut-
corrected CF knockout mice with an adenoviral vector 
expressing CFTR (Ad2/CFTR-16) improved survival fol-
lowing challenge with P. aeruginosa-laden agarose beads 
(van Heeckeren et al. 2004). However, no statistically sig-
nificant difference in survival was observed between mice 
pretreated with Ad2/CFTR-16 and those treated with the 
empty vector (Ad2/EV). The other hallmark of the response 
of CF mice to P. aeruginosa-laden agarose beads, the in-
creased inflammatory response, was not diminished in the 
mice pretreated with Ad2/CFTR-16 compared to mock-
treated animals. Moreover, there was no effect on the bac-
terial clearance from the lungs in Ad2/CFTR-16-treated 
mice as compared to those treated with the empty vector. A 
possible explanation of the different outcome of the two 
studies is that the Ad vector used by van Heeckeren et al. is 
highly inflammatory, whereas the HD-Ad vector used by 
Koehler et al. does not express adenovirus genes and there-
fore causes little inflammation. These results highlight the 
notion that new vectors with a better efficiency/safety pro-
file are needed for correcting the hypersusceptibility of CF 
airways to bacterial challenge. 

Analysis of inflammatory markers in sputum and bron-
cho-alveolar lavage fluid (BALF) may be an important se-
condary endpoint. Previous studies of the bronchopulmo-
nary secretions of CF subjects showed increased concen-
trations of inflammatory markers, such as IL-8, IL-6, IL-1�, 
TNF-�, leukotriene B4, and free neutrophil elastase, and 
decreased IL-10 (Dean et al. 1993; Konstan et al. 1993; 
Lawrence and Sorrell 1993; Bonfield et al. 1995; Khan et 
al. 1995; Salva et al. 1996; Noah et al. 1997; Muhlebach et 
al. 1999). Interestingly, a small change in cytokine expres-
sion has been reported in sputum in at least three gene 
therapy trials. Alton et al. reported a decrease in sputum IL-
8 after administration of liposome/CFTR gene transfer 
(Alton et al. 1999). Wagner et al. described an increase in 
the anti-inflammatory cytokine IL-10 after administration 
of adeno-associated virus-CFTR (AAV-CFTR) to the max-
illary sinus of CF patients (Wagner et al. 2002). In the first 
repeated-administration lung trial of AAV2 to the CF lung a 
reduction in IL-8 in induced sputum after the first, but not 
after subsequent administrations, was observed. This red-
uction in efficacy on re-administration of the AAV vector 
may in part be caused by the development of an immune 
response after the first administration (Moss et al. 2004). 

Other more updated techniques may play a role in clin-
ical trials in the near future, such as custom-made chips for 
microarray analysis of gene expression after CFTR transfer 
and mass spectrometry to detect subtle changes in CFTR 
and other proteins in CF biological fluids (Griesenbach and 
Boyd 2005). 

 
 
 
 
 

 

CELL THERAPY OF CYSTIC FIBROSIS 
 
The final goal of gene therapy of cystic fibrosis (CF) is to 
permanently correct the genetic defect in the target cellular 
compartment. This could be conceivably be achieved by 
gene transfer into the ‘‘stem’’ cell compartment of the respi-
ratory epithelium. Although the identification of a resident 
pulmonary multipotent stem cell still remains to be accom-
plished, it is clear that local stem or precursor cells contri-
bute to the repopulation of the injured epithelium in dif-
ferent anatomical regions of the airways (Otto 2002; Neu-
ringer and Randell 2006; Randell 2006). Different approa-
ches have led to the identification of local repopulating cells 
in trachea and bronchi (basal, mucous, secretory), bronchi-
oles (Clara), and alveoli (type II pneumocytes). Most re-
cently another epithelial niche in the bronchiolar epithelium 
has been identified in the zone where airways terminate and 
form alveoli (Kim et al. 2005). 

In search of a potential use of autologous human airway 
epithelial cells, Castillon and colleagues have used polar-
ized and well-differentiated 3-D spheroid cultures produced 
from isolated airway epithelial cells (Castillon et al. 2002). 
These 3-D spheroid structures can be maintained in culture 
for several months without any alteration of their polarized 
and differentiated state. Moreover, they have beating cilia at 
the surface and functional choride channels (Castillon et al. 
2004). The group has shown that the 3-D spheroids are sui-
table to study a gene and cell therapy approach to CF. Res-
piratory epithelial cells obtained from human fetal tracheas 
or fetal airway xenografts were transduced in suspension 
with a HIV-1-derived VSV-G pseudoytyped lentiviral vector 
expressing GFP and allowed to develop 3-D spheroid struc-
tures (Castillon et al. 2004). Transgene expression was 
maintained for the duration of the study (80 days) without 
altering the epithelium reconstitution or the chloride channel 
activity. Transduced spheroids were then assayed in an ex 
vivo and an in vivo model of airway-epithelial denuded tra-
chea, to investigate their capacity to regenerate a differen-
tiated airway epithelium. Presence of clusters of GFP posi-
tive basal, ciliated and secretory cells in the reconstituted 
epithelium at 10 weeks after engraftment suggests targeting 
of progenitor cells. This study shows that lentiviral vectors 
can achieve efficient and long-lasting gene expression in 
polarized and differentiated 3-D spheroid structures of hu-
man airway epithelial cells. Transduced spheroids can be 
then used as a pool of autologous corrected cells and as a 
potential source of human airway progenitor cells for reim-
plantation on a denuded basement membrane, often present 
under CF pathological conditions. 

