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ABSTRACT 
The continued importance of tomato (Lycopersicon esculentum Mill.) as a vegetable and salad commodity is reflected by the large volume 
of research on virtually all aspects of the crop. Since 2000, over a thousand scientific papers per year relating to tomato research have 
been published, not including those in the less widely read literature, conference and workshop proceedings. In the present paper, we 
survey recent findings in the areas of tomato nutrition, the influence of salinity on nutrition and growth, tomato breeding and genetic 
resources, and the post-harvest physiology, storage and ripening of fruit. Research findings are considered particularly with respect to fruit 
quality, as reflected in the quality standards of the European Union. 
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INTRODUCTION 
 
A significant impact of globalization on horticulture has 
been an increasing demand for quality improvement and the 
wider adoption of quality standards for fruit, vegetable and 
salad commodities. Tomato (Lycopersicon esculentum 
Mill.) is a major horticultural crop with an estimated global 
production of over 120 million metric tons (F.A.O. 2007). 
Salad tomatoes must have a flavour, colour and texture that 
satisfy the consumer’s preference. At the same time they 
must be suitable for post-harvest handling and marketing, 
even over large distances. In addition, processing tomatoes 
must have the rheological characteristics required by the 
relevant food processing industry. 

In the European Union (E.U.), the application of quality 
standards to fresh tomatoes has increased the uniformity in 
size, maturity and presentation of produce. However, the 
most significant quality characteristic of a product (i.e. its 
flavour and aroma) are not affected by such standards, but 
by the genetic characteristics of the species or cultivar, the 
cultivation procedures employed (especially the nutrient 
status of the plant; Fig. 1), the stage of harvest and the post-
harvest technology employed. 

In the present paper, we survey recent research on 
tomato mineral nutrition, breeding and post-harvest tech-
nology, particularly where relating to the quality of the 
fresh fruit. 
 
MINERAL NUTRITION OF TOMATO 
 
Nutrition is a complex process involving 16 essential nut-
rients, as well as many other chemical elements that are 
either beneficial or harmful to plant metabolism. Further-
more, the response of a crop, such as tomato, to a particular 
nutrient status may vary with cultivar and exogenous fac-
tors, such as cultural practices, substrate and environmen-
tal conditions. The provision of nutrients to the plant in 
quantities that are optimal for their subsequent utilization is 
a primary aim of crop fertilizer programmes and, since both 
yield and quality are adversely affected by any deviation 
from this optimum, it is essential at all times to avoid an ex-
cess or lack of nutrients. In recent years, an appreciable vo-
lume of horticultural research has been devoted to the sub-
ject of tomato nutrition and standard concentration levels 
for nutrient supply to tomatoes have been proposed (e.g. for 
crops in peat-based media, by Bryson and Barker 2002). 

 
Responses to specific nutrients and nutrient 
ratios 
 
Nitrogen 
 
Nitrogen is the only nutrient that can be supplied to plants 
in both anionic (NO3

-) and cationic (��4
+) form (Forde 

and Clarkson 1999). Hence, the fraction of ammonium to 
the total nitrogen supply may considerably influence the 
total cation to anion uptake ratio (Imas et al. 1997; Savvas 
et al. 2006). However, changes in this ratio are electroche-
mically compensated for by commensurate alterations in 
the influx or efflux of protons (H+) or basic anions in the 
root zone, thereby significantly influencing the rhizosphere 

pH (Barber 1984; Lea-Cox et al. 1996; Imas et al. 1997). In 
turn, the pH of the external medium may influence the 
uptake of P and micronutrients, thereby inducing serious 
nutritional disturbances (Islam et al. 1980; Imas et al. 1997; 
Adams 2002). Furthermore, the form of nitrogen supplied 
to the plants may influence the uptake of other macronu-
trients due to ion antagonism (Marschner 1995). Last but 
not least, the N form also influences plant metabolism, due 
to differences in the intracellular assimilation pathways 
(Raab and Terry 1994; Gerendás et al. 1997). In view of 
this background, many investigations have recently been 
concerned with the responses of tomato to the N form sup-
plied to the plants via fertilization. 

Earlier studies concerned with the effects of nitrogen 
source on tomato and its interactions with other nutritional 
and environmental factors indicated that tomato is suscep-
tible to the supply of ammonium as a sole or dominating 
nitrogen form (e.g. Kirkby and Knight 1977; Ganmore-
Neumann and Kafkafi 1980; Pill and Lambeth 1980; Maga-
lhães and Wilcox 1983; Errebhi and Wilcox 1990; Imas et 
al. 1997). More recent studies have confirmed this conside-
ration. Thus, according to Claussen (2002), the use of am-
monium as sole or dominating N source in a solution cul-
ture of tomato resulted in impaired growth and yield res-
trictions. Siddiqi et al. (2002) and Akl et al. (2003) ob-
served a restriction of both the vegetative growth and the 
fruit yield of tomato when NH4-N/total-N in the nutrient so-
lution was higher than 0.1. However, Claussen (2002) and 
Dong et al. (2004) observed an increase in both total and 
fruit dry weight when the ammonium fraction was 0.25. 
According to Akl et al. (2003), the impaired growth of 
tomato when the ammonium fraction was in the range 0.15-
0.25 of the total-N supply was associated with low pH 
levels (<5) in the root zone. In contrast to Siddiqi et al. 
(2002) and Akl et al. (2003), Claussen (2002) maintained 
the rhizosphere pH above 6 by adding CaCO3 to the growth 
medium. Thus, it seems that the lowest level of NH4-N/ 
total-N, that impairs the growth and yield of tomato, is 
mainly dictated by its impact on the rhizosphere pH, which 
is influenced not only by the nitrogen form but also by 
environmental factors (Chaignon et al. 2002). 

With respect to fruit quality, a NH4
+-N-dominated nit-

rogen supply may markedly increase the incidence of fruits 
with blossom-end rot (BER) (Fig. 1B), an effect which is 
ascribed to a depression of Ca uptake by the enhanced ex-
ternal NH4

+ levels (Kirkby and Mengel 1967; Siddiqi et al. 
2002; Akl et al. 2003; Heeb et al. 2005b). Siddiqi et al. 
(2002) and Heeb et al. (2005a) state that the supply of 0.1 
of total-N in the form of NH4

+ (10% of total N) is capable 
of enhancing the flavour of the fruits, presumably by ele-
vating glutamine and glutamate levels. 

The interactions between salinity and nitrogen form 
were recently studied by Ben-Oliel et al. (2004), who found 
that the addition of 1 mM ammonium to 7 mM nitrate in 
the nutrient solution had an ameliorating effect on tomato 
fruit yield under salinity. 

Tan et al. (2000b) used 15N- labelled compounds in a 
hydroponic culture of tomato and found that the absorption, 
translocation, and assimilation of urea is poor at the 
seedling stage, but increases to almost similar levels with 
that of NO3-N at the reproductive growth stage. Based on 
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the above results, Tan et al. (2000b) suggest that urea may 
be used as an N-source in soilless grown tomato crops, 
provided the plants are at the reproductive growth stage. 
 
Phosphorus 
 
Modern tomato cultivars and hybrids exhibit high relative 
growth rates and therefore rely on an adequate supply of 
phosphorus for optimal development and high yields. In-
deed, as reported by de Groot et al. (2002), the relative 
growth rate of tomato increases sharply with increasing 
plant P concentration when the latter is below the critical 
level of adequacy. Results from recent research have indi-
cated that foliar application of phosphorus in greenhouse 
tomato enhances the concentrations of chlorophyll, K, P, 
Mg and Fe in the leaves, accelerates fruit maturity and in-
creases marketable yield and quality (Chapagain and Wies-
man 2004). According to de Groot et al. (2001), at mild P 
limitation the assimilate supply is not the limiting factor 
for reduced growth rates, but at severe P limitation the rate 
of photosynthesis is depressed, as indicated by the decrease 
in starch accumulation. Under conditions of severe P defi-
ciency, the leaf N concentration is also suppressed, due to a 
decrease in leaf cytokinin levels (de Groot et al. 2002). 

In addition to its effect on growth, the level of P may 
also influence the reproductive efficiency by improving 
pollen performance (Fig. 2B). Thus, according to Poulton 
et al. (2001), mycorrhizal infection and high soil P levels 
are capable of increasing pollen quality (in vitro and in 
vivo pollen performance) as well as pollen quantity, there-
by enhancing fitness through the male function. Further-
more, a high P supply may ameliorate the adverse effects 
of excessive Co concentrations (0.5 mM or more) (Chatter-
jee and Chatterjee 2002) as well as Zn toxicity (Kaya and 
Higgs 2002) on tomato. An excessive supply of P rarely 
imposes toxicity symptoms in soil grown tomato crops due 
to the low solubility of this nutrient element in the soil so-
lution. However, in soilless culture, the occurrence of 
phosphorus toxicity is likely, since excess P is not immobi-

lized in insoluble forms. Jones (1998) suggests a P concen-
tration of 1% in the dry weight as the critical level between 
sufficiency and toxicity for tomato plants. Toxic levels of P 
in the leaves of tomato may also be imposed by Zn defici-
ency (Kaya and Higgs 2001). 
 
Potassium 
 
The K requirements of tomato are extraordinarily high due 
to the rapid growth of the plant in combination with the 
heavy fruit load (Chapagain and Wiesman 2004). To cope 
with high K requirements, tomato has evolved efficient 
mechanisms to acquire potassium under conditions of low 
K levels in the root zone (Chen and Gabelman 2000; Rubio 
et al. 2006). These mechanisms are governed by genes ex-
pressed only under conditions of too low K levels in the 
root zone, and which are induced either by a root-localized 
signal or because of root sensing of the mineral in the sur-
rounding environment (Wang et al. 2002); it seems that 
these genes are not associated with K nutrition under con-
ditions of normal K supply. 

As reported by Mulholland et al. (2001), high levels of 
air humidity may considerably restrict the K concentration 
in young expanding leaflets near the shoot apex compared 
with standard air humidity; under such conditions, leaf ex-
pansion, yield, and the proportion of Class 1 fruits may be 
drastically reduced. When tomato is grown under condi-
tions of limited K supply, sodium may partially substitute 
for potassium. Indeed, according to Walker et al. (2000), 
the growth of tomato plants cultivated in a K-deficient nut-
rient solution (0.5 mM K+) was severely depressed in com-
parison with K-replete plants (4.5 mM K), while the supply 
of 1 or 5 mM NaCl virtually restored growth to the level of 
K-replete plants. 

 
 
Calcium 
 
Recent research has revealed that a low calcium level in the 
root zone is rarely a limiting factor for the vegetative 
growth of tomato (del Amor and Marcelis 2006). Neverthe-
less, the calcium nutrition of tomato demands special at-
tention because this nutrient is intimately involved in the 
occurrence of the physiological disorder BER, which may 
considerably reduce fruit quality and market acceptability 
(Ho et al. 1993; Grattan and Grieve 1999). BER is caused 
by a local deficiency of Ca in the distal part of the fruit, 
which results in a disruption of tissue structure in that area 
(Adams 2002). Various factors, including the cultivar, the 
external concentrations of Ca, NH4-N, K, and Mg, salt or 
water stress, oxygen availability in the root zone, air rela-
tive humidity, and air temperature, may aggravate or ame-
liorate the occurrence of this physiological disorder (Saure 
2001; Navarro et al. 2005). As a result of the involvement 
of so many factors in the occurrence of BER, no absolute, 
critical fruit Ca concentration associated with the appear-
ance of this disorder has been identified (Ho and White 
2005). According to Hao and Papadopoulos (2004), the in-
cidence of BER at an external Ca concentration of 3.75 mM 
increased linearly with increasing Mg levels in the root 
zone, while it was not affected by Mg concentration at 7.5 
mM Ca. Nevertheless, as suggested by Ho and White 
(2005), the manipulation of the nutrient levels in the root 
zone or the growth environment are not adequately effec-
tive measures in reducing BER because they affect apo-
plastic Ca concentration in fruit tissue indirectly. Therefore, 
these authors suggest spraying Ca directly on to young 
fruits in order to prevent BER. 

