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ABSTRACT 
In the past, significant advances in our understanding of vertebrate neurogenesis have been obtained using the amphibian model system 
Xenopus laevis. Today, Xenopus continues to serve as an excellent system to study the molecular mechanisms of neural cell fate 
determination and differentiation owing to the accessibility of the earliest events of neurogenesis, amenability of the organism to 
manipulations such as microinjection, electroporation, explant isolation and cultivation. In Xenopus, the first neurons are born within the 
induced neuroectoderm shortly after gastrulation in three longitudinal domains on each side of the midline and are termed primary 
neurons. In addition to primary neurogenesis, the retina, in which six classes of neuronal cells and the Müller glial cell sequentially 
differentiate, also serves as an outstanding system to study the molecular events of neurogenesis. In this review we will detail the current 
knowledge of events that control neuronal and glial cell fates in Xenopus, with an emphasis on intrinsic factors, cell cycle regulators and 
the Notch pathway in the context of primary neurogenesis and retinogenesis. 
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PRIMARY NEUROGENESIS IN XENOPUS 
 
In Xenopus, similar to other vertebrate anamniotes, neuro-
genesis occurs in two phases. The first neurons, termed pri-
mary neurons, are born shortly after gastrulation and are 
responsible for the early movements and responses of the 
larvae (Roberts 2000). Due to the simplicity and accessib-
ility of primary neurogenesis, Xenopus is a valuable model 
system to elucidate the cascade of events that controls early 
vertebrate neurogenesis. Secondary neurogenesis occurs 
later at the tadpole stage and more closely correlates with 

neurogenesis in amniotes. As the majority of the genes imp-
licated in primary neurogenesis are also expressed during 
secondary neurogenesis, it is anticipated that most, if not all, 
of the molecular events are conserved (Wullimann et al. 
2005). 

 
Neural induction 
 
The initial step in the establishment of the vertebrate ner-
vous system is the decision of the ectodermal cells to adopt 
a neural at the expense of an epidermal fate (reviewed in De 
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Robertis and Kuroda 2004). During neural induction and 
demarcation of the neural plate, ectodermal cells are en-
dowed with the capacity to become neural precursors. One 
of the main driving forces of a neural fate is the inhibition 
of Bone Morphogenetic Protein (BMP) signaling, which is 
achieved through multiple mechanisms (Fig. 1). BMP acti-
vity is inhibited extracellularly in pregastrula and gastrula 
stage embryos by factors secreted from the blastula Chor-
din- and Noggin-expressing center (BCNE) and the Spe-
mann Organizer, respectively (Kuroda et al. 2004). BMP 
signaling is also attenuated by the phosphatase Dullard, 
which promotes the dephosphorylation and degradation of 
BMP receptors (Satow et al. 2006). Fibroblast growth fac-
tor (FGF) and insulin growth factor (IGF) signaling further 
inhibit the BMP pathway by downregulating Smad1 activity, 
an intracellular transducer of BMP signaling (Richard-Par-
paillon et al. 2002; Pera et al. 2003). In addition, canonical 
Wnt signaling inhibits BMP at the transcriptional level 
(Baker et al. 1999). However, BMP inhibition is not suf-
ficient for neural induction in vertebrates (Launay et al. 
1996; Sasai et al. 1996). In chick (Wilson et al. 2000), zeb-
rafish (Kudoh et al. 2004) and more recently in Xenopus, it 
has been demonstrated that low levels of FGF signaling are 
required for the development of neural fates, independent 
of the role of FGF as an inhibitor of BMP signaling (De-
laune et al. 2005). This initial neural induction phase gives 
rise to tissue of anterior character, which is subsequently 
transformed by posteriorizing signals such as retinoic acid 
and members of the FGF and Wnt families (reviewed in 
Gould and Grainger 1997). 
 