Alternatively to”hitting” a local stem cells compartment 
in the lung, it may be conceivable to induce circulating adult 
hematopoietic stem cells (HSCs) to home to the damaged 
respiratory epithelium during regeneration (Spencer and 
Jaffe 2004; Conese and Rejman 2006). This concept has 
been exploited for muscle and nerve regeneration, in view 
of a cell therapy approach to muscular dystrophy (Ferrari et 
al. 1998) and neurodegenerative diseases (Biffi et al. 2004). 

The potential of adult-derived bone marrow cells to 
home to the airways is an attractive, novel therapeutic 
approach for pulmonary repair. Much scientific debate has 
focused on the ability of bone marrow (BM)-derived cells to 
be engrafted into non-hematopoietic tissues and adopt an 
epithelial phenotype (Herzog et al. 2003; Wagers and 
Weissman 2004). BM-derived cells in the liver and kidney 
have been shown to arise as a consequence of fusion (Alva-
rez-Dolado et al. 2003; Camargo et al. 2004). However, 
other reports showed no evidence of fusion in lung, skin, 
liver, and epidermis (Harris et al. 2004; Brittan et al. 2005). 
 
Studies with lung injury models in mouse 
 
It was demonstrated that transplanted BM cells could repo-
pulate the airways after irradiation of the recipient. Harris et 
al. made use of the Cre/lox recombinase system to examine 
whether fusion occurs between BM-derived stem cells and 
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host cells after BM transplantation (Harris et al. 2004). Tis-
sues from the recipient were analyzed 8 to 12 weeks after 
lethal irradiation and transplantation for the presence of 
BM-derived (Y chromosome-positive) epithelial cells and 
EGFP expression. Only 0.6% of total pneumocytes were 
EGFP-positive. 

After transplantation of total BM or enriched HSCs into 
irradiated recipient animals, engraftment of BM-derived 
cells in liver, lung, gut and skin epithelial have been detec-
ted (Krause et al. 2001). The level of pneumocyte engraft-
ment was significantly higher (up to 18.7%) than that in 
other epithelial cell compartments in which bone marrow 
engraftment could be demonstrated (0.19-3.39% in gastro-
intestinal lining cells, bile ducts, skin, and hair follicles). 

Theise et al. studied BM transplantation from male 
B6D2F1 mice into irradiated female mice and assessed the 
kinetics of engraftment by measuring the percentage of sur-
factant B protein-producing cells derived from the donor 
using co-fluorescent in situ hybridation (FISH) for surfac-
tant B mRNA and the Y-chromosome (Theise et al. 2002). 
The percentage of marrow-derived type II pneumocytes in-
creased over time from an average of 0.9% at day 5 to 11-
14% at month 6, demonstrating either progressive expan-
sion of the engrafted population or continuous engraftment 
of circulating marrow cells. 

Herzog at al. studied the engraftment of marrow-
derived pneumocytes into mice that had received varying 
doses of total body irradiation and quantifying the degree of 
lung damage associated with irradiation (Herzog et al. 
2006). They found that only at doses that induced lung 
injury could marrow-derived lung epithelium be identified 
following BM transplantation. With irradiation doses less 
than 1,000 centigray (cGy), there was little to no apparent 
injury to the lung, and there were no marrow-derived pneu-
mocytes despite high levels of hematopoietic chimerism. In 
contrast, 4 days after either split or single-dose 1,000 cGy 
irradiation, nearly 15% of lung epithelia were apoptotic, 
and with this dose, marrow-derived type II pneumocytes 
(0.2%) were present at 28 days. These data indicate a cri-
tical relationship between lung injury and the phenotypic 
change from BM-derived stem cells to lung epithelial cells. 

Kotton et al. used whole bone marrow or side popula-
tion (SP) cells to engraft irradiated mice and use a bleo-
mycin damage protocol (Kotton et al. 2005). The SP popu-
lation is isolated by virue of its ability to exclude the DNA-
binding dye Hoechst 33342 and it is highly enriched in 
HSC activity. In contrast to their earlier reported work with 
mesenchymal bone marrow-derived cells (Kotton et al. 
2001), there was no evidence of engraftment in type II 
pneumocytes. However the bleomycin used in this study as 
the damaging agent is known to induce lung fibrosis (Xu et 
al. 2006). This may mean that the type of donor bone 
marrow-derived cells engrafted into the lung would not be 
pneumocytes but fibroblasts (Hashimoto et al. 2004). 