Higher transpiration and temperature levels enhance 
water uptake, thereby increasing the transport of Ca to the 
leaves via the xylem (Taylor et al. 2004). However, under 
such conditions, the transport of water to fruits is reduced 
due to competition with the leaves, and thus translocation 
of Ca to fruits is also restricted, thereby increasing the per-
centage of fruits with BER (Adams 2002). On the other 

Fig. 1 Nutrient disorders of tomato. (A) Nitrogen deficiency. (B) Cal-
cium deficiency (blossom-end rot). (C) Phosphorus deficiency. (D) Potas-
sium deficiency. 
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hand, too high levels of air humidity in greenhouses origin-
ating from energy saving measures may reduce transpira-
tion to levels imposing Ca deficiency in the leaves of toma-
to, with subsequent loss of yield and quality (Hamer 2003). 

Another aspect related to the application of Ca in to-
mato cultivation that has recently been studied is its effect 
on the occurrence of some fungal diseases. Thus, as repor-
ted by Ehret et al. (2002), spraying of tomato leaves with 
various combinations of Ca salts was as effective as ele-
mental S in reducing powdery mildew (Erysiphe orontii) 
colony counts on leaves. The suppression of powdery mil-
dew development in tomato by foliar Ca application was 
ascribed to both osmotic (concentration) and ion-specific 
effects. Furthermore, an enhanced supply of calcium signi-
ficantly increases the resistance of tomato to bacterial wilt 
caused by Ralstonia solanacearum, while highly resistant 
cultivars are characterized by a high Ca uptake (Yamazaki 
et al. 2000). 
 
Magnesium 
 
High levels of Mg in the root zone seem to be beneficial 
for tomato. As reported by Adams (2002), a Mg concen-
tration of approximately 4 mM in the root zone of tomatoes 
grown in NFT resulted in deficiency symptoms in the 
leaves, while increasing the Mg level to 6 mM maintained 
the plants free of deficiency symptoms throughout the sea-
son. Similar results were reported by Hao and Papadopou-
los (2003, 2004) for tomato grown on rockwool. 
 
Iron 
 
Iron deficiency is the most frequent nutritional problem 
faced by most cultivated plants when the pH level in the 
root zone is too high. However, tomato does not seem to be 
susceptible to iron deficiency under conditions of mode-
rately high pH (6-7) in the root zone (Islam et al. 1980; 
Akl et al. 2003). Nevertheless, the application of part of 
nitrogen in the form of ammonium may reduce chlorosis 
symptoms in tomato, especially in soilless grown crops 
(Sonneveld 2002). The use of iron chelates either via ir-

rigation or by foliage spraying is another effective means of 
preventing or even curing an iron deficiency (Fernández 
and Ebert 2005; He et al. 2005). According to Sánchez et al. 
(2005), the combination of Fe-EDDHA with organic com-
pounds such as commercial humic substances or mixes of 
amino acids may further improve Fe uptake. 

Iron deficiency in tomato is characterised by a drastic 
reduction of the leaf chlorophyll content (Dasgan et al. 
2003). According to Mills and Jones (1996), a Fe concen-
tration of 60 mg kg-1 in the leaf petioles opposite or below 
the top flower cluster is the lowest critical level for the 
occurrence of iron deficiency in tomato. However, it seems 
that the activities of Fe-containing enzymes, specifically 
ascorbate peroxidase, catalase, and guaiacol peroxidase, are 
more reliable criteria for the characterization of the Fe 
nutritional status of tomato than the tissue Fe level (Ruiz et 
al. 2000; Dasgan et al. 2003). 

Besides the rhizosphere pH, many other factors, such as 
the genotype, the levels of soluble Fe, phosphorus, bi-
carbonates, organic matter and moisture content in the root 
zone, may influence the uptake of Fe by tomato (Ruiz et al. 
2000; Dasgan et al. 2004). Thus, recent research (Rivero et 
al. 2003) has indicated that the uptake of Fe by tomato, as 
well as the activities of enzymes related to the metabolism 
of this micronutrient within the plant, specifically Fe-che-
late reductase, aconitase, guaiacol peroxidase, catalase, and 
Fe-superoxide dismutase, are diminished by heat stress 
(T=35°C). Furthermore, the ability of the root system of 
tomato to acquire Fe is greatly influenced by genotypic 
variations among cultivars (Dasgan et al. 2002, 2004), and 
this variation may be even wider in the case of grafting 
tomato on to iron efficient rootstocks (Rivero et al. 2004). 
According to Wang et al. (2002), several genes are in-
volved in Fe uptake under Fe-limiting conditions in the root 
zone and the expression of these genes is induced within 
one hour after withholding Fe from the roots of intact 
plants. Li et al. (2004) isolated the ferric-chelate reductase 
gene LeFRO1 from tomato, the transcription of which was 
induced in roots under conditions of iron deficiency. FER is 
another gene isolated from tomato that seems to play a cen-
tral regulatory role in controlling the whole iron deficiency 
responses and iron uptake by tomato roots (Ling et al. 
2002; Yuan et al. 2005). 
 
Manganese 
 
Manganese deficiency is a frequently occurring nutritional 
disorder in tomato crops. Recent research has indicated that 
the growth of tomato may be severely restricted by either a 
too high or a too low Mn concentration in the root zone 
(Shenker et al. 2004). Reuter and Robinson (1986) suggest 
a concentration range of 50-500 mg kg-1 in mature leaves as 
adequate for tomato. However, Shenker et al. (2004) found 
that the growth and the chlorophyll content of plants with a 
leaf Mn concentration of 16.8 mg kg-1 were not signifi-
cantly lower that those of plants with leaf Mn levels falling 
within the above range of adequacy, while a leaf Mn con-
centration of 207.4 mg kg-1 was associated with toxicity 
symptoms. According to Mills and Jones (1996), a Mn con-
centration of 250 mg kg-1 in the leaf petioles is the maxi-
mum safe level for tomato. Nevertheless, the critical level 
for the appearance of Mn toxicity may be influenced by 
various other factors, such as the magnesium to manganese 
ratio (Horst 1988; Le Bot et al. 1990). 

Normally, a too high Mn concentration in the root zone 
is expected to reduce Fe uptake due to competition in 
uptake mediated by common metal transporters, which are 
located in the plasma membrane (Marschner 1995; Kor-
shunova et al. 1999). Nevertheless, in some cases an in-
crease in the external Mn concentration may also enhance 
the shoot Fe concentration in tomato (Gunes et al. 1998; 
Shenker et al. 2004). 
 
 
 

Fig. 2 Tomato cultivation, artificial pollination and fruit quality. (A) 
Hydroponic cultivation of cherry tomato. (B) Pollen collection. (C) Con-
trolled pollination. (D) Tomato grading. (E) Large-grade tomatoes packed 
in a single layer. (F) Pre-packed plastic boxes of cherry tomatoes. 
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Zinc 
 
An optimal zinc supply in tomato is indicated by Zn con-
centrations ranging from 20 to 250 mg kg-1 in the leaf peti-
oles opposite or below the top flower cluster (Mills and 
Jones 1996). Zinc deficiency is visually manifested by 
thinner and shorter internodes, upward twisting leaf bor-
ders, and unevenly distributed chlorotic flecks on the old 
leaves (Bergmann 1988). As reported by Kaya and Higgs 
(2001), zinc deficiency in tomato was alleviated by foliar 
application of Zn at 23 mg L-1. Zinc toxicity in tomato may 
be ameliorated by foliar spraying with P- and Fe-contain-
ing fertilizers (Kaya and Higgs 2002). 
 
Copper 
 
Tomato is rather susceptible to low rhizosphere pH (Akl et 
al. 2003) and this response seems to be at least partly due 
to the occurrence of Cu toxicity (Chaignon et al. 2002). 
Overall, tomato seems to be subsceptible to excessive Cu 
concentrations in the root zone. Indeed, as reported by Liao 
et al. (2000), Cu concentrations higher than 5 mg L-1 in the 
recirculating nutrient solution depressed biomass produc-
tion in shoots and roots of tomato grown in a NFT system. 
Copper retention by roots limits Cu translocation to shoots 
via the xylem (Liao et al. 2000). As a result, with increased 
Cu availability in the root zone the increase in root Cu 
concentration is much greater than that in the shoots, which 
means that the leaf Cu level is not a reliable indicator for 
Cu toxicity in tomato. In most cases, Cu toxicity conside-
rably reduces the uptake of Fe by tomato, thereby imposing 
visible symptoms similar to those of Fe deficiency (Berg-
mann 1988). 
 
Boron 
 
Boron deficiency in fresh-market tomatoes is a widespread 
problem that reduces yield and fruit quality (Davis et al. 
2003). As reported by Smit and Combrink (2004), at too 
low B levels in the root zone, the leaves of tomato are brit-
tle and appear pale-green, a considerable fraction of 
flowers abscises and the fruits lack firmness, a problem 
that is worsened during storage. According to Smit and 
Combrink (2004), the above symptoms appeared at a B 
concentration level of 0.02 mg L-1 in the nutrient solution 
supplied to a crop grown on quarz-sand, but a B concen-
tration of 0.16 mg L-1 seemed to be optimal for tomato and 
levels of up to 64 mg L-1 did not cause any toxicity symp-
toms. Furthermore, a suboptimal boron supply may consi-
derably reduce fruit set, especially if no other means for 
pollination (e.g. vibration) are applied (Smit and Combrink 
2005). In another study, it was shown that an enhanced 
boron supply (B foliar spray at 300 mg L-1) was associated 
with a less frequent incidence of the physiological disorder 
shoulder check crack (Huang and Snapp 2004a), the visible 
symptoms of which are described under ‘nutrition and fruit 
quality’. Davis et al. (2003) reported that the delivery of B 
either through the nutrient solution (1 mg L-1), or by foliar 
spraying (1.87 mg L-1) of boron chelated with mannitol, to 
tomato grown in river sand, was associated with increased 
plant growth and tissue K, Ca and B concentrations. In the 
above study, foliar spraying with boron significantly en-
hanced fruit B and K concentrations in comparison with no 
boron supply, which indicates firstly that B is translocated 
from the leaves to the fruit and secondly that B is also in-
volved in K translocation within the plant. Enhanced up-
take of Ca, Mg, Na, Zn and B with higher B levels in the 
root zone has been reported by Smit and Combrink (2004). 

Another recently investigated aspect related to boron 
nutrition in tomato is the interaction between boron and sa-
linity or water stress. According to Ben-Gal and Shani 
(2002, 2003), under conditions of simultaneous boron defi-
ciency and salt or water stress, the extent of growth sup-
pression is determined by the factor imposing the most se-
vere stress and not by an addition of the effects of both 

restrictive factors. Hence, a dominant-stress-factor model 
following the Liebig-Sprengel law of the minimum may be 
used to describe the responses of tomato to simultaneous 
exposure to boron and salinity or boron and water shortage. 
Furthermore, Ben-Gal and Shani (2002) found that the 
yield response of tomato to boron nutrition correlates better 
with B concentration in the irrigation water and soil solu-
tion than with the levels of boron in the plant tissue. Accor-
ding to Alpaslan and Gunes (2001), soil boron concentra-
tions of 5 mg kg-1 or higher are expected to impose boron 
toxicity symptoms. 
 
Molybdenum 
 
In a recent experiment with tomato, it was shown that sul-
phate and molybdate compete for the same carrier and 
transport sites during uptake, and that sulphate deficiency 
leads to excess Mo uptake (Alhendawi et al. 2005). Never-
theless, the impact of these findings on tomato nutrition is 
limited, due to the high tolerance of this plant species to 
excessive molybdenum concentrations in the plant tissue. 