Early neural genes 
 
Several prepattern genes have been identified that are pos-
itively regulated by the events of neural induction giving 
rise to their broad expression throughout the presumptive 
neural ectoderm of the early gastrula embryo (reviewed in 
Moody and Je 2002). Many of these genes contribute to the 
establishment and stabilization of a neural fate. Members 
of the SoxB1 family of HMG box transcription factors 
(Sox2 and Sox3) have a role in maintaining the early neural 
state and serve as markers of proliferating neural precursor 
cells (Mizuseki et al. 1998a; Kishi et al. 2000). In general, 
cells that express Sox3 do not express markers of neuronal 
differentiation indicating that Sox3 may promote prolifera-
tion at the expense of differentiation (Bourguignon et al. 
1998; Bellefroid et al. 1998). However, a direct interaction 
of Sox3 with the cell cycle machinery has not been estab-
lished. The Zic family of zinc finger proteins also plays a 
critical role in the initial phase of neural development in 

Xenopus. While Zic1-3 are all expressed broadly through-
out the prospective neural ectoderm of early gastrula stage 
embryos, they differ functionally. Overexpression of Zic1, 
Zic2 or Zic3 expands the neural ectoderm, while Zic1 and 
Zic3 induce neuronal differentiation, and Zic2 inhibits this 
process (Nakata et al. 1997; Mizuseki et al. 1998a; Brew-
ster et al. 1998). Zic2 becomes localized in the posterior re-
gion of the neural plate in longitudinal domains that alter-
nate with stripes of proneural gene expression (Brewster et 
al. 1998). This expression pattern has implicated Zic2 in 
restricting the territories of primary neurogenesis (dis-
cussed below). 

SoxD and members of the Iroquois homeobox family 
(Xiro1-3) are late stabilizing genes that maintain the undif-
ferentiated state. Their overexpression positively regulates 
the proneural genes at the open neural plate stage, although 
this may be indirect, at least for Xiro1, through BMP4 inhi-
bition (Gomez-Skarmeta et al. 2001). In addition, despite 
their ability to promote a neural fate, they prevent differen-
tiation of primary neurons until tailbud stages (Bellefroid et 
al. 1998; Gomez-Skarmeta et al. 1998; Mizuseki et al. 
1998b; Yeo and Gautier 2005). The inhibition of neuronal 
differentiation by Xiro1 may be the result of Zic2 and 
Hairy2A induction, concomitant with inhibition of the 
growth-arrest-and-DNA-damage-induced gamma gene 
(XGadd45-�) (de la Calle-Mustienes et al. 2002). Taken 
together, these data suggest that SoxD and Xiro1-3 contrib-
ute to the expansion of the neurogenic domain while delay-
ing neuronal differentiation. 

 
Primary neurogenesis 
 
The induced neural ectoderm is comprised of undifferen-
tiated mitotically active cells, from which only a restricted 
number of cells will exit the cell cycle and commence dif-
ferentiation (Hartenstein 1989). Primary neurogenesis first 
occurs posteriorly in three longitudinal domains on each 
side of the dorsal midline and can be visualized by the gen-
eral neuronal differentiation marker, neuron-specific class 
II �-tubulin (N-tubulin) (Oschwald et al. 1991; Moody et al. 
1996) (Figs. 1, 3). An additional site of neurogenesis at the 
open neural plate stage is the trigeminal ganglion neurons. 
In the region of the embryo anterior to the midbrain-hind-
brain boundary, neuronal differentiation is delayed until 
after closure of the neural tube (Papalopulu and Kintner 
1996). 