Other studies have evaluated whether lung injury ob-
tained by local treatments increases recruitment of the bone 
marrow-derived cells (Table 3). MacPherson and col-
leagues injected the bone marrow-derived SP cells from 
ROSA26 mice (constitutively expressing �-galactosidase) 
into irradiated hosts before polidocanol treatment (Mac-
Pherson et al. 2005). They demonstrated that mice engraf-
ted with SP cells have donor-derived cells present in the 
epithelial lining of the trachea following damage and repair. 
Donor-derived cells (Y-chromosome+) were found at a fre-
quency of 0.83%. Confocal microscopy analysis revealed 
that 55% of the cells expressing cytokeratins were donor –
derived cells. Analysis of X-gal staining and allele-specific 
ROSA26 PCR indicated that these cells did not have the 
ability to contribute to the developing blastocyst, nor were 
they able to contribute to primary epithelial cultures grown 
at an air liquid interface, or denuded tracheal xenografts. 
Clearly, the necessary signals/factors are not present in 
these in-vitro and ex-vivo systems to allow marrow-derived 
SP cells to contribute to the formation of the epithelia. Very 
recent work by the same authors extended and confirmed 

these observations (MacPherson et al. 2006). Indeed, they 
show that whole BM donor cells also contribute to the tra-
cheal epithelium following damage but without damage the 
numbers of donor cells is 10 fold less. In the animals trans-
planted with SP cells, Y chromosome FISH was used to 
identify donor-derived cells and deconvolved imaging to 
confirm localization of these cells with the epithelial marker 
pan cytokeratin (CK). The majority (60.2%) of donor-de-
rived cells express CK, and some of these also express the 
CD45 hematopoietic marker. 

Beckett et al. studied the lung engraftment following 
different treatments producing lung damage (Beckett et al. 
2004). Adult female C57Bl/6 mice were irradiated and en-
grafted with marrow from adult male transgenic GFP mice, 
followed by NO2 or endotoxin administration. Under all ex-
perimental conditions evaluated, small numbers of CD45– 
donor-derived cells in alveolar septae stained positive for 
pro-surfactant protein C. Rare donor-derived cells located in 
the airway epithelium stained positive for cytokeratin. The 
treatment with endotoxin or NO2 or both did not increase 
the number of donor-derived cells acquiring type 2 alveolar 
epithelial cell phenotype. These results suggest that lung 
injury by NO2 or endotoxin lung injury does not improve 
engraftment of marrow-derived cells in lung. The fact that 
these results are in contrast with those reported by Mac-
Pherson and colleagues, implies that that the type of lung 
injury is important. 

Abe et al. used parabiotic pairs of transgenic enhanced 
green fluorescent protein (EGFP) expressing and wild-type 
(wt) littermate mice in which the wt mouse was either in-
jured, or lethally irradiated or received intratracheal elastase 
or both irradiation and intratracheal elastase (Abe et al. 
2004). Radiation greatly increased engraftment of circu-
lation-derived cells into the lung of wt mice. Elastase in-
fusion alone had little effect, but elastase in combination 
with radiation showed slightly more engraftment than radia-
tion alone. Approximately 5 to 20% of lung fibroblast and 
rare type I pneumocytes cells from injured wt mice were 
EGFP+, indicating their blood-born origin. 

In the study published by Ortiz et al. mesenchymal stem 
cells (MSCs) from male bleomycin-resistant BALB/c mice 
were transplantated into female bleomycin-sensitive 
C57Bl/6 mice, after bleomycin lung injury (Ortiz et al. 
2003). FISH analysis revealed that engrafted male cells 
were localized in the areas of bleomycin-induced injury and 
exhibited an epithelium-like morphology (type II pneumo-
cytes, ~1%). Moreover, purification of type II epithelial 
cells from the lungs of transplant recipients resulted in a 3-
fold enrichment of male, donor-derived cells as compared 
with whole lung tissue. MSC administration immediately 
after exposure to bleomycin also significantly reduced the 
degree of bleomycin-induced inflammation and collagen 
deposition within lung tissue. 

In the study by Rojas and colleagues MSCs from 
C57Bl/6 were transplanted into busulfan-treated mice after 
bleomycin lung injury (Rojas et al. 2005). Myelosuppres-
sion increased mice susceptibility to bleomycin injury but 
MSC transfer protected the animals from lung damage. The 
protection was associated with the differentiation of engraf-
ted MSCs into specific and distinct lung cell phenotype, 
with an increase in circulating levels of G-CSF and GM-
CSF and with a decrease in inflammatory cytokines. Trans-
planted stem cells were localized in the injured lung and 
assumed type I alveolar (vimentin+) and type II alveolar 
(aquaporine+) epithelial phenotype. 