 
Salinity 
 
A comprehensive review of research carried out up to 1999 
on the responses of tomato to salinity has been presented by 
Cuartero and Muñoz (1999). As indicated in previous in-
vestigations, the tomato plant is moderately sensitive to 
salinity (Maas and Hoffman 1977), although considerable 
differences between cultivars may be observed (Alian et al. 
2000). In soilless culture, where the salinity in the root zone 
can be better manipulated by means of nutrient solution 
composition and irrigation frequency, tomato can tolerate 
total salt concentrations of up to 2.5-2.9 dS m-1 in the root 
zone without yield losses (Shannon et al. 1987; Sonneveld 
and Welles 1988; Sonneveld and van der Burg 1991). The 
exact level may vary depending on cultivar sensitivity 
(Caro et al. 1991) and environmental conditions (Sonne-
veld and Welles 1988; Li et al. 2001; Karlberg et al. 2006). 
Increasing the salt concentration in the root environment to 
levels higher than the above range affects yield, due mainly 
to a restriction of the individual fruit size (Adams and Ho 
1989; Adams 1991; Willumsen et al. 1996; Cuartero and 
Muñoz 1999; Li et al. 2001; Navarro et al. 2005). However, 
at very high salinity levels, the number of fruits per plant is 
also affected by salinity (Cuartero and Muñoz 1999). Ac-
cording to Adams and Ho (1989), van Ieperen et al. (1996) 
and Olympios et al. (2003), the number of fruits per plant 
was restricted when the level of salinity in the root zone 
was 8 dS m-1 or higher. The suppressive effect of moderate 
salinity on tomato fruit size seems to originate from a 
restriction of water transport into the fruit, which results in 
enhanced rates of dry matter accumulation (Johnson et al. 
1992; Plaut et al. 2004). Mavrogianopoulos et al. (2002) 
stated that the reduced transport of water into tomato fruit 
under saline conditions is a result of whole-plant osmotic 
adjustment. Moreover, most experiments concerned with 
the response of tomato to moderate salt stress revealed a 
higher sensitivity of fresh fruit yield to salinity compared to 
that of the vegetative growth (Shalhevet and Yaron 1973; 
Katerji et al. 1998). Tomato seems to be salt sensitive 
during early development (Kütük et al. 2004). For example, 
according to Olympios et al. (2003) tomato is more sus-
ceptible to high salinity (8.7 dS m-1) at an early stage of 
development than in the later growing stages. According to 
Stanghellini et al. (2002), the effects of salinity on tomato 
were reversible and the leaching of the salts from the root 
environment resulted in full recovery of growth in the plant 
parts that had not reached the rapid growth phase when the 
plants were exposed to salinity (EC 9 dS m�1). 

Comparisons of tomato responses to different salinity 
sources have led to the conclusion that the exposure of 
tomato to low and moderate salinity affects fruit growth 
mainly through osmotic effects rather than ion specific to-
xicity, provided that the basic nutrient supply is balanced 
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and adequate (Adams and Ho 1989; Adams 1991; Sonne-
veld and van der Burg 1991). The primary mechanism in 
the tolerance of sodium by tomato under conditions of 
NaCl-salinity is active exclusion, combined with retention 
of Na by the xylem parenchyma of the roots, stems and 
petioles of older leaves, which enables the maintenance of 
low Na levels in the younger, photosynthetically active 
leaves (Shannon et al. 1987). In agreement with this, An et 
al. (2005) found that the increased salt tolerance of some 
tomato cultivars was related to a higher root-to-shoot ratio 
and to an enhanced ability to exclude Na from the shoot. 
Nevertheless, it seems that the responses of tomato to salt 
stress conditions are also determined by the concentration 
of endogenous ABA, which acts as a signal for the activa-
tion of stress adaptation mechanisms (Chen et al. 2003; 
Mulholland et al. 2003). 

The deleterious effects of salinity on tomato biomass 
production can be ameliorated by an enhanced supply of 
calcium (Grattan and Grieve 1999). According to Flores et 
al. (2001) and Ben-Oliel et al. (2004), the supply of part of 
the nitrogen in the form of NH4-N in salt-stressed tomato 
seems to increase the rate of N assimilation, as well as the 
levels of Fe and chlorophyll in the plant tissues, thereby 
mitigating salt injury. Furthermore, better root aeration, 
which enhances the oxygen supply to the root cells, may 
considerably enhance the salinity tolerance of tomato 
(Bhattarai et al. 2006). Recent strategies in breeding salt 
tolerant tomato cultivars focus not only on the selection of 
reliable nutritional and biochemical indicators (Juan et al. 
2005) but also on the use of molecular markers and genetic 
transformation (Cuartero et al. 2006; Xu and Shi 2006). 
Borsani et al. (2001) used mutagenesis to identify plant 
genes required for salt tolerance in tomato. Nevertheless, 
despite some promising results, the development of salt-
tolerant cultivars by means of transgenesis has not yet been 
achieved (Foolad 2004). 

Other strategies that might be applied to improve the 
growth and yield performance of tomato include the in-
crease of air humidity during hot weather, especially in 
Mediterranean countries (Cuartero and Muñoz 1999; An et 
al. 2005) and the grafting of tomato on to salt tolerant root-
stocks (Chen et al. 2003; Estañ et al. 2005). Enhanced salt 
tolerance of tomato grafted on to some rootstocks seems to 
be associated with a higher ability of the root system of the 
latter to exclude Na+ and Cl- from the shoot (Fernández-
García et al. 2002; Santa-Cruz 2003; Estañ et al. 2005). 
Recently, Stevens et al. (2006) tested the application of 0.1 
mM salicylic acid (SA) via root drenching as a means of 
improving the salt tolerance of tomato and found that SA-
treated plants exposed to salinity exhibited higher survival 
and relative shoot growth rates compared to untreated 
plants. Nevertheless, further research is needed on this 
topic to confirm these results and the cost of using salicylic 
acid on a commercial scale has to be estimated. 

Unlike the growth and yield of tomato, fruit quality is 
favoured by moderate salinity levels. This aspect will be 
discussed in more detail in the Section under the heading 
“Nutrition and fruit quality”. 

 
Responses to beneficial elements and heavy 
metals 
 
Under the intensive growing conditions prevailing in the 
modern greenhouse industry, the occurrence of non-nut-
rient chemical elements at concentrations much higher or 
much lower than those corresponding to the natural adap-
tation of tomato is not a rare exception. Therefore, in re-
cent years, many investigators have been concerned with 
the responses of tomato to toxic concentrations of heavy 
metals or to the beneficial effects of non-nutrient elements, 
such as silicon, nickel, etc. 
 
 
 
 

Nickel 
 
One of the non-nutrient chemical elements that can be clas-
sified as “beneficial” for plant growth is nickel. The occur-
rence of Ni at low concentrations in the root zone may be 
of value to the nitrogen assimilation and growth of tomato, 
while an increased supply of Ni may be deleterious for the 
plants (Tan et al. 2000a). Nickel is an essential component 
of the enzyme urease, which catalyses the assimilation of 
urea within the plant tissues (Marschner 1995). Therefore, 
the beneficial effects of Ni on plant growth are observed in 
plants fed with urea. According to Tan et al. (2000a), Ni is 
beneficial for urea-fed tomato plants when supplied at a 
concentration of 0.1 mg L-1 via the nutrient solution. In 
contrast, a concentration of 1 mg L-1 in the root zone may 
be harmful for tomato plant growth (Tan et al. 2000a). 
 
Silicon 
 
Another chemical element with stimulatory effects on 
tomato growth is silicon. The favourable effects of Si on 
plant growth seem to originate from reinforcement of the 
cell walls due to the deposition of Si in the form of amor-
phous silica (SiO2

.nH2O) and opal phytoliths (Inanaga and 
Okasaka 1995; Epstein 1999). According to Miyake and 
Takahashi (1978), silicon should be considered an essential 
nutrient for tomato. Nevertheless, tomato belongs to the 
plants classified as Si excluders, and, therefore, the silicon 
concentration is higher in the roots than in the shoots 
(Dannon and Wydra 2004; Heine et al. 2005). 

According to Dannon and Wydra (2004), addition of 
silicon to the nutrient solution may significantly reduce the 
incidence of bacterial wilt caused by Ralstonia solanace-
arum in tomato grown in hydroponic culture. Recently, it 
was shown that silicon alleviates the deleterious effects of 
NaCl-salinity on tomato plant growth (Stamatakis et al. 
2003; Al-Aghabary et al. 2004; Romero-Aranda et al. 
2006). The stimulatory effect of Si on the growth of tomato 
plants exposed to NaCl-salinity was ascribed to a restric-
tion of Na and Cl uptake (Stamatakis et al. 2003), improve-
ment of the plant water status (Romero-Aranda et al. 2006) 
and enhancement of the activities of superoxide dismutase 
and catalalase, which protect the plant tissues from oxida-
tive damage induced by salt (Al-Aghabary et al. 2004). 
Furthermore, Si was found to increase net photosynthesis in 
tomato plants exposed to NaCl-salinity (Romero-Aranda et 
al. 2006), a response that may be associated with an en-
hancement of the leaf chlorophyll content, and the photo-
chemical efficiency of photosystem II (Al-Aghabary et al. 
2004). 

In soil-grown tomato crops, an inadequate supply of Si 
is rather unusual, due to the abundance of Si in the earth's 
crust. However, in commercial hydroponics (Fig. 2A), 
plants are grown on inert substrates and, therefore, the sup-
ply of Si depends mainly on the silicon concentration of the 
irrigation water used to prepare the nutrient solution. Thus, 
if the silicon concentration in the irrigation water is low, 
tomato may benefit from the extra addition of Si (1-2 mM) 
to the nutrient solution. According to Stamatakis et al. 
(2003), the addition of 2.25 mM Si to the nutrient solution 
in soilless culture may also reduce the occurrence of BER 
in tomato fruit, provided that the plants are not exposed to 
salinity. 
 
Selenium 
 
Selenium is long known to be an essential element for 
human and livestock nutrition (Marschner 1995). Although 
selenium is not considered an essential nutrient element for 
plants, its concentration in edible tissues of cultivated 
plants has recently attracted some interest due to its posi-
tive effects on human health, including protection against 
various forms of cancer (Anderson and Scarf 1983; Ip 
1998). Selenium is translocated from the shoot to the fruit 
of tomato, but the rate of translocation is reduced with in-
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creasing sulphate supply to the plants (Pezzarossa et al. 
1999). Recent research has indicated that inorganic sele-
nium supplementation (e.g. 1.5 mg Se per kg of soil) in 
tomato crops may enhance the Se content of the tomato 
fruit, thereby serving as a natural means to increase the 
daily Se intake by humans (Carvalho et al. 2003). Further-
more, when grown in soils rich in Se (40 mg kg-1), tomato 
was capable of taking up considerable amounts of Se and 
translocating them to non-edible plant parts, particularly 
leaves, stems, and roots (Carvalho et al. 2003). Hence, 
tomato can also serve as a selenium scavenger to remedi-
ate Se-contaminated soils. 
 
Aluminium 
 
The aluminum concentration in the root zone of most agri-
cultural crops is usually very low, but it can increase to to-
xic levels when the pH of the soil or the nutrient solution 
retained in the root zone of soilless grown crops falls 
below 5.5 (Marschner 1995). Increased tolerance to Al 
toxicity may originate from the exudation of citric acid by 
the roots, which can contribute to detoxification of Al and 
increased phosphate availability, but tomato seems to be 
rather susceptible to high Al concentrations in the root 
zone (Luo et al. 1999). According to Cramer and Titus 
(2001), an elevated concentration of dissolved inorganic 
carbon (CO2 + HCO3

-) may ameliorate Al toxicity in 
tomato crops by providing supplementary carbon for 
organic acid synthesis. 
 