The neural primordium at the open neural plate stages 
consists of a bilayered epithelium, which is generated by 
orientated cell divisions during blastula stages (Hartenstein 
1989; Chalmers et al. 2003). Primary neurons arise from 

Fig. 1 Neural induction and the domains of pri-
mary neurogenesis. A variety of mechanisms are 
present in the gastrula embryo, which inhibits BMP 
signaling in the presumptive neural ectoderm, 
thereby contributing to the establishment of the 
neural plate. In addition to BMP inhibition, low 
levels of FGF signaling are also required for neural 
induction. Within the large domain of the induced 
neural plate, only a subset of these cells will under-
go neuronal differentiation at this stage. These pri-
mary neurons are established in a lateral (l), medial 
(m) and intermediate (i) longitudinal domain on 
each side of the midline in the posterior region of 
the embryo. An additional site of neuronal differen-
tiation at this time is the trigeminal ganglion (tg). 
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precursors within the deep layer (sensorial), while second-
dary neurons arise equally from those in both the super-
ficial layer (epithelial) and deep layer (Hartenstein 1989). 
Accordingly, general neural markers such as Sox3 and 
SoxD are expressed in both layers, and in contrast, the pro-
neural transcription genes neurogenin related-1 (X-ngnr-1) 
and NeuroD are present only in the deep layer (Chalmers et 
al. 2002). The superficial layer is refractory to neuronal 
differentiation induced by a variety of regulators including 
X-ngnr-1, NeuroD and FGF-8. The precise molecular me-
chanism that confers resistance to the superficial cells re-
mains unknown, but may in part be due to the presence of 
inhibitory factors. The enhancer-of-split related bHLH 
genes ESR6e and XHes2 are expressed exclusively in the 
superficial layer, and their misexpression in the deep layer 
inhibits neuronal differentiation (Chalmers et al. 2002; Söl-
ter et al. 2006). Throughout late gastrula stages, the coiled-
coil gene Geminin is present in both layers of the neuro-
ectoderm, but expression is eliminated from the deep layer 
prior to terminal differentiation of the primary neurons 
(Seo et al. 2005a). As the presence of Geminin blocks neu-
ronal differentiation, it has been proposed that Geminin 
may act as a timer to control the transition from prolife-
ration to differentiation (Seo et al. 2005a). Functionally, 
this may occur through modulation of chromatin structure 
via interaction with the SWI/SNF chromatin-remodeling 

complex, which is required for transcriptional activity of 
the bHLH proneural genes (Seo et al. 2005a, 2005b). 

As the neural folds rise and fuse to form the closed 
neural tube, the two layers interdigitate into a monolayer of 
cells that give rise to different classes of neurons dependent 
on their position in the neural tube (Hartenstein 1989). The 
medial, intermediate and lateral longitudinal domains of 
primary neurons will occupy a ventral to dorsal sequence 
and give rise to motor, inter-, and Rohon-Beard sensory 
neurons, respectively (Chitnis et al. 1995; Roberts 2000). 
 
Proneural genes 
 
The differentiation of the primary neurons is driven by pro-
neural transcription factors, which promote a cascade of 
cell-specific transcription factors and genes, required for 
the cell fate determination and withdrawal of the progenitor 
cells from the cell cycle. Genetic and molecular studies 
have identified several genes that function as key regulators 
in converting the induced neuroectoderm into fully dif-
ferentiated neurons. In Xenopus, many of these proneural 
genes are expressed in a pattern that closely resembles N-
tubulin, defining a synexpression group (Fig. 2). One class 
of proneural genes is homologous to genes of the Droso-
phila atonal and achaete-scute complex. Members of this 
basic helix-loop-helix (bHLH) family in Xenopus include 

Fig. 3 Lateral inhibition mediated by the 
Delta-Notch Pathway. As shown in the whole 
mount is situ hybridization of the general neur-
onal marker N-tubulin, neurons arise in the long-
itudinal domains in a speckled pattern. This pat-
tern is the result of lateral inhibition mediated by 
the cell to cell signaling Delta-Notch pathway. In 
the cell fated to become a neuron, the neuronal 
determination transcription factor X-ngnr-1 not 
only activates those genes required for different-
tiation, but also induces the ligand X-Delta-1. 
X-Delta-1 binds to the Notch receptor on the 
neighboring cells, inducing a series of proteolytic 
cleavages that releases the intracellular domain 
of Notch (NICD). NICD then participates in the 
activation of repressor bHLH proteins that inhibit 
both the transcription and function of the pro-
neural genes, thereby maintaining the undifferen-
tiated state of the cell. 