In two studies (Ishizawa et al. 2004; Yamada et al. 
2004), BM was reconstituted by injecting GFP+ fetal liver 
cells. In one of these studies (Yamada et al. 2004), GFP+ 
mice with elastase-induced emphysema were treated with 
all-trans retinoic acid (ATRA) and granulocyte colony-
stimulating factor (G-CSF) or both, while in the other one 
(Ishizawa et al. 2004) recipient mice were treated with LPS. 
In both reports alveolar epithelial phenotype (GFP+, CK+, 
CD45–) and pulmonary capillary endothelial cells (GFP+, 
CD34+, CD45+) were found. Overall, these data suggest that 
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Table 3 Ability of bone marrow-derived stem cells to give rise to airway epithelial cells in mouse models, cell cultures, and in the human lung. 
Source and phenotype of stem 
cells 

Study Phenotype and % of BM-derived epithelial cells Reference 

1) Studies with lung injury models in mouse  
Lin-, CD34+, Sca-1+ HSCs Male HSCs were injected into lethally irradiated 

female recipients 
Anti-CK Cam5.2+ type II pneumocytes (20%). 
Anti-CK AE1/AE3+ bronchial epithelial cells (4%).

Krause et al. 
2001 

( Sca+, Gr-1+ ) SP cells Marrow-derived SP cells from ROSA26 mice 
were transplanted into irradiated hosts before 
polidocanol treatment. 

At 3 months post-transplantation: Y+ tracheal 
epithelium (0.83%). CK+ cells: 55% of donor 
cells. 

Macpherson 
et al. 2005 

( Sca+, Gr-1+ ) SP cells Whole marrow or marrow-derived SP cells from 
ROSA26 mice were transplanted into 
irradiated hosts before polidocanol treatment.

At 3 months post-transplantation: 1.0-1.6% (with 
total BM) and 0.6-1.5% (with SP cells) Y+ tracheal 
epithelium. CK+ cells: 60.2% of donor cells. 

MacPherson 
et al. 2006 

Sex-mismatched tracheal 
transplantation 

1) Tracheal transplants from C57BL/6 females 
into C57BL/6 males; 

2) Tracheal transplants from wild-type C57BL/6 
female tracheas into C57BL/6 male GFP+ 
mice; 

3) Tracheal transplants from wild-type female 
tracheas into male CK5-GFP mice. 

1) At day 21 posttranplantation, CISH Y+: 18.4%; 
2) At day 21 posttranplantation, GFP+: 48.7%. 
3) At day 21 posttransplantation, CK5+, GFP+: 

18.6%. 

Gomperts et 
al. 2006 

2) Studies with CF mice 
1. Plastic-adherent marrow 
stromal cells from adult C57Bl/6 
mice. 
2. CD3- total bone marrow from 
adult male transgenic GFP-
expressing mice 

1) Transplantation of male MSCs into female 
Cftr KO mice following naphthalene 
treatment; 

2) Transplantation of total BM from male wt 
mice into irradiated female Cftr KO mice and 
before naphthalene treatment. 

1) Y+, CD45-, CCSP+ (0.025%), some of which 
(0.01%) were CFTR+. 

2) Y+, GFP+, CD45-, pro-SPC+ (0.1%). 

Loi et al. 
2006 

BM cells from adult mice Transplantation of GFP-expressing total BM 
into irradiated CF mice. Functional studies 
(rectal and nasal potential difference) show 
modest level of CFTR-dependent chloride 
secretion. 

Y+, CK+, CD45- (0.01-0.1%) in GI tract. Bruscia et 
al. 2006 

3) Studies with cell cultures 
hMSCs  GFP-expressing hMSCs were co-cultured with 

heat-shocked small airway epithelial cells. A 
subset of the hMSCs rapidly differentiated into 
epithelium-like cell and restored the epithelial 
monolayer. 

GFP+, CK 17+, CK 18+, CK 19+, CC26+. Spees et al. 
2003 

GFP+ human mesenchymal stem 
cells (MSCs) 

CF MSCs co-cultured with CF airway epithelial 
cells. Partial recovery of the chloride channel 
activity.                                

 

Co-culture:  
80% epithelial cells 
20% wild-type MSCs from normal individuals are 
GFP+, CK 18+ (some cells) GFP+, occludin+ (10%)

Wang et al. 
2005 

Rat MSCs MSCs were cultured on compartmentalized 
permeable support and allowed to differentiate.

CK 5+ e 8+. 
mRNA for ENaC, CFTR e ZO-1. 

Shu et al. 
2006 

4) Studies with chimerism of the human lung 
Human lung transplant  
Human BMT 

Study to investigate whether 1) in human lung 
allografts or 2) in lungs of BM-transplanted 
patients, recipient-derived cells are of bone-
marrow origin. 