Cobalt 
 
Cobalt is a constituent of cobalamin (vitamin B12), which is 
an essential coenzyme of three enzyme systems; methio-
nine synthase, ribonucleotide reductase, and methylmalo-
nyl-coenzyme A mutase. These enzymes are required by 
Rhizobium in the process of inorganic nitrogen fixation 
(Dilworth et al. 1979). Consequently, Co is considered a 
beneficial mineral element for legumes. Furthermore, since 
cobalamin is essential for livestock and humans, care 
should be taken to ensure an adequate supply of Co to fo-
rage plants. With respect to tomato, there is no report indi-
cating any requirement of cobalt by this crop. However, 
excessive Co concentrations in the root zone may pose a 
problem for tomato in some cases, particularly when the 
plant is grown in serpentine soils or in soils enriched with 
sewage sludge (Perez-Espinosa et al. 2002). The toxic 
effects of Co on tomato were studied in a crop grown in 
refined sand and the results indicated that plants respond to 
0.05 mM Co in the nutrient solution by growth suppression 
(Gopal et al. 2003). At higher Co concentrations (0.1-0.5 
mM), plant biomass was more severely suppressed and 
visible toxicity symptoms occurred, the intensity of which 
increased with rising external Co levels (Gopal et al. 2003). 
In tomato plants suffering from Co toxicity, the concen-
trations of Fe, chlorophyll a and b, and the activity of cata-
lase are depressed, while that of peroxidase, acid phospha-
tase, and ribonuclease tends to increase (Chatterjee and 
Chatterjee 2002). Increased supply of Fe (Chatterjee and 
Chatterjee 2002) and P (Chatterjee and Chatterjee 2003) 
may partially ameliorate the toxic effects of Co on tomato. 
 
Cadmium 
 
Cadmium is a heavy metal which is highly toxic for plants 
and animal organisms. Due to its relatively high mobility 
in both soil and plant tissue, Cd constitutes a serious threat 
for human health and, therefore, many recent investiga-
tions have been concerned with its impact on various agri-
cultural crops. When tomato is exposed to relatively high 
Cd concentrations, the leaf structure is disorganized in a 
manner characterised by a smaller mesophyll cell size, re-
duced intercellular spaces, as well as severe alterations in 
chloroplast fine structure, which exhibits atypical shape 
and dilation of the thylakoid membranes (Djebali et al. 

2005). These biochemical and ultrastructural changes are 
manifested in premature senescence of the leaves. Cad-
mium remains predominantly located in the roots of tomato, 
which seem to play the role of Cd-trapping (Chiraz et al. 
2003). A concentration of 0.05 mM Cd in the soil or nut-
rient solution is high enough to induce toxicity symptoms 
in tomato (Ouariti et al. 1997). 
 
Mercury 
 
The exposure of tomato to high levels of mercury, origina-
ting from anthropogenic soil contamination, impairs growth 
and may lead to plant death. In a recent investigation, it was 
shown that Hg concentrations as high as 10 �M in the root 
zone are toxic to tomato and the phytotoxic effects are 
brought about by an enhanced production of active oxygen 
species (mainly H2O2) and subsequent lipid peroxidation 
(Cho and Park 2000). In the above study, it was found that 
Hg accumulates predominantly in roots rather than in the 
shoot of tomato. 

 
Nutrition and fruit quality 
 
Product quality is a complex characteristic that depends on 
several factors and includes both objective, measurable 
quality traits as well as subjective, sensory characteristics 
(Auerswald et al. 1999; Schnitzler and Gruda 2002). In the 
last decades, quality concerns have become increasingly 
important worldwide and, therefore, many investigations 
have addressed the impact of plant nutrition on the quality 
of tomato fruit. 

It is well known, that an adequate supply of potassium 
enhances the titratable acidity of tomato fruit (Davies and 
Winsor 1967; Adams et al. 1978; Davies and Hobson 1981), 
thereby considerably improving the sensory quality of 
tomato. Low levels of potassium supply in soilless cul-
tivated tomato plants are associated with ripening disorders 
(Adams 2002). As reported by Hartz et al. (2005), en-
hanced fertilization with potassium improves fruit colour, 
while at the same time reducing the incidence of yellow 
shoulder and other fruit colour disorders. In contrast to K, 
an increase of the nitrogen supply to tomato above a thres-
hold level considered as optimal for greenhouse production 
may reduce fruit quality by decreasing the sugar content 
(Davies and Winsor 1967). As reported by Parisi et al. 
(2006), a high nitrogen supply (250 kg ha-1) impaired some 
important quality characteristics of the tomato fruit, such as 
pH, soluble solids, glucose and fructose content, as well as 
the ratio of reducing sugars to total solids. The inclusion of 
part of nitrogen in the form of NH4-N may improve fruit 
quality by increasing the content of sugars and organic 
acids when compared with solely nitrate nutrition (Flores et 
al. 2003). As suggested by Heeb et al. (2005b), the supply 
of reduced nitrogen forms, such as ammonium or organic 
nitrogen, to tomato results in an improved fruit flavour. 
With respect to phosphorus, it appears that the variation of 
P supply in soil grown tomato crops does not significantly 
influence the total soluble solids, pH, acidity of the tomato 
juice, or the fruit colour characteristics (Oke et al. 2005). 
Nevertheless, the available information regarding the im-
pact of P on tomato fruit quality is currently rather limited. 

Calcium plays a key role in the quality of tomato fruit, 
due mainly to its impact on the occurrence of the physio-
logical disorder BER (Fig. 1B) (for more details on this 
topic see section “Responses to specific nutrients and nut-
rient ratios”). Furthermore, an enhanced supply of calcium 
may reduce the incidence of shoulder check crack, another 
physiological disorder that leads to a deterioration in fruit 
quality (Lichter et al. 2002). This defect appears as a 
surface roughness that develops primarily on the shoulder 
area of the fruit, which spoils the appearance and severely 
restricts the storability of the fruits (Huang and Snapp 
2004a). Microscopic inspection of the damaged fruits by 
the above authors revealed that the surface roughness con-
sisted of many microscopic cracks that occurred in parallel 
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lines. As reported by Huang and Snapp (2004b), weekly 
sprays of tomato fruit in the field with a solution contain-
ing 50 mM CaCl2 consistently reduced the incidence of 
fruit-cracking to a moderate degree. Magnesium is not 
directly involved in the fruit quality of tomato, although 
under conditions of severe Mg deficiency the size and 
overall appearance of the fruit may be reduced. However, 
an increase of the Mg supply above the standard recom-
mended levels, though not toxic for the plants, may con-
siderably increase the incidence of BER, unless accom-
panied by a commensurate increase in calcium supply (Hao 
and Papadopoulos 2004). 

With respect to trace elements, the fruit quality of 
tomato is affected predominantly by boron, while the other 
micronutrients may deteriorate the fruit quality of tomato 
only when the plants exhibit severe deficiency symptoms, 
which result in an overall imbalance of plant metabolism. 
According to Huang and Snapp (2004a), an inadequate 
supply of boron results in an increased incidence of the dis-
order shoulder check crack, while spraying the tomato foli-
age with B consistently reduces the percentage of fruits af-
fected with this disorder. Furthermore, a low boron supply 
reduces the firmness of tomato fruits and this problem is 
exacerbated during storage (Smit and Combrink 2004). As 
reported by these authors, fruit set, development, and co-
lour, as well as total soluble solids, firmness and shelf life, 
seemed to be close to optimum when tomato was supplied 
with a balanced nutrient solution containing 0.16 mg L-1 B. 

In addition to the individual nutrients, the total salt 
concentration in the root zone is a crucial factor for fruit 
quality. There is a general consensus that a moderate in-
crease of salinity in the root environment improves the 
fruit quality of tomato (Auerswald et al. 1999; Savvas 
2001; Kraus et al. 2006). The favourable effects of salinity 
on the quality of tomato are mainly an increasing dry mat-
ter content, and higher sugar and titratable acid concentra-
tions in the fruit juice (Ehret and Ho 1986a; Adams and Ho 
1989; Gough and Hobson 1990; Sonneveld and van der 
Burg 1991; Serio et al. 2004; Tabatabaei et al. 2004; 
Krauss et al. 2006). Nevertheless, although high salinity 
increases the total soluble solids and titratable acids in 
fresh tomato fruits, these differences seem to disappear 
after storage for two weeks at 15°C (Cramer et al. 2001). 
According to Gough and Hobson (1990), taste panels res-
pond more to sweetness than to acidity, when testing the 
sensory quality of tomato fruits. 

With respect to the impact of salinity on fruit firmness, 
contradictory results have been reported. Thus, Petersen et 
al. (1998), Botella et al. (2000) and Schwarz et al. (2001) 
observed enhanced firmness of tomato fruit with increasing 
salt levels in the root zone, while in the experiments of 
Krauss et al. (2006) fruit firmness was reduced by salinity. 
According to Cuartero and Muñoz (1999), the firmness of 
tomato fruit decreases only at high salinity levels (in 
excess of 10 dS m-1) in the root zone. In other studies, the 
red fruit colour was enhanced and the shelf life of tomato 
was prolonged by nutrient solution salinity (Sonneveld and 
van der Burg 1991; Botella et al. 2000), whilst the inci-
dence of the physiological disorders blotchy ripening (Son-
neveld and Welles 1988; Mulholland et al. 2002), gold 
specks (Sonneveld and Voogt 1990; Mulholland et al. 
2002), russeting (Sonneveld and van der Burg 1991) and 
fruit cracking (Chrétien et al. 2000) decreased. Gold 
specks are considered to be symptoms of Ca excess in 
tomato fruits (de Kreij et al. 1992). Thus, the favourable 
effect of salinity on gold specks is attributed to the 
decreased translocation of Ca into the fruits, which is 
observed when the plants are exposed to high external salt 
concentrations (Ehret and Ho 1986b). Furthermore, in-
creasing the total salt concentration in the nutrient solution 
seems to enhance the concentrations of vitamin C, lyco-
pene, and �-carotene in fresh tomato fruit (Petersen et al. 
1998; Krauss et al. 2006), although this was not confirmed 
by the results of Fernández-Garcia et al. (2004). According 
to de Pascale et al. (2001) the total carotenoid and lyco-

pene concentrations in tomato fruit are enhanced by mo-
derate salinity but decrease as the level of salinity exceeds a 
threshold value. Recalculation of the data of Petersen et al. 
(1998) on a mg per fruit, or mg per 100 g dry fruit basis, 
revealed equal or even decreasing concentrations of these 
pigments with increasing salinity, in agreement with the 
previous results of Adams and Ho (1989). Only the sugar 
content of dry tomato fruit seems to increase slightly with 
increasing salinity (Petersen et al. 1998). Adams and Ho 
(1989) suggested that the increased concentrations of titra-
table acids and sugars in the fruit juice are merely due to 
the reduced water content (increased dry matter content) of 
the fruit imposed by increasing external salinity levels. The 
increase of the vitamin C and �-carotene concentrations in 
the fruit of salt stressed tomatoes may also be due to the 
restricted water content of the fruit. However, Sato et al. 
(2006) state that the increased concentration of soluble 
solids in the fruit of NaCl-treated plants was not the result 
of simple overall condensation due to the reduction of 
water transport. Nevertheless, in terms of consumer quality, 
the determining factors when assessing the response of 
tomato to nutrient solution salinity are the concentrations of 
the above constituents in the fruit juice. Indeed, Sato et al. 
(2006) found that the consumer grading of tomato fruit was 
determined by the concentrations of sugars, organic acids 
and amino acids in the fresh fruit. It can be therefore con-
cluded, that moderate levels of salinity improve the fruit 
quality of tomato. 

Based on the above data, one might expect the percen-
tage of tomato fruits graded Class I to be enhanced by in-
creasing salinity. Indeed, some researchers reported an in-
creased proportion of fruits graded Class I when the salt 
concentration in the nutrient solution was increased above 
the standard recommended values (Adams and Ho 1989; 
Adams 1991). However, nutrient solution salinity restricts 
the mean weight of tomato fruit too (Chrétien et al. 2000; 
Krauss et al. 2006), while increasing the incidence of BER 
(Ehret and Ho 1986b; Sonneveld and van der Burg 1991; 
Adams and Ho 1992; Willumsen et al. 1996; van Ieperen 
1996; Schwarz et al. 2001). As a result, in some cases, the 
favourable effects of salinity on the percentage of fruits 
graded as Class I may be counteracted by a higher percen-
tage of small fruits and fruits with BER, as has been repor-
ted by Willumsen et al. (1996) and Chrétien et al. (2000). 