 

Fig. 2 Expression of positive and negative regulators of pri-
mary neurogenesis. The primary neurons arise from the deep 
layer (dl) of the neuroectoderm, in which several proneural 
genes are expressed, as well as cell cycle inhibitors (shown in 
purple). Early acting genes are expressed earlier and in broader 
domain than later acting genes (Bellefroid et al. 1996). Within 
the territories of primary neurogenesis, the neurogenic genes 
limit the number of cells that undergo neuronal differentiation. 
Neuronal differentiation is restricted to discrete domains, in part 
due to the activity of inhibitors present in the inter-neuronal 
stripes (dark grey). Other neuronal inhibitors are expressed in 
the superficial layer (sl; shown in blue) that presumably render it 
refractory to neuronal differentiation at the open neural plate 
stage. Asterisks indicate proteins that are only partially ex-
pressed within the domains. so: somites; n: notochord. 

28



Functional Development and Embryology 1(1), 26-36 ©2007 Global Science Books 

 

X-ngnr-1 (Ma et al. 1996), NeuroD (Lee et al. 1995) and 
Xath3 (Takebayashi et al. 1997). In addition, members of 
the Ebf/Olf-1 family, Xcoe2 (Dubois et al. 1998) and Xebf3 
(Pozzoli et al. 2001), the zinc finger protein MyT1, as well 
as the RNA binding protein XSeb4R (Boy et al. 2004), 
function as positive regulators of neurogenesis. The se-
quential activation of the proneural genes in the domains of 
primary neurogenesis represents the successive stages of 
determination and differentiation. A variety of studies de-
monstrate that X-ngnr-1 is at the top of this cascade, oper-
ating as a determination factor with other components ac-
ting downstream or in parallel (Ma et al. 1996). Already at 
gastrula stages, X-ngnr-1 expression prefigures the territo-
ries of primary neurogenesis, earlier than other known pro-
neural genes (Perron et al. 1999). Moreover, X-ngnr-1 is 
sufficient to instruct the non-neural ectoderm to undergo 
neuronal differentiation (Ma et al. 1996). 

The proneural bHLH proteins heterodimerize with ubi-
quitously expressed bHLH proteins (E-proteins) via the 
HLH domain (reviewed in Quan and Hassan 2005). 
Through interactions mediated by the basic domain, the 
heteromeric complex then binds to E-box sequences 
(CANNTG) in regulatory regions of target genes and acti-
vates their transcription. The ability of bHLH proteins to 
readily heterodimerize also permits inhibition of their acti-
vity through the interaction with other proteins, including 
bHLH repressors of the E(spl)/Hairy/Her family (discussed 
below). Additional negative regulators that function at the 
protein level are members of the Inhibitor of Differenti-
ation (Id) family. These proteins harbor a HLH domain al-
lowing protein dimerization, but lack the basic domain ne-
cessary for DNA-binding (Yokota 2001). Members of this 
family act as effective inhibitors of X-ngnr-1 and NeuroD 
proneural activities in explant assays (Liu and Harland 
2003). However, an endogenous role in the context of Xen-
opus primary neurogenesis has yet to be defined. 

 
Bridging the early neural and proneural genes 
 
One intriguing question is how the discrete territories of 
primary neurogenesis domains are selected within those of 
the broadly expressed prepattern genes. This may in part be 
attributed to the presence of negative regulators (Fig. 2). 
The homeodomain-encoding gene Xdbx is expressed in the 
neural plate between the medial and intermediate domains 
of primary neurogenesis (Gershon et al. 2000). A role for 
Xdbx in restricting neuronal differentiation is underscored 
by its ability to inhibit X-ngnr-1 and N-tubulin following 
its overexpression in Xenopus embryos. Zic2 may also con-
tribute to this process, particularly at late neurula stages 
where it is expressed in the posterior region of the neural 
plate in domains that alternate with the longitudinal do-
mains of the proneural genes (Brewster et al. 1998). Fi-
nally, XETOR, a member of the MTG/ETO family expres-
sed in the discrete domains of primary neurogenesis, has 
been proposed to participate in the refinement of the pro-
neural domains size (Cao et al. 2002). 