1) Bronchial epithelium (6-26%), type II 
pneumocytes (9-20%), submucosal glands (9-
24%) of recipient origin. 

2) No lung cell types of donor origin. 

Kleeberger 
et al. 2003 

Human BMT Group of sex-mismatched allogenic BMT 
patients to investigate whether the tissues of 
the lung might be derived from 
extrapulmonary sources. 

Lung epithelium (2.5 to 8.0%), rare distal bronchial 
cells. 

Lung endothelium (35.7 to 42.3%). 

Suratt et al. 
2003 

Human BMT Study to examine the nasal epithelium of female 
patients up to 15 years after gender-
mismatched bone marrow transplantation. 

No nasal epithelium of donor origin. Davies et al. 
2002 

Human HSCT Lung-tissue specimens were obtained at autopsy 
from four female patients, two with male 
donors, after nonmyeloablative HSCT. 

Lung epithelial cells: 
XY+, CK+, CD68- type II pneumocytes (2%). 

Mattsson et 
al. 2004 

Human lung transplant Longitudinal study to investigate the stem cell 
engraftment in the lung after sex mismatched 
lung transplantation in two CF patients. 

Y+, CK+ in alveolar region (2.3-5-5%) and in 
bronchial tissue (0-6.6%). 

Spencer et 
al. 2005 

Human lung transplant Re-cut sections were obtained from lung biopsy 
specimens from seven male recipients of 
transplanted lungs from female donors. 

Y+ type II pneumocytes were found in 9 of 25 
biopsy specimens (0-0.553%). 

Zander et al. 
2005 

BM transplantation Re-cut sections were obtained from five lung 
biopsy specimens and autopsy lung tissues 
from four female recipients of transplanted 
mobilized peripheral blood stem cells or bone 
marrow from male donors. 

Y+ type II pneumocyte was found in one lung 
biopsy from one HSC transplant recipient 
(1.75%). 

Zander et al. 
2006 

Human lung transplant  
Human BMT 

Cross-gender transplantation of lung (female in 
male) or bone marrow (male in female). 

Y+ type II pneumocytes. Albera et al. 
2005 

BM = bone marrow; BMT = bone marrow transplantation; CC26 = marker of Clara, serous and goblet cells; CCSP = Clara cell Secretory Protein; CD45 = antigen expressed 
by cells of haematpoietic origin; CD68 = antigen express on the membrane of monocytes, macrophages, neutrophils, basophils and great lymphocytes; Cftr = Cystic fibrosis 
transmembrane conductance regulator; CISH = Chromogenic in situ hybridization; CK = cytokeratin; GFP = green fluorescent protein; GI = gastro-intestinal; HSCT = 
hematopoietic stem cells transplantation; Gr-1 = a 25-30 kDa cell surface antigen expressed on myeloid cells but not on lymphoid or erythroid cells; Lin- = lineage minus 
cells; Sca = a marker of HSC belonging to Ly-6 gene family; SP = side population; SPC = surfactant protein C; wt = wild type. 

111



Advances in Gene, Molecular and Cell Therapy 1(1), 99-119 ©2007 Global Science Books 

 

BM-derived stem cells play an important role in the regene-
ration of lung parenchyma. 

Gomperts and colleagues have used a mouse model of 
sex-mismatched tracheal transplantation (Gomperts et al. 
2006). This model is associated with tracheal ischemia, fol-
lowed by reperfusion from neovascularization posttrans-
plantation. The airway injury is associated with complete 
sloughing of the epithelium from the basement membrane 
with gradual re-epithelization starting by day 3 post-trans-
plantation. Full regeneration of the pseudostratified colum-
nar epithelium occurs by day 21 post-transplantation. The 
authors demonstrated that a population of oriented proge-
nitor cells expressing the epithelial marker CK5 and the 
chemokine receptor CXCR4 is harvested in the bone mar-
row; these cells passing into the circulation provide a cel-
lular pool able to repair damaged tracheal epithelium. Dep-
letion of CXCL12 prevents precursor recruitment and ap-
propriate epithelial repair and favors squamous metaplasia. 
These findings demonstrate that CK5+CXCR4+ cells have a 
crucial role in the re-epithelialization of tracheal transplants 
and that the CXCL12/CXCR4 axis is involved in epithelial 
precursor mobilization and recruitment at sites of injury. 
 