Although the exposure of tomato to moderate salinity 
improves fruit quality it may reduce yield, but to a much 
smaller extent than that imposed on other vegetable fruits 
(Savvas 2001). Therefore, the recommended level of nut-
rient solution salinity for tomato cultivation in soilless cul-
ture has to be a compromise between these two contrasting 
effects. The current recommendation for tomato is a total 
salt concentration corresponding to an electrical conducti-
vity (EC) of 2.6 dS m-1 in the nutrient solution supplied to 
the crop in order to maintain an EC level of 3.5-3.7 dS m-1 
in the root zone solution (Sonneveld and Straver 1994; de 
Kreij et al. 1999). According to van Ieperen (1996) and 
Santamaria et al. (2004), nutrient solutions with a high EC 
during the night and a low EC during the day appear to 
improve fruit quality in soilless grown tomato without af-
fecting fruit yield. Nevertheless, the application of such 
nutritional programmes, though potentially beneficial, may 
be not feasible in most commercial tomato crops, espe-
cially those grown in substrates. 
 
TOMATO BREEDING 
 
Like all known species of the genus Lycopersicon, tomato 
is a diploid; it has 2n=24 chromosomes, and a genome size 
of 2.0 pg/2c = 9.5×105 Kb/1c (950 Mbp), which is com-
posed of 77% heterochromatin and 23% euchromatin (Pet-
erson et al. 1996). Tomato chromosomes can easily be 
identified by pachytene analysis. With the development of 
trisomics, monosomics and translocations through chromo-
some engineering, tomato cytogenetic research has become 
one of the most advanced areas in the field of agriculture. 
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The genus Lycopersicon includes both self-incompa-
tible and self-compatible species, with the latter varying in 
their degree of outcrossing. Tomato is self-pollinating, but 
can easily hybridize within the species or cross with wild 
relatives under appropriate conditions, thus permitting 
gene introgression from wild relatives. Moreover, tomato 
is considered a model research organism because it has a 
relatively short life-cycle, with a new cultivar “Microtom” 
being even shorter-lived (70-90 days from sowing to fruit 
ripening) (Dan et al. 2006). 

Throughout the last century, tomato breeding has been 
based on various standard methods, including the pedigree 
method of hybridization followed by selection and back-
crossing of desired traits from one parent into another, 
which has resulted in the generation of improved tomato 
varieties and hybrids with high quality and yield. Tomato 
improvement has increased by the exploitation of exotic 
resources and the introgression of new valuable genes into 
the tomato genepool. Classical breeding has not only deve-
loped cultivars with monogenic and dominant resistance 
for controlling certain plant pathogens, or by the com-
bination of resistances in F1 hybrids, but has also enabled 
the acquisition of good, value-added agronomic traits, such 
as high fertility and fruit setting, earliness, uniformity, 
adaptation, firmness and long shelf-life appropriate for 
shipping to distant markets. The replacement of inbred 
lines by hybrids has remarkably increased yield, while the 
genetic gain rate has been reduced due to low genetic di-
versity within cultivated tomatoes (Grandillo et al. 1999a). 
Initially, the exploitation of wild relatives for tomato 
breeding was limited to major genes controlling qualitative 
traits, such as resistance to pests and diseases, but omitting 
quantitative trait loci (QTL) alleles, which affect economi-
cally important agronomic traits. Since the 1980s, promi-
sing technologies have emerged to overcome the barriers 
of traditional techniques. These include molecular map-
ping, the identification of valuable QTLs and the limitation 
of genetic drag (Alpert et al. 1995; Grandillo and Tanksley 
1996; Foolad and Chen 1999; Grandillo et al. 1999b). In 
the late 1980s, molecular markers were applied to tomato 
improvement programmes (Tanksley et al. 1989; Miller 
and Tanskley 1990; Rus-Kortekaas et al. 1994; Bredemei-
jer et al. 1998), and plants that had been genetically trans-
formed for herbicide, virus and insect resistance were ob-
tained (Fillatti et al. 1987; Nelson et al. 1988; Shah et al. 
1988). 

During the last five years the bulk of published work in 
tomato genetics and breeding refers to biotechnology and 
molecular techniques. The results of some of these studies 
in relation to tomato genetic resources and breeding achie-
vements, are presented in the following section. 

 
Tomato genetic resources 
 
Genetic resources are the most valuable source of genetic 
material for any breeding process. They can be conserved 
ex situ in gene banks, on farm in cultivated material or in 
situ in wild species. Tomato genetic resources include old 
and new cultivars, primitive cultivars, breeding lines, land-
races or heirloom tomatoes, and wild related species. To 
these genetic stocks can be added cloned genes (Frankel et 
al. 1995). Within cultivated tomato, genetic variation is 
very low; thus, there has long been an interest in searching 
for genes in exotic and primitive germplasm and closely 
related species. New breeding strategies now permit an in 
depth study and effective exploitation of the genetic diver-
sity of wild relatives and landraces. 
 
Tomato species 
 
Tomato crosses with its wild relatives with varying degrees 
of difficulty; thus wild relatives can and have been used as 
sources of genes for crop improvement. Wild species are 
interesting resources of genetic variation for introgression 
breeding and comprise exclusive sources of many resis-

tance genes for cultivated tomatoes (Rick 1995). The wild 
species L. pennellii (Corr.) D'Arcy, L. peruvianum Mill. 
and L. pimpinellifolium (Jusl.) Mill., represent a potential 
source of useful genes for salt tolerance during seed germi-
nation (Foolad 2004). The species L. peruvianum, L. pim-
pinellifolium and L. hirsutum Humb. & Bonpl. have been 
identified as potential sources for resistance to the patho-
gen Clavibacter michiganensis subsp. michiganensis, 
which causes bacterial canker of tomato (Kabelka et al. 
2002). The species L. peruvianum is almost immune to Oi-
dium neolycopersici, which causes powdery mildew on 
tomato, and provides resistant genes for tomato improve-
ment (Bai et al. 2004). An Mi gene responsible for nema-
tode resistance has been identified in L. peruvianum (Am-
miraju et al. 2003), whereas resistance to whitefly (Bemisia 
spp.) has been found in wild populations of L. esculentum 
var. cerasiforme (Dun.) Afef. (Sanchez-Pena et al. 2006). 
The trichome characteristics from the wild species L. 
cheesmanii f. minor Riley and L. pennellii have been trans-
ferred to cultivated tomato and they affect the behaviour of 
Myzus persicae (Simmons et al. 2005). Phytochemical ses-
quiterpene carboxylic acid synthesis in L. hirsutum f. ty-
picum Humb. & Bonpl. LA 1777, promotes host-resistance 
to insect pests, such as Helicoverpa zea and Spodoptera 
exigua, in cultivated tomato (Frelichowski and Juvic 2005). 
Attempts have been made to transfer the chilling tolerance 
found in L. hirsutum into cultivated tomatoes (Venema et al. 
2000; Dolstra et al. 2002). Germplasm screening has 
revealed high levels of resistance to tomato fruitworm (He-
licoverpa armigera) only in the wild Lycopersicon species, 
particularly L. hirsutum and L. pennellii (Takelar et al. 
2006). L. cheesmanii has high sugar and �-carotene con-
tents and is of great interest for quality improvement 
breeding (Nuez et al. 2004), while L. peruvianum has a 
distinctive aromatic fragrance that has been introduced into 
the cultivated tomato gene pool (Kamal et al. 2001). In 
virtually all instances of tomato genetic improvement, fruit 
quality is of paramount importance, which derives not only 
from the acquistition of desirable fruit traits, such as better 
aroma (Kamal et al. 2001) or colour (Nuez et al. 2004) and 
increased resistance to mechanical damage, but also from a 
reduction in the incidence of pests and diseases injurious to 
the fruit. 
 
Landraces 
 
Landraces (local populations, traditional cultivars or heir-
loom varieties) are heterogeneous, genetically dynamic po-
pulations that have evolved under low inputs of soil and 
agrochemicals and have been subjected to selection pres-
sures for hardiness and local adaptability, rather than for 
productivity (Frankel et al. 1995). Tomato landraces are 
still cultivated for local use and consumption in many re-
gions of the world. They frequently have distinctive orga-
noleptic traits (flavour and aroma) and nutritional value. 
Within Europe, Italy, Spain, France and Greece possess a 
wealth of tomato landraces that provide the source for 
numerous, locally-named products. Examples include the 
cherry-like tomato named ‘Corbarino’, grown in the Cam-
pania region of Italy, the small-fruited tomato ‘Santorini’ 
grown on the island of Thera, Greece, and the tomato land-
race types ‘Muchamiel’ and ‘De la Pera’ of the Valencia 
communities in Eastern Spain (Andreakis et al. 2004; Gar-
cia-Martinez et al. 2006; Terzopoulos and Bebeli, unpub-
lished). 

The level of genetic variability differs among the vari-
ous landraces and depends on the selection pressure that 
has been applied to each population. However, the wide 
diversity present within them offers landraces plasticity and 
homeostasis to adverse environments and provides them 
with the capacity to be cultivated in marginal areas. Their 
inter- and intra-population variability has been the subject 
of many studies in regions where such landraces are still 
cultivated, and the diversity in morphological and agrono-
mic characters, fruit quality, soluble solids, micronutrient 
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contents and volatile aroma compounds has been clearly 
established (Agong et al. 2001; Carbonell-Barachinna et al. 
2006; Rao et al. 2006; Terzopoulos and Bebeli, unpub-
lished). Moreover, tomato landraces have shown large and 
significant variation in flavour volatiles (Ruiz et al. 2005) 
and nutritional constituents (Andreakis et al. 2004). These 
distinctive quality characteristics have been exploited not 
only for fresh fruit improvement, but also in the develop-
ment of high quality processed products, such as sweet and 
savoury tomato preserves. 

 
Molecular breeding - Molecular markers 
 
Irrespective of the tools adopted during the breeding pro-
cess, the breeder has to take two major steps: first to find 
and/or create genetic variation and secondly to select the 
best genotypes. Even though the results of traditional 
breeding are undoubtedly clear and remarkable, it is never-
theless a very lengthy process. Recently, gene technology 
has made a significant impact on breeding through marker-
assisted selection (MAS) and genetic engineering. 

Numerous molecular marker systems have been used 
in tomato. These include restriction fragment length poly-
morphisms (RFLPs), random amplified polymorphic 
DNAs (RAPDs), amplified fragment length polymor-
phisms (AFLPs), simple sequence repeats (SSR) or micro-
satellites, intersequence simple repeats (ISSRs), cleaved 
amplified polymorphic sequences (CAPS), retrotranspo-
son-based sequence specific amplification polymorphisms 
(SSAP), (Alvarez et al. 2001; Zhang and Stommel, 2001; 
Areshchenkova and Ganal 2002; Bonnema et al. 2002; 
Bredemeijer et al. 2002; Kochieva et al. 2002; Cooke et al. 
2003; He et al. 2003; Tikunov et al. 2003; de Giovanni et 
al. 2004; Scott et al. 2004; Tam et al. 2005; Carelli et al. 
2006; Rao et al. 2006; Sabatini et al. 2006). 
 
Comparison between markers 
 
Various studies have compared the efficiency of molecular 
markers used in tomato improvement. Reproducibility tes-
ting of RAPD and SSR (microsatellite) markers in tomato 
has shown that RAPDs are difficult to reproduce, while 
SSRs are characterized by robustness and repeatability 
(Rajput et al. 2006). SSAP was used to assess genetic di-
versity within tomato industrial lines and proved to be 
more informative than AFLP and SSR markers (Tam et al. 
2005). 
 
Applications of molecular markers 
 
A description of diversity in genetic material is a prere-
quisite for its efficient use in plant breeding. DNA finger-
printing permits the analysis of the genetic distance be-
tween parents and predicts the performance of the progeny. 

Molecular markers have been used in tomato in studies, 
such as germplasm characterization (Rao et al. 2006), the 
evaluation of genetic diversity and species relationships 
within the genus Lycopersicon (Alvarez et al. 2001; Kochi-
eva et al. 2002; Tikunov et al. 2003), the genetic structure 
and diversity of wild Lycopersicon species populations 
(Nuez et al. 2004; Sifres et al. 2006), the determination of 
relationships between tomato cultivars and fingerprinting 
(He et al. 2003; Park et al. 2004; Rao et al. 2006), the pu-
rity control of cultivars and variety identification (Brede-
meijer et al. 2002; Cooke et al. 2003), the identification of 
markers linked to important genes, map-based gene clo-
ning, and genetic mapping (Saliba-Colombani et al. 2000; 
Areshchenkova and Ganal 2002). 