To fully understand how the stereotypical pattern of 
primary neurogenesis is specified, it will also be necessary 
to elucidate those factors and pathways that are required 
downstream of the immediate targets of neural induction 
and prior to the action of the proneural genes. The MEK5-
ERK5 pathway was demonstrated to be required during 
neurogenesis downstream of SoxD and upstream of X-
ngnr-1 (Nishimoto et al. 2005). Furthermore, FGF-9 and 
FGF-13 were identified as growth factors whose expres-
sion was induced by SoxD (Nishimoto et al. 2005). A role 
for FGF signaling in promoting neurogenesis is further 
illustrated by the abundance of ectopic neurons obtained 
upon FGF-8b overexpression in Xenopus embryos (Hard-
castle et al. 2000). The bHLH transcriptional repressor 
Xmxi1, which is expressed earlier and in broader expres-
sion domains as compared to X-ngnr-1, was also found to 
be an essential component of the neurogenesis cascade 
functioning prior to X-ngnr-1, but downstream of SoxD 

(Klisch et al. 2006). 
 

Lateral inhibition 
 
Due to the activation of lateral inhibition, only a subset of 
cells in the domains of primary neurogenesis undergo neu-
ronal differentiation giving rise to the scattered pattern of 
N-tubulin (Chitnis et al. 1995; Ma et al. 1996). This cell to 
cell signaling cascade mediated by the Delta-Notch path-
way (Fig. 3) enables cells that initially express higher le-
vels of proneural genes to escape from lateral inhibition and 
differentiate as neurons, while maintaining the adjacent 
cells in an undifferentiated neural precursor state (reviewed 
in Wang and Barres 2000). Indeed, in the cell fated to be-
come a neuron, X-ngnr-1 induces the transcription of 
downstream genes involved in the differentiation network, 
but also activates X-Delta-1 and X-Serrate-1 expression 
(Chitnis et al. 1995; Kiyota et al. 2001). These single-pass 
membrane ligands interact with the extracellular domain of 
the Notch receptor located on the neighboring cell. This 
binding triggers a series of proteolytic cleavages of the 
Notch receptor that releases the Notch intracellular domain 
(NICD) (Kadesch 2004). The cis-endocytosis of X-Delta-1 
may also play an important role in the processing of Notch 
(reviewed in Kiyota and Kinoshita 2004). Released NICD 
enters the nucleus and associates with the DNA binding 
protein suppressor of hairless (Su(H)), converting it from a 
transcriptional repressor to an activator. This ultimately 
leads to inhibition of neurogenesis (Fig. 3). Accordingly, 
overexpression of constitutively activated Notch (NICD) or 
X-Delta-1 inhibits the production of primary neurons (Coff-
man et al. 1993; Chitnis et al. 1995). Conversely, dom-
inant-negative versions of the X-Delta-1, Notch, or Su(H) 
increase the density of neurons within the discrete territo-
ries of primary neurogenesis when overexpressed (Chitnis 
et al. 1995; Wettstein et al. 1997; Kiyota et al. 2001). 