Studies with CF mice 
 
Recently two groups have reported bone marrow trans-
plantation of CF mice with wild type cells (Table 3). Loi et 
al. determined whether transplantation of adult marrow 
cells containing the gene for wild type Cftr might result in 
functional Cftr expression in the lung epithelium (Loi et al. 
2006). The authors transplanted two populations of bone 
marrow-derived cells, cultured stromal marrow and total 
bone marrow cells containing the wild type Cftr gene, into 
transgenic Cftr knock-out (KO) mice. Administration of 
plastic adherent stromal cells to naïve non-irradiated mice 
resulted in the engraftment of donor-derived airway epi-
thelial cells, although in small number (approximately 
0.025%). In contrast, no donor-derived airway epithelial 
cells were detected in irradiated mice treated with total mar-
row cells. Cftr mRNA and protein could only be detected in 
the lungs of Cftr KO recipients treated with isolated adher-
ent bone marrow stromal cells. However the total number 
of chimeric lung epithelial cells exhibiting Cftr expression 
was small (0.01%) and unlikely to affect overall Cftr-de-
pendent chloride transport and other functions in airway 
epithelium. 

Bruscia et al. transplanted CFTR+/+ GFP+ BM cells 
into CFTR-/- mice after receiving different doses of irradi-
ation (Bruscia et al. 2006). Very low levels of engraftment 
(0.01-0.1%) were observed in the gut, correlating with very 
low CFTR mRNA expression. Surprisingly the bioelectric 
profile of CF mice transplanted with wild type bone mar-
row was significantly improved in both gut and nose com-
pared to those transplanted with bone marrow from CF 
mice. This implies that a very low level of cell therapy pro-
duced an amplified electrophysiological effect. A study 
using mouse models suggested that 5% of normal levels of 
CFTR is sufficient to rescue the intestinal phenotype ap-
parent in these animals (Dorin et al. 1996). 
 
Studies with cell cultures 
 
Spees et al. studied the differentiation, the cell fusion and 
nuclear fusion during ex-vivo repair of epithelium by 
human adult stem cells (Spees et al. 2003). GFP-expressing 
hMSCs were co-cultured with heat-shocked small airway 
epithelial cells. A subset of the hMSCs rapidly differenti-
ated into epithelium-like cells, and they restored the epi-
thelial monolayer. Immunocytochemistry and microarray 
analyses demonstrated that the cells expressed many pro-
teins of epithelial cells such as keratins (CK 17, 18, and 19), 
structural proteins of intermediate filaments, and CC26 (a 
lung epithelial marker of Clara, serous, and goblet cells). 
The results demonstrated that adult stem cells of mesen-
chymal origin could be a source of cells for the repair of 

damaged epithelium ex-vivo. 
Very promising results have been obtained recently by 

Wang and colleagues using human MSCs (Wang et al. 
2005). In their experiments MSCs obtained from bone mar-
row of healthy volunteers were mixed with airway epithelial 
cells (AECs) and grow in air-liquid interface cultures on 
semi-impermeable filters. Almost 10% of the MSCs ac-
quired an epithelial phenotype, as judged by the expression 
of CK 18 and occludin. Moreover, MSCs obtained from CF 
patient corrected ex-vivo with a CFTR-encoding retrovirus 
and mixed with CF AECs effectuated partial resumption of 
CFTR-mediated chloride current. 

Shu et al. induced rat MSCs into epithelial cells by cul-
turing them onto compartmentalized permeable supports 
(Shu et al. 2006). Hematoxylin staining showed that after 
growing for 4 days on permeable supports, MSCs formed an 
epithelial-like monolayer. Immunofluorescence of the MSC 
cultured on permeably-supported monolayers, but not those 
grown in culture flasks, showed positive signals for epi-
thelial markers, CK 5 and CK 8. RT-PCR results showed the 
presence of ENaC and CFTR mRNA, as well as of the tight 
junction protein ZO-1 in the MSC-derived monolayers 
grown on permeable supports. However, the western blot 
analysis revealed only the presence of ZO-1 protein but not 
ENaC and CFTR. 

The compartmentalized culture conditions provide a sui-
table environment for rMSCs to differentiate into epithelial 
progenitor cells with tight junction formation; however, this 
condition is not sufficient for functional expression of epi-
thelial ion channels associated with well-differentiated epi-
thelia. 

Johnson and colleagues have shown in CF cell-mixing 
experiments that 6 to 10% of CFTR-expressing cells were 
required to restore normal levels of chloride secretory func-
tion to an epithelium in vitro (Johnson et al. 1992). These 
findings were confirmed by Farmen and colleagues, which 
made use of mixed freshly isolated wild-type and CF 
(homozygous �F508) airway epithelial cells in varying pro-
portion and then used them to generate well-differentiated 
cultures of airway epithelia (Farmen et al. 2005). Epithelia 
with ~20% wild-type cells generated ~70% of the transepi-
thelial Cl– current of epithelia containing 100% wild-type 
cells. 

However, in vitro and in vivo studies suggest that nearly 
every cell in the sample must be corrected with CFTR to re-
verse the excess activity of ENaC (Johnson et al. 1992; 
Goldman et al. 1995; Johnson et al. 1995). These findings 
would imply that BM cell-based treatment of CF lung di-
sease should achieve the correction of approximately every 
cell in the airway epithelium. 
 