Based on molecular markers, levels of intraspecific 
tomato polymorphism have been estimated to be very low. 
This is attributed to the self-pollination and self-fertiliza-
tion of modern tomato cultivars, combined with their nar-
row genetic base (He et al. 2003; Tam et al. 2005; Sabatini 
et al. 2006). In contrast to the cultivated tomato, analysis 
carried out with RAPDs on the ‘peruvianum complex’ re-

vealed a large and variable degree of polymorphism which 
may be exploited in tomato breeding programmes (Egashira 
et al. 2000). The genetic distances within and between ac-
cessions of Lycopersicon species indicate that the self-in-
compatible species L. peruvianum, L. pennellii and L. hir-
sutum clearly have a higher genetic diversity than the self-
compatible species (Kochieva et al. 2002). The molecular 
characterization of landraces has been carried out with 
many kinds of markers (Andreakis et al. 2004; Carelli et al. 
2006; Garcia-Martinez et al. 2006; Rao et al. 2006). A 
combination of some SSR and AFLP markers revealed a 
unique fingerprint for even the most closely related tradi-
tional tomato cultivars in the south-east of Spain (Garcia-
Martinez et al. 2006). 
 
Marker-Assisted Selection (MAS) 
 
Molecular markers can be used to help the breeder during 
the selection process. When the trait is controlled by a spe-
cific major gene of critical importance (e.g. the resistance 
to a disease that follows Mendelian inheritance), a mole-
cular marker linked to this gene may be extremely useful 
for MAS in plant improvement. MAS can accelerate the ex-
ploitation of useful genes from wild species in breeding 
programmes, through introgression in the cultivated tomato 
followed by backcrossing. The steps required for the deve-
lopment of markers for use in MAS and the many advan-
tages of MAS are reported in a review by Collard et al. 
(2005). 

Markers of particular interest are the ones that link to 
disease resistance genes. A CAPS marker and two AFLP 
markers could be effectively used for MAS of the resis-
tance gene ol-2 to Oidium lycopersicum, which causes 
powdery mildew of tomato (de Giovanni et al. 2004). SSR 
markers linked to a late blight resistant gene in tomato have 
been identified and can be used in MAS (Zhu et al. 2006). 
A co-dominant CAPS marker derived from the ovate gene 
in tomato, which was mapped and cloned by Liu et al. 
(2002), could distinguish Italian ecotypes with a pear fruit 
shape. However, one of the lines did not perform according 
to CAPS assay, probably because the ovate mutation is not 
associated with a single phenotype (Tanksley 2004; Saba-
tini et al. 2006). 

In tomato, most of the studies related to MAS are based 
on crosses carried out between cultivated tomato and re-
lated species. The level of genetic variation within the cul-
tivated tomato, revealed by most of the common molecular 
markers, was very low, which is a burden for MAS with 
respect to a wide range of important agronomical traits. 

Most traits of agricultural importance, such as yield and 
quality, are complex and they have polygenic control and 
quantitative inheritance. There are many regions within the 
genomes which contain genes that are associated with a 
polygenic trait and are called quantitative trait loci (QTLs). 
The identification of QTLs based only on conventional 
phenotypic evaluation is not possible. The efficiency of 
MAS backcrosses for the introgression of a quantitative 
trait locus (QTL) depends on the stability of QTL expres-
sion (Chaib et al. 2006). 

 
Tomato maps 
 
Saturated linkage maps are essential tools for genetic stu-
dies such as positional gene cloning, quantitative trait map-
ing and MAS (Collard et al. 2005). Linkage maps have 
been utilized for the identification of chromosomal regions 
that contain genes controlling simple traits (controlled by a 
single gene) and complex quantitative traits using QTL 
analysis, and tomato has one of the most saturated maps 
(Tanksley et al. 1992). Many single genes and QTLs that 
confer resistance to all major classes of plant pathogens 
have been mapped on the tomato molecular map (Grube et 
al. 2000). 

Mapping QTLs as single Mendelian factors will have a 
strong impact on breeding programmes in using marker as-
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sisted selection. 
 

QTLs for fruit traits 
 
Tomato may be considered a model for fleshy fruit deve-
lopment. Domesticated tomatoes show a wide range of 
morphological diversity, whereas wild tomatoes produce 
small, round fruit. Most tomato fruit traits are quantita-
tively inherited. A large number of QTLs have been iden-
tified in tomato that are associated with fruit development, 
size, shape, colour, ripening, organoleptic quality and yield 
(Causee et al. 2001; van der Knaap and Tanksley 2001; 
Nesbitt and Tanksley 2001; Saliba-Colombani et al. 2001; 
Fulton et al. 2002; Liu et al. 2002; Causee et al. 2002; van 
der Knaap et al. 2002; Frary et al. 2003; van der Knaap 
and Tanksley 2003; Barrero and Tanksley 2004; Semel et 
al. 2006). 

 
QTLs for plant traits 
 
QTLs for leaflet and perianth size and shape characters, as 
well as stem morphology and stigma exertion, have been 
mapped (Coaker et al. 2002; Chen and Tanksley 2004; 
Frary et al. 2004). Genetic analysis of traits distinguishing 
outcrossing and self pollinating forms of currant tomato (L. 
pimpinellifolium) showed that the pollination mode is con-
trolled by QTLs (Georgiady et al. 2002). 

 
QTLs for biotic stresses 
 
Even though many single genes controlling vertical resis-
tance to various pathogens have been identified and trans-
ferred with crosses to elite pure lines and commercial hyb-
rids, and continue to be of major importance to breeders, 
the polygenic durable resistance can be studied with QTL 
analysis. Powdery mildew, fusarium wilt and bacterial spot 
are among the diseases studied. Three QTLs for resistance 
to the fungus Botrytis cinerea were identified and can be 
introgressed into commercial cultivars (Foolad et al. 2002; 
Bai et al. 2003; Scott et al. 2004; Brouwer and St. Clair 
2004; Finkers et al. 2007). 

 
QTLs for abiotic stresses 
 
Sensitivity to injury at low temperatures (chilling injury) 
limits the application of refrigerated storage to tomato and 
is a serious quality constraint (see section on “post-harvest 
technology”). Therefore, many studies have been carried 
out on chilling tolerance using populations derived from 
crosses between L. esculentum and L. hirsutum, and many 
QTLs have been identified. Some have supported genetic 
control by multiple QTLs (Foolad and Lin 2001), while 
others found a single major and several minor QTLs 
(Truco et al. 2000; Goodstal et al. 2005). 

 
Cloning of useful genes 
 
If the DNA-based markers can also be placed on a map or 
genome sequence of a model organism, it becomes pos-
sible to clone the gene underlying the QTL. To date only a 
few genes have been cloned in this way (Liu et al. 2002). 
The cloning of a major QTL gene fw2.2, which is respon-
sible for the major fruit difference between wild and culti-
vated forms, has contributed to the study of the molecular 
and physiological properties controlled by the gene (Frary 
et al. 2000; Nesbitt and Tanksley 2001). 

Even genes for complex traits can be isolated through 
the use of molecular maps. Cloned genes provide new tools 
for plant breeders to improve the efficiency of plant breed-
ing strategies via MAS and plant transformation. 

 
Transgenic plants 
 
Even though molecular marker techniques are frequently 
applied in plant breeding, the application of genetic engi-

neering has been resisted within Europe. Currently, several 
cultivars of transgenic tomatoes are commercially available. 
Antisense RNA technology has been used to increase the 
shelf life and commercial sales of gene-spliced ‘Flavr Savr’ 
(i.e. delayed ripening tomatoes) and has been approved by 
the United States Food and Drug Administration (USDA). 
Virus-resistant tomato was the second transgenic crop to be 
commercialized (James 1997). 

The aims of transformation are the development of 
plants that are resistant to specific pathogens, most desi-
rably combining with the simultaneous transfer of genes 
controlling other significant plant and/or fruit character-
istics. Herbicide resistance was one of the first targets of 
genetic engineering, since this can be exploited not only by 
the seed producer, but also by the herbicide manufacturer, 
which in effect means promoting a potential monopoly by 
the large multinationals active in both these fields. 

Prerequisites for successful genetic transformation in-
clude an in vitro regeneration, DNA delivery system, func-
tionally introduced DNA (integration of the introduced 
DNA into the chromosome for stable transformation), 
selection of transformed cells (promoters and markers) and 
their regeneration. For in vitro regeneration, tomato has 
been shown to be a particularly amenable plant (Bhatia et 
al. 2004). 

Tomato transformation uses an Agrobacterium-media-
ted gene transfer method, where a disarmed non-patho-
genic Agrobacterium tumefaciens naturally transfers part of 
its genome, which has been genetically modified, into the 
tomato cell nucleus. The genetically modified part of the 
genome, the transgene, contains the promotor (a regulatory 
sequence), the gene itself, the terminator sequence and in 
most cases selectable markers, which are sequences that 
control antibiotic or herbicide resistances and are used in 
order to select the regenerant plants carrying the transgene. 
The current protocols in tomato use leaf disc/cotyledon 
tissue, co-cultivated with disarmed Agrobacterium tumefa-
ciens harbouring binary vectors. This protocol has been 
used to generate transgenic lines from several tomato culti-
vars expressing various genes of interest and selectable 
markers. Protocols for tomato transformation are given in a 
review by van Eck et al. (2006). The transformation effici-
ency, expressed as transformation rates and recovery of 
transgenic tomato plants, depends on the genotype, explants, 
growth regulators, bacterial concentration and Agrobacte-
rium virulent gene inducers; but the appropriate manipula-
tion of these parameters can lead to the increased produc-
tion of transformed plants (Cortina and Culianez-Macia 
2003; Ellul et al. 2003). One crucial point in the develop-
ment of transformed plants is the selection marker that is 
used. It has been suggested that an alternative to antibiotic 
or herbicide resistance markers, such as a mannose selec-
tion marker gene, may lead to greater public acceptance of 
transformants (Sigareva et al. 2004). 

Marker-free transgenic tomato plants harbouring a 
synthetic Bacillus thurigiensis endotoxin gene cryIAc have 
been obtained (Zhang et al. 2006). The resulting tomato 
fruits can be used for the production of oral vaccines and 
other immunotherapeutic proteins. The cholera toxin B sub-
unit and the ORF2 partial gene of hepatitis E virus have 
been expressed in transgenic tomato plants (Jani et al. 
2002). Transgenic tomatoes enriched in flavones and flavo-
noids have been claimed to be beneficial against cardiovas-
cular disease (Rein et al. 2006). 

A root-specific Tob promoter was used to direct the 
expression of the sarcotoxin IA gene in tomato roots, so as 
to enhance host resistance against the parasitic weed Oro-
banche aegyptiaca (Radi et al. 2006). However, introgres-
sion of this resistance into the cultivated tomato in order to 
combine it with acceptable fruit qualities, has not been 
successful. 
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POST-HARVEST TECHNOLOGY 
 
Tomatoes are harvested at various stages of ripeness and 
the storage conditions employed differ with each stage. In 
general, pre-cooling is required only if the fruit tempera-
ture is higher than 26-27°C and ripening is to be delayed. 
Although fully ripe tomatoes may be held at 2-5°C for a 
few days prior to consumption (not longer, since colour 
loss and softening may occur), fruit that are mature green 
or at the turning or breaking stage should not be subjected 
to temperatures lower than 12°C as chilling injury may 
occur, with adverse consequence for subsequent ripening 
and quality. 

 
Post-harvest treatments prior to storage 
 
Because tomatoes are sensitive to chilling injury, particu-
larly during the early stages of ripening, the use of low 
temperatures for tomato storage is restricted. In conse-
quence, a number of recent publications have examined 
pre-storage treatments aimed at retaining fruit quality 
during storage and reducing the susceptibility of fruit to 
chilling injury. 