The best characterized direct targets of Notch signaling 
are related to the Drosophila bHLH transcriptional repress-
sor proteins encoded by the Enhancer of split E(spl) com-
plex and Hairy genes. The E(spl)/Hairy/Her proteins can di-
rectly inhibit both the transcription of proneural genes and 
their protein activity, thereby antagonizing differentiation 
(Dawson et al. 1995). Several genes of this class, including 
ESR1, ESR9, and ESR10, are indeed expressed in the terri-
tories of primary neurogenesis and are activated by Su(H)-
dependent Notch signaling (Wettstein et al. 1997; Koyano-
Nakagawa et al. 1999; Li et al. 2003). In line with this, 
their overexpression inhibits neuronal differentiation. How-
ever, not all members of the E(spl)/Hairy/Her family anta-
gonize neurogenesis. Hes6 is inhibited by Notch signaling 
and activated by X-ngnr-1 in Xenopus embryos (Koyano-
Nakagawa et al. 2000). Consistent with its regulation, Hes6 
overexpression promotes neuronal differentiation in the ter-
ritories of primary neurogenesis, providing a positive feed-
back loop. As the function of Hes6 is independent of DNA 
binding, its proneural activity may be related to its ability to 
antagonize hairy-like repressors through heterodimerization 
(Koyano-Nakagawa et al. 2000). The Notch regulated 
ankyrin repeat (Nrarp) (also known as XNAP) gene may be 
an additional direct target of Notch signaling, but acts to 
provide a negative feedback control (Lahaye et al. 2002). 
Nrarp is expressed in similar territories to X-Delta-1 and 
Notch and forms a ternary complex with NICD and XSu(H), 
thereby negatively modulating their activities (Lamar et al. 
2001). 

The proneural zinc finger transcription factor MyT1, 
which is positively regulated by X-ngnr-1 and negatively 
by Notch, plays an essential role in allowing neuronally 
fated cells to escape lateral inhibition and enter terminal 
differentiation (Bellefroid et al. 1996). As MyT1 overex-
pression does not affect X-Delta-1 nor X-ngnr-1 expression, 
its ability to overcome lateral inhibition is not likely to dir-
ectly interfer with the lateral inhibition machinery. Rather, 
cells would escape lateral inhibition even when the lateral 
inhibitory machinery is active, from the moment when a 
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certain threshold of MyT1 level is reached (Bellefroid et al. 
1996). 

Altogether these data highlight the complex interplay 
between the neural bHLH proteins and the lateral inhibit-
ory machinery. How a balance is struck to ensure that the 
proper number of neurons is produced is however still un-
clear. One mechanism that may be important to establish 
how cells are initially selected from an initial background 
of proneural activities is the different requirements of 
histone acetyltransferase (HAT) activity of X-ngnr-1 target 
genes. X-ngnr-1-mediated transcriptional activation of X-
Delta-1 has a lower dependence on HAT activity than that 
of the proneural genes MyT1 and NeuroD, and may there-
fore have a lower threshold of activation. This may enable 
the genes in the lateral inhibition pathway to be induced 
prior to the genes that promote differentiation (Koyano-
Nakagawa et al. 1999). 

 
Primary neurogenesis and the cell cycle 
 
Neuronal differentiation requires the interplay between cell 
cycle regulation and cell fate determination. It is well es-
tablished during vertebrate neurogenesis that neural cell 
fate is regulated by cell cycle progression and vice-versa 
that determination/differentiation factors participate in the 
regulation of the cell cycle (reviewed in Ohnuma and Har-
ris 2003). 