Studies with chimerism of the human lung 
 
Human studies following HSC or lung transplantation have 
been performed (Table 3). Suratt et al. examined a group of 
sex-mismatched allogeneic HSC transplanted patients to 
determine whether the tissues of the lung might be derived 
from extrapulmonary sources in the humans (Suratt et al. 
2003). They found significant epithelial (2.5-8.0%) and 
endothelial (37.5-42.3%) chimerism. This study provided 
the first evidence of chimerism in the human lung after HSC 
transplantation. 

Mattsson et al. showed evidence of donor derived cells 
presence (chimerism) in the necroscopic and surgical lung 
biopsy tissue (Mattsson et al. 2004). Lung-tissue specimens 
were obtained at autopsy from four female patients, two 
with male donors, after nonmyeloablative HSC transplan-
tation. Immunohistochemical staining for cytokeratin was 
used to identify lung epithelial cells. The tissue sections 
were analyzed for the presence of donor-derived lung epi-
thelial cells with the use of FISH analysis. XY–cytokeratin-
positive, CD68-negative, and surfactant-positive cells were 
detected, indicating engraftment of type II pneumocytes. 
The authors concluded that circulating donor stem cells 
might differentiate into lung epithelial cells after allogeneic 
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HSC transplantation. 
Kleeberger and colleagues investigated whether recipi-

ent-derived cells of bone marrow origin could be found in 
human lung allografts or in the lung of BM-transplanted 
patients. They found chimerism as early as 4 days and up to 
7 years in seven archived human lung allografts explanted 
because of organ failure (Kleeberger et al. 2003). Bronchial 
epithelial cells (6-26%), type II pneumocytes (9-20%), sub- 
mucosal glands (9-24%) of recipient origin were found. In-
terestingly, the epithelial structures displaying signs of 
chronic injury, such as squamous metaplasia, showed a 
markedly higher degree of chimerism (24% versus 9.5%). 
No lung cell types of donor origin were found in the in 
lungs of three BM-transplanted patients. Limited size and 
poor quality of the lung tissues available from recipients of 
BM transplantation might provide an explanation of these 
negative results. 

Most notably, analysis of nasal epithelium of patients 
after gender-mismatched BM transplantation did not show 
integration of donor cells at the level of respiratory epithe-
lium in healthy lungs (Davies et al. 2002). 

Spencer and colleagues investigated the stem cell en-
graftment in the lung after sex mismatched lung trans-
plantation in two CF patients through transbronchial biop-
sies (Spencer et al. 2005). They have shown, for the first 
time, the evidence of host derived epithelial cells in 
alveolar region (2.3-5-5%) and in bronchial tissue (0-6.6%) 
without apparent evidence of cell fusion. One limitation of 
this study was that it failed to show evidence of epithelial 
cell function. Future studies should include multiple trans-
bronchial biopsy samples. Transbronchial biopsy specimens 
are potentially a viable tissue source for investigating the 
kinetics of stem cell engraftment in the lung and might be 
useful in future stem cell therapeutic trials. 

In two related works, Zander et al. evaluated the extent 
of lung repopulation by type II pneumocyte descendents of 
adult bone marrow-derived stem cells in allogeneic HSC 
gender-mismatched transplant recipients (Zander et al. 
2005, 2006). In one study, one Y chromosome-positive, 
CK-positive alveolar epithelial cell, estimated to be 0.5% of 
the alveolar epithelium, was found in 9 of 25 biopsy speci-
mens from 5 of 7 gender-mismatched male lung transplant 
recipients (Zander et al. 2005). Interestingly, the number of 
type II pneumocytes of male karyotype showed a statistic-
cally significant relationship to the cumulative number of 
episodes of acute cellular rejection. In the other study, recut 
sections were obtained from five lung biopsy specimens 
and autopsy lung tissue from 4 female recipients of trans-
planted mobilized peripheral blood stem cells or BM from 
male donors (Zander et al. 2006). A single Y-chromosome-
containing type II pneumocyte was found in one lung biop-
sy from one hematopoietic cell transplant recipient. After 
adjustment for the effects of incomplete nuclear sampling, 
this pneumocyte type represented 1.75% of all type II 
pneumocytes in the biopsy sample. In both studies, no evi-
dence of cell-to-cell fusion (lack of polyploidy) was ob-
tained (Zander et al. 2005, 2006). 

Albera et al. studied 8 lungs from female donors trans-
planted into male recipients and also 3 lungs at autopsy 
from females receiving male BM transplants (Albera et al. 
2005). Although their results were only qualitative, they 
suggested the possibility of exogenous cells contributing to 
lung epithelium. 