According to Saltveit (2001), the application of heat-
shock to tomatoes prior to exposure to low temperatures 
increases their resistance to chilling injury. Using a method 
based on ion leakage from tissue discs for the assessment 
of chilling injury, it was found that a short heat treatment 
(45°C for 10 minutes) even after exposure of the fruit to 
low temperatures would reduce the subsequent develop-
ment of chilling symptoms. Soto-Zamora et al. (2005a) ex-
posed mature green tomatoes to heat treatments (34 or 
38°C and 95% RH for 24 hours) prior to storage at 4 or 
20°C for four weeks in an attempt to reduce chilling injury 
at 4°C. Although the higher temperature caused serious in-
jury, treatment at 34°C was only slightly harmful (higher 
weight loss than the untreated control). When stored at 
20°C, fruit that had been exposed to 34°C ripened similarly 
to those of the control, but at 4°C chilling injury occurred 
in both the control and the treated fruit, even though the 
synthesis of lycopene was higher in the latter. In parallel 
experiments (Soto-Zamora et al. 2005b), fruit were ex-
posed to high temperature (38°C), but under a low O2 
concentration (5%) to inhibit the activity of oxidative en-
zymes implicated in the induction of thermal injury. Since 
neither the thermal injury induced at this treatment tem-
perature nor chilling injury during storage was reduced, 
such heat treatments are clearly not appropriate for tomato 
storage. By contrast, Fallik et al. (2002), also in an attempt 
to delay ripening and reduce chilling injury, found that 
brief exposure of tomatoes at the pink stage of ripeness to 
high temperature (52°C by washing and brushing for 15 
seconds or total immersion of fruit for 1 minute) prevented 
the appearance of chilling injury symptoms at 5°C for 15 
days and in the case of washing transiently increased fruit 
resistance to Botrytis. For commercial exploitation of the 
technique, the authors recommend the shorter treatment 
time. According to Iwahashi and Hosoda (2000), the delay 
in ripening of mature green tomatoes following heat treat-
ment (37°C for one day in their case) relates to a loss of 
existing protein in the pericarp and a synthesis of new pro-
teins, including antioxidant enzymes and heat shock pro-
teins. Heat treatment has also been proposed as a means of 
inhibiting microbial activity and fruit cracking under con-
ditions of high humidity in modified atmosphere packaging 
(Suparlan and Itoh 2003), as well as for delaying colour 
change in cherry tomatoes (L. esculentum var. cerasiforme) 
(Ali et al. 2004). 

Subjection of tomatoes at the light rose stage to anoxia 
for 24 hours also delayed the development of Botrytis, but 
only for up to four days after treatment when fruit were 
stored at 20°C. Although this treatment delayed the colour 
development of fruit, it did not affect their organoleptic 
characteristics (Fallik et al. 2003). However, when the 
treatment time was extended, fruit quality was adversely 

affected due to the accumulation of acetaldehyde and etha-
nol (Boukobza and Taylor 2002; Polenta et al. 2006). 

Wang (2006) reported that methyl jasmonate and me-
thyl salicylate reduced chilling injury in tomatoes and other 
fruits of tropical origin, while at the same time increasing 
the expression of genes responsible for the synthesis of heat 
shock proteins. Methyl jasmonate also increased the level 
of antioxidants and the activity of free radical scavenging 
enzymes, indicating that protection against chilling injury 
involved protection of tissues against free radical injury. 
Moreover, by increasing the levels of pathogenesis-related 
proteins, methyl jasmonate and methyl salicylate assist in 
the development of resistance to disease during low tempe-
rature storage (Ding et al. 2001, 2002). 

 
Storage environment 
 
The temperatures and RH recommended for the commer-
cial storage of tomatoes at each stage of maturation have 
been well documented (Ryall and Lipton 1979), and there-
fore recent research has concentrated largely on physiolo-
gical and biochemical changes during the ripening process. 

Although fully ripe tomatoes may be stored for a short 
time at low temperatures, nevertheless adverse effects on 
fruit quality may occur. For example, ripe fruit that had 
been stored at 5°C for 4 days were deemed by sensory ana-
lysis to be significantly less aromatic, less sweet and more 
acidic than corresponding fruit stored for the same length of 
time at 20°C. The poorer aroma of fruit stored at 5°C was 
attributed to a loss of the principal volatile components, 
detected by gas chromatography (Maul et al. 2000). 

Van Dijk et al. (2006a) developed models to forecast 
the loss of weight and firmness of tomatoes during storage 
at various temperatures, while de Ketelaere et al. (2004) 
adopted a non-destructive acoustic firmness sensor to group 
tomato cultivars according to firmness change during sto-
rage and in relation to harvest. 

Van Dijk et al. (2006b) reported that the temperature 
(3-25°C) and stage of ripening (6 and 8 on the scale of the 
Dutch and Belgian Growers’ Associations) influenced en-
zyme activity during 4 weeks of storage. The activity of 
polygalacturonase increased and pectin methyl esterase 
decreased over time, while that of �-galactosidase was at 
first induced and subsequently inactivated. A significant 
correlation between enzyme activity and near infra-red 
spectra of intact fruit was discerned only in the case of 
polygalacturonase, which is thus considered to be the major 
enzyme involved in fruit softening during storage. Accor-
ding to Mondal et al. (2003), lipoxygenase activity and the 
malondialdehyde and H2O2 content of tomatoes, harvested 
at the turning stage and stored for 14-15 days at 10, 25 or 
35°C, increased with temperature. Moreover, the increase 
in these components was higher in a cultivar with a short 
storage life (5-7 days) than in that with a longer storage life 
(14-15 days). A temperature-related increase in ROS sca-
venging enzymes was also observed, indicating that fruit 
stored at high temperatures are susceptible to increased oxi-
dative activity, leading to membrane damage and a loss of 
fruit integrity. Cultivar related differences in the activity of 
lypoxygenase, hydroperoxide lyase and alcohol dehydroge-
nase were reported by Yilmaz et al. (2002). Alcohol dehy-
drogenase activity in almost all cultivars was highest in 
fruit harvested at the red stage. 

Enzyme changes during ripening also determine the 
changes in the flavour and aroma constituents of the fruit. 
Krumbein et al. (2004) stored three categories of tomato 
(long life, ‘normal’ life and cherry) harvested at the red, 
ripe stage at 20°C and 55% RH for 21 days (i.e. under shelf 
life conditions). Changes in flavour attributes and the majo-
rity of volatiles assessed followed a similar trend in each 
fruit category, with the strength of the characteristic ‘to-
mato flavour’, but also an undesirable ‘mouldy flavour’ (at-
tributed to hexanal and 2-isobutylthiazole), increasing with 
time. 
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Controlled or modified atmospheres 
 
Controlled or modified atmospheres have been shown to 
delay ripening during storage. Hatton et al. (1975) reported 
that atmospheres of 4-8% O2 and 1-2% CO2 prolonged sto-
rage life and delayed ripening at 12.8°C, but concentra-
tions of O2 lower than 4% or CO2 higher than 4% resulted 
in uneven ripening. Dennis et al. (1979) found that fruits 
stored in 5% O2 + 5% CO2 had a better flavour than those 
stored in 3% O2 + 5% CO2. However, Batu (2003) ob-
served that after 60 days storage of mature green or rose 
tomatoes at 13 or 15°C, those stored under controlled at-
mospheres of 5.5% O2 + CO2 (3.2, 6.4 or 9.1%) were less 
acceptable in terms of sweetness and aroma than those 
stored in air. Moreover, even short-term storage of red, 
almost fully ripe tomatoes under conditions of low or zero 
O2 (e.g. in N2 for 35 hours) adversely affects fruit aroma, 
due to a reduction in C-6 compounds and isobutylthiazole, 
and an increase in ethanol and acetaldehyde (Boukobza 
and Taylor 2002). 

Modified atmospheres resulting from the enclosure of 
tomatoes in polyethylene or other forms of plastic pack-
aging (Fig. 2F) may also delay fruit ripening and prolong 
storage life. Srinivasa et al. (2006) stored green, physio-
logically mature tomatoes in cartons covered with chitosan 
(biodegradable membrane) for 30 days at 27±1°C. Fruit 
showed better colour retention and firmness not only in 
relation to the control (fruit stored in air) but also in com-
parison with those enclosed in low-density polyethylene 
(LDPE) film. By contrast, Kantola and Helen (2001) found 
that the sensory quality of organically grown tomatoes 
stored for 3 weeks at 11±1°C and 75-85% RH in perfor-
ated LDPE, cellophane or biodegradable bags was not af-
fected by the packaging material. However, these results 
apparently reflect the level of O2 within the containers, 
since Muratore et al. (2005) showed that the quality cha-
racteristics (vitamin C, carotenoids) of plum tomato could 
be preserved satisfactorily in modified atmospheres pro-
duced by enclosure of fruit in biodegradable or polyolefin 
films only when the O2 permeability of the film was suf-
ficient to prevent anaerobic respiration. The inclusion of an 
ethylene adsorbent (granular activated carbon) within poly-
propylene bags in which tomatoes at the turning stage were 
stored at 8°C, reduced the level of ethylene within the sto-
rage atmosphere for 21 days. Colour change, softening and 
weight loss were reduced and quality on ripening was im-
proved (Bailén et al. 2006). 

Mondal et al. (2006) reported that when tomatoes are 
enclosed in polyethylene and stored at 25°C they are more 
resistant to oxidative stress than unenclosed fruit stored at 
the same temperature. This resistance derives from the in-
creased activity of ROS scavenging enzymes such as 
superoxide dismutase, peroxidase, ascorbate peroxidase, 
catalase and glutathione reductase, which inactivate the 
ROS and thereby reduce the dangers of oxidative stress on 
membrane integrity. Low oxygen levels in modified or 
controlled atmospheres also inhibit polygalacturonase acti-
vity, thus reducing the rate of fruit softening (Kapotis et al. 
2004). High concentrations of CO2, on the other hand, are 
known to inhibit ethylene synthesis, apparently acting at a 
site prior to that of the conversion of ACC to ethylene (de 
Wild et al. 2005). Enrichment of the storage atmosphere 
with ozone, which may be of value in reducing the micro-
bial activity of sliced tomatoes, causes a transient increase 
in respiration, resulting in increased fructose, glucose, as-
corbate and fumarate levels, both in intact and sliced fruit 
(Aguayo et al. 2006). However, exposure of mature green 
fruit to atmospheres containing ethanol (from 2.5 to 25 ml 
per 2.5 kg fruit held in a total volume of 5 l) delayed ripen-
ing due to a reduction in ethylene synthesis and respiration, 
and a delay in the onset of the climacteric. A parallel delay 
in fruit softening was attributed to an inhibition of polyga-
lacturonase and pectin methyl esterase, and the most ef-
fective treatment was that of 20 ml ethanol per 2.5 kg fruit 
(Thakur et al. 2000). 

Lycopene, antioxidants, ascorbic acid and 
carotenoids 
 
Colour is a major quality characteristic in virtually all fruits 
and vegetables and uniformity of colour within toma-toes is 
a principal requirement of the E.U. quality standards for 
this crop. All fruit within a box must be at the same stage of 
ripeness during marketing. Since the deposition of 
carotenoid pigments is responsible for the characteristic 
colour of ripe tomatoes (Fraser et al. 2001), an understan-
ding of carotenoid synthesis in tomato is of immediate 
relevance to quality. During fruit ripening, maximum con-
centrations of �- and �-carotene occur at the turning to 
breaking stages (Meredith and Purcell 1966), after which 
lycopene accumulates (Davies and Hobson 1981). Al-
though it was earlier considered that carotenoid biosyn-
thesis occurred via the mevalonic acid pathway (Grierson 
and Kader 1986), recent research has suggested that caro-
tenoids are in fact derived from isopentenyl diphosphate 
(IPP) and are produced in the plastids via the 1-deoxy-D-
xylulose-5-phosphate, or Rohmer, pathway (Bramley 2002). 
This conclusion contrasts with that of Lois et al. (2000), 
who consider both pathways to be involved. Phytochrome 
has also been implicated in the induction of lycopene ac-
cumulation (Alba et al. 2000). 

Apart from contributing nutritive elements, colour and 
flavour to the diet, tomatoes are also a valuable source of 
antioxidants, or chemo-protective compounds, and may 
thus be termed a "functional food" (Ranieri et al. 2004). 
The antioxidant potential of tomato is derived from a mix-
ture of antioxidant biomolecules, including lycopene, as-
corbic acid, phenolics, flavonoids and vitamin E, and is 
especially high in cherry tomatoes (Kaur et al. 2004). 

The lycopene content and antioxidant activity of toma-
toes varies between cultivars and is highest in cherry or 
small, cocktail fruit (Kaur et al. 2004; Molyneux et al. 
2004). There is a correlation between fruit colour and total 
antioxidant concentration, with lycopene content increa-
sing from the rose to red colour stages (Brandt et al. 2006; 
Helyes et al. 2006) and mature green tomatoes having a 
significantly lower total antioxidant content than red toma-
toes (Wold et al. 2004). Red-fruiting cultivars also have a 
higher lycopene content than yellow, orange and black-
fruiting cultivars (Cox et al. 2003). Lycopene synthesis 
during growth is inhibited at temperatures below 12°C and 
prohibited at >32°C. Unlike ascorbic acid synthesis, which 
is promoted by the exposure of fruit to full sunlight, lyco-
pene synthesis is higher in fruit that are shaded by the foli-
age. The spectral quality of the light may also play a role; 
for example UV-irradiation has been found to affect the 
phenolic and carotenoid content of fruit to a degree that de-
pends on the cultivar sensitivity (Giuntini et al. 2005; 
Luthria et al. 2006). In consequence, there is a seasonal ef-
fect on lycopene and antioxidant levels in fruit (Rosales et 
al. 2006; Toor et al. 2006), as well as an effect of irrigation 
and the nutritional status of the plant (see review by Dumas 
et al. 2003). 

Because of their importance to human health (Madhavi 
and Salunkhe 1998), antioxidants may be considered a 
valuable quality attribute of tomatoes and it is important to 
minimize losses of these compounds during the post-har-
vest period. Fruit that are harvested at stages prior to full 
ripeness show an increase in lycopene content during post-
harvest ripening. For example, Toor and Savage (2006) 
studied the changes in the antioxidant content of tomatoes 
harvested at the light red stage and stored for 10 days at 7, 
15 and 25°C. The total antioxidant activity of fruit in-
creased by 17-27% during storage. However, whereas phe-
nolics and ascorbate increased only slightly and indepen-
dently of temperature, the lycopene content of fruit after 10 
days storage at 15 or 25°C was more than twice as much as 
that of fruit stored at 7°C. Although low temperatures 
during storage lower the lycopene content of fruit, even 
when harvested at a mature red stage, they do not neces-
sarily reduce the total antioxidant capacity (Javanmardi and 
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Kubota 2006). Hence, the observation of Slimestad and 
Verheul (2005) that cherry tomatoes that are ripened on the 
plant have a similar carotenoid and ascorbate, but higher 
sugar, content than fruit harvested at the orange-yellow 
stage and ripened during storage, suggests that for maxi-
mum antioxidant content and sweetness, it is better to har-
vest ripe fruit and store at low temperature. Where possible, 
however, the length of storage should be limited, since the 
ascorbate content of fruit decreases even at low tempera-
tures (Sablani et al. 2006). For the consumer, it is impor-
tant to know that 52% of the total antioxidants (48% lyco-
pene, 43% ascorbic acid, 53% phenolics) are located in the 
epidermis of the fruit, which in consequence should not be 
discarded during consumption (Toor and Savage 2005). 

 
Ethylene in relation to storage, ripening and 
quality 
 
Although the relationship of ethylene biosynthesis to the 
induction of the respiratory climacteric and the ripening 
processes of tomato and other fruits has been the subject of 
considerable research over the past 50 years (Goodenough 
1986; Chaves and de Mello-Farias 2006), the mechanisms 
involved have still to be defined. Alexander and Grierson 
(2002) reviewed the role of specific isoforms of ACC syn-
thase and ACC oxidase in regulating ethylene biosynthesis 
during ripening and discussed the role of ethylene recep-
tors. Jakubowicz and Sadowski (2002) discussed the struc-
ture and catalytic activity of ACC synthase, as well as the 
organization, gene structure and transcriptional expression 
of ACC synthase genes, while two more reviews relating to 
ethylene receptors and the control of ethylene-mediated 
processes in tomatoes at the receptor level have also been 
published (Klee 2002; Klee and Tieman 2002). 

Commercially, the promotion of ethylene biosynthesis 
is exploited for the induction or enhancement of fruit 
ripening (e.g. in banana and tomato), while inhibition of 
ethylene synthesis or removal of ethylene from the storage 
atmosphere is used to delay ripening and prolong storage. 

Logendra et al. (2004) applied Ethephon (2-chloro-
ethylphosphonic acid) to tomatoes at the mature green or 
breaking stage whilst still on the plant. Application at the 
green stage reduced the number of fruit per truss, but also 
reduced the time to harvest without adversely affecting 
quality. Chomchalow et al. (2002) applied ethylene to fruit 
harvested at the mature green stage before and after expo-
sure to low temperatures, and found that when ethylene 
was applied prior to exposure (but not afterwards) it of-
fered a certain amount of protection against chilling injury. 
However, Kapotis et al. (2004) demonstrated that the exo-
genous application of ethylene to fruit stored in an atmos-
phere of 1% oxygen did not induce autocatalytic produc-
tion of ethylene by the fruit. Treatment of tomatoes at the 
breaker stage with GA3 or IAA (20 mM for 1 hour) caused 
an increase in ethylene biosynthesis (higher than that in-
duced by exogenous ethylene application) as a result of the 
promotion of ACC synthase activity. The activity of �- and 
�-galactosidase and �-arabinofuranosidase was also stimu-
lated, but fruit softening, chlorophyll breakdown and total 
carotenoid synthesis tended to be delayed. Moreover, GA3- 
and IAA-treated fruit did not respond to the exogenous 
application of ethylene (100 ppm) with an increase of auto-
catalytic ethylene production (Sozzi et al. 2000). The effect 
of ethylene on the volatile components of tomato was re-
viewed by Zhu et al. (2005). The inhibition of ethylene 
biosynthesis by suppression of ACC synthase (Oeller et al. 
1991) or ACC oxidase (Hamilton et al. 1990) caused a sig-
nificant reduction in aroma volatiles, while non-ripening 
natural mutants that are affected for ethylene response lack 
the most potent odours (McGlasson et al. 1987). 

The recent commercial availability of the ethylene in-
hibitor 1-MCP, has resulted in a number of studies of its 
application to tomato storage and ripening. Exposure of 
tomatoes to 1-MCP delays fruit ripening by a transient 
inhibition of both ethylene biosynthesis and the rate of res-

piration (Wills and Ku 2002; Ergun et al. 2006). The extent 
of inhibition depends on the duration of application and the 
stage of fruit ripening at treatment (Sisler et al. 1996; Hoe-
berichts et al. 2002; Wills and Ku 2002; Mir et al. 2004), 
while the effective concentration varies between cultivars 
(Watkins 2006). Although fruit recover the ability to ripen 
after 1-MCP treatment, inhibition can be reimposed by fur-
ther applications (Hoeberichts et al. 2002; Mir et al. 2004). 
However, when 1-MCP was applied at the mature green or 
breaker stages, fruit showed a long delay in the develop-
ment of colour, did not soften sufficiently, shrivelled and 
were susceptible to disease; by contrast, fruit treated at the 
rose or light red stages subsequently ripened satisfactorily 
(Hurr et al. 2005). According to Mostofi et al. (2003), the 
storage temperature after treatment significantly affects the 
colour development of tomatoes treated with 1-MCP at the 
mature green stage. 

Apart from its effects on fruit ripening and colour 
development, 1-MCP may affect certain other quality traits. 
For example, Wills and Ku (2002) consider that 1-MCP 
improves fruit flavour by changing the ratio of total soluble 
solids to titratable acid, although this observation was not 
confirmed by Mir et al. (2004) who reported a slight 
change in the volatile components of fruit treated with 1-
MCP at the mature green and breaker stages, but no change 
in sugars or titratable acid. 

Watkins (2006) reviewed the effects of 1-MCP on fruit 
ripening with reference to its commercial application, while 
Feng et al. (2004) reported that analogues of 1-MCP, 1-
ethylcyclopropene and 1-propylcyclopropene, also inhibit 
ethylene induced ripening of tomato and avocado, but to a 
lesser degree than 1-MCP. Another potentially useful 
application for 1-MCP is the prevention of fruit abscission. 
This may not only be of significance in crop production, 
but also in storage. Cherry tomatoes are frequently mar-
keted as trusses of fruit, and treatment with 1-MCP can re-
duce fruit separation from the truss during storage and 
marketing (Beno-Moualem et al. 2004; Lichter et al. 2006). 
1-MCP also delays the ripening of cherry tomato depen-
ding on the concentration and stage of ripening at applica-
tion (Opiyo and Ying 2005). 

Other methods of delaying ripening, either through the 
inhibition of ethylene biosynthesis or the removal of ethy-
lene when formed, have also been investigated. TiO2 me-
diates a photocatalytic breakdown of ethylene under UV-
irradiation, thus delaying the ripening of mature green to-
matoes both in air and in modified atmospheres (Maneerat 
et al. 2003). This reaction, the efficacy of which depends 
on the TiO2 concentration and the intensity of UV-irradia-
tion, also removes acetaldehyde and ethanol for up to eight 
days after treatment, thus inhibiting the formation of odours 
due to fermentation (Maneerat and Hayata 2006). Saltveit 
(2005) reported that the ability of AVG to inhibit ethylene 
synthesis in tomato pericarp discs correlated with an inhi-
bition of protein synthesis. Elsewhere, Hong et al. (2004) 
reported that the vacuum infiltration of tomatoes at the 
early red stage with glucose solutions caused an inhibition 
of ethylene biosynthesis as a result of a reduction in the 
activity of ACC oxidase. However, interesting as these ob-
servations are, it is difficult to see how they can be exploi-
ted commercially. 
 
CONCLUSIONS AND FUTURE PERSPECTIVES 
 
Tomato is one of the most researched of all horticultural 
crops and considerable progress has been achieved in all the 
areas described within the present review. In particular, in 
the field of plant breeding, molecular techniques have 
opened new horizons for genetic improvement. New types 
of markers, such as the single nucleotide polymorphisms 
(SNPs) will influence future mapping and the utilization of 
MAS in tomato improvement. However, selection requires 
the screening of many plants and the cost of the markers is a 
limiting factor for their routine use in the breeding pro-
grammes of many counties. Even though there are many 
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advanced studies in QTL mapping and MAS, their ef-
ficiency will be improved with the information obtained 
from gene expression studies. Functional genomics me-
thods can be utilized to develop markers from genes them-
selves and the increase of information available in data-
bases will allow data mining for the development of new 
markers. Transformation is a dynamic tool that surpasses 
the barriers of the gene pools and theoretically makes the 
transfer of every gene possible. Despite its rejection by 
many countries particularly within Europe, transgenic tech-
nology continues to advance and the most economically 
exploitable transformants are likely to be crop plants for 
use in pharmaceuticals or “nutraceuticals” (functional 
foods). 

Future research in the area of tomato nutrition is likely 
to be increasingly concerned with the impact of nutrition on 
fruit quality, as well as on the molecular basis of the me-
chanisms implicated in the uptake and utilization of inorga-
nic nutrients within the plants. Post-harvest, the major re-
search input in the near future is still likely to revolve 
around the role of ethylene in fruit ripening and the phy-
siological basis of ripening control. This and other post-har-
vest phenomena, such as chilling injury, attract attention 
within studies incorporating genetic modification. Although 
studies on the application of novel storage techniques are 
likely to continue, the degree to which currently available 
techniques may be further improved to provide a significant 
commercial impact is unclear, particularly within the tech-
nically advanced marketing system of the E.U. 
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