These findings lead to speculation about the use of stem 
cells in the repair and regeneration of damaged lung tissue 
in diseases such as CF. Unfortunately most of the cited 
reports do not reveal high engraftment rates of BMDCs into 
bronchial/bronchiolar epithelium, also because of the dif-
ficulty in identifying these cells on paraffin section using 
chromosomal analysis. Table 3 summarizes all the studies 
which demonstrate that bone marrow-derived stem cells 
can give rise to airway epithelial cells of the conducting air-
ways. 

Overall, these results strongly suggest that hematopietic 
stem cells have a great potential for replacement of dis-

eased or degenerating cell populations, tissues and organs, 
and show promise for a stem cell gene therapy approach 
(Asahara et al. 2000). It has been proposed that further 
studies, besides those relying on imaging, will help to 
establish transdifferentiation of BM-derived stem cells into 
airway and lung parenchymal cell types (Neuringer and 
Randell 2006). CF is characterized by chronic respiratory 
infections by opportunistic pathogens that cause remodeling 
(Baltimore et al. 1989) and proliferation (Leigh et al. 
1995b) of the airway epithelium. Thus, the challenge will be 
to unveil and characterize those cellular compartments that 
are involved in these processes and target them with BM-
derived stem cells bearing a viable CFTR gene. 
 
Studies with embryonic stem cells 
 
Pluripotent embryonic stem cells (ESCs) offer promise as a 
potential source of lung endoderm, mesoderm and ectoderm 
cell types. Murine ESCs can differentiate into Clara cells, as 
indicated by the expression of Clara cell-secreted protein 
CC10 mRNA and protein (Coraux et al. 2005). Differenti-
ation occurs as early as day 8 of culture when cells are 
grown on type I collagen, at day 15 when cells are cultured 
on plastic or in presence of other substrates (gelatin, type IV 
collagen or type VI collagen). Clara cells obtained from 
ESCs has been showed to develop into pseudostratified air-
way epithelial tissue that included basal, intermediated and 
ciliated cells, similar to the native airway epithelium, when 
were seeded on type I collagen coated porous membranes 
and allowed to form air liquid interface cultures. Ciliary 
beating, and functional cellular junctions such as tigh junc-
tions, desmosomes and hemidesmosomes were observed in 
the ESC-derived airway epithelium. 

Denham and colleagues have demonstrated that murine 
ESCs can be directed towards a respiratory cell-like pheno-
type with high efficiency (greater than 24% of all mESC 
derivatives) in vitro by co-culture with dissociated E11.5 
mouse lung explants (Denham et al. 2006). Murine ESCs 
derivatives displayed immunoreactivity to the pneumocyte 
II specific marker surfactant-associated protein C (SFTPC). 
The same group has recently published that the E11.5 
mouse lung inductive niche is supportive of human ESC 
(hESC) differentiation into epithelial tubules at high fre-
quency (>30% of all hESC derivatives), yet SFTPC im-
munoreactivity associates with these tubules only at very 
low frequency (<0.1% of all hESC derivatives) (Denham et 
al. 2007). These data demonstrate that ESCs display spe-
cies-specific differences in reponse to the E11.5 mouse lung 
rudiments. 

The in vitro developmental potential and the success of 
ESCs in animal models demonstrate the principle of using 
human embryonic stem cells as a regenerative source for 
transplantation therapies of human diseases (Wobus and 
Boheler 2005). However, before therapeutically applicable, 
any ESC-based treatment must show limited potential for 
toxicity, immunological reaction, or tumor formation. 
 
CONCLUDING REMARKS 
 
Several hurdles must be overcome before successful gene 
therapy can become a reality for CF patients. The major 
challenge is posed by inefficient gene delivery to the dif-
ferentiated airway epithelium. The biophysical and biolo-
gical characteristics of DNA nanoparticles bring this gene 
transfer carrier into consideration as a low-toxicity nonviral 
gene transfer vector for efficient targeting to the respiratory 
epithelium. However, even in the most favorable scenario, 
DNA nanoparticles should be administered several times 
during the time span of one year. The integrative nature and 
the low inflammatory profile of lentiviral vectors make 
them a promising choice for the transfer of CFTR gene to 
the airway epithelium, although the immunological response 
has not been fully studied yet. Eventually, an approach 
considering HSC-based therapy of CF injured lungs through 
BMT should avoid repeated dosing and achieve a perma-
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nent correction of the CF genetic defect. However, deve-
loping rational strategies based on cell therapy for CF lung 
disease will require intensive and scientifically rigorous ef-
forts. Engraftment of bone marrow-derived stem cells into 
the airway epithelium is a very inefficient process. Further 
studies on the molecular network governing the homing of 
circulating stem cells to the airways will be needed to in-
crease this efficiency. Alternatively, much more effort has 
to be put into the discovery and characterization of stem 
cell compartment(s) in the airways. Gene therapy agents 
will be then explored for their targeting (receptor- or trans-
criptionally-based) to these compartments. 
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