In the anterior region of the early neurula Xenopus em-
bryo, neuronal differentiation is in part suppressed by 
XBF-1, a Fox transcription factor that maintains active cell 
division via the inhibition of the Cip/Kip cyclin-dependant 
kinase inhibitor p27Xic1 (Hardcastle and Papalopulu 2000). 
The homeobox transcription factor Xrx1 also represses 
p27Xic1 anteriorly, and in addition, induces the antineuro-
genic transcription factors Xhairy2 and Zic2 (Andreazzoli 
et al. 2003). Conversely, several genes have been identi-
fied which are expressed in the territories of primary neu-
rogenesis and support neuronal differentiation through the 
induction of cell cycle arrest, including p27Xic1, the p21 
activated kinase 3 (XPak3), and XGadd45-� (de la Calle-
Mustienes et al. 2002; Souopgui et al. 2002; Vernon et al. 
2003). p27Xic1 is not induced by X-ngnr-1, but is required 
in the cascade of neuronal differentiation between X-ngnr-
1 and NeuroD (Vernon et al. 2003). XPak3 and XGadd45-� 
may act later than p27Xic1 as both are activated by X-
ngnr-1, as well as the later acting differentiation factor 
NeuroD (de la Calle-Mustienes et al. 2002; Souopgui et al. 
2002). While knock-down of either p27Xic1, XPak3 or 
XGadd45-� with antisense morpholino oligonucleotides in-
hibits primary neurogenesis, only loss of XPak3 and 
p27Xic1 results in an increased proliferation of the neural 
plate, suggesting partial redundancy (de la Calle-Mustienes 
et al. 2002; Souopgui et al. 2002; Carruthers et al. 2003). 
Cell cycle arrest is a prerequisite for cells to undergo neu-
ronal differentiation, but it is not sufficient. Through the 
use of XPak3 and p27Xic1 deletion mutants, the ability of 
these factors to induce cyclin-dependent kinase inhibition 
could be uncoupled from their activity on neuronal diffe-
rentiation, suggesting additional activities for these regula-
tors during neurogenesis (Souopgui et al. 2002; Vernon et 
al. 2003). Accordingly, p27Xic1 has been proposed to have 
a role in stabilizing X-ngnr-1 protein levels (Vernon et al. 
2003). 

 
Specificity of the proneural genes 
 
While many genes have been identified that promote neu-
rogenesis, few studies have been performed that compare 
the selectivity of downstream genes induced by the proneu-
ral factors or their ability to specify neuronal subtypes. 
X-ngnr-1, Xath3 and Xebf2 all induce ectopic sensory neu-
rons in Xenopus embryos (Perron et al. 1999; Pozzoli et al. 
2001), suggesting their ability to promote specific neuronal 
programs. In line with this idea, Tallika and collaborators 
compared in ectodermal explants, the temporal pattern of a 

limited set of downstream target genes induced by X-ngnr-
1 and Xash1, respectively (Talikka et al. 2002). While both 
genes activated the expression of the late neuronal marker 
N-tubulin with a similar time course, each induced distinct 
patterns of early downstream target genes, reinforcing the 
view that the different proneural genes may act to drive the 
formation of specific neuronal cell populations. 

 
Outlook 
 
As many of the regulators of primary neurogenesis that 
have been identified thus far are transcription factors, one 
can expect that they directly participate in the transcriptio-
nal regulation of other proneural genes resulting in a tem-
poral cascade of gene activation. In fact some degree of li-
nearity exist in the hierarchy of the proneural genes, for 
example X-ngnr-1 activates NeuroD directly and not vice-
versa (Ma et al. 1996; Perron et al. 1999). However, sev-
eral genes that are expressed later can activate early ex-
pressed genes. These positive feedback mechanisms, 
coupled with the existence of shared functional domains, 
such as the bHLH motif, have hindered the elucidation of 
the epistatic relationship between many of the proneural 
genes. The lack of our understanding in the control of neur-
onal differentiation is further underscored by the fact that 
direct activators of neuronal differentiation markers have 
not yet been identified. There is also only limited know-
ledge on the role of post-transcriptional and post-translat-
ional regulatory mechanisms in the process of primary neu-
rogenesis. Taken together, despite the identification of mul-
tiple genes participating in vertebrate neurogenesis, the 
molecular interactions and signaling networks linking prol-
iferation, specification, determination and mitotic with-
drawal of the neural progenitors into discrete neuronal sub-
types remains to be fully elucidated. 
 
NEURAL AND GLIAL CELL FATE 
DETERMINATION IN THE RETINA: CONTRIBUTION 
OF THE FROG 

 
Histogenesis in embryonic and adult Xenopus 
retina 

 
Birthdate of retinal cell types during Xenopus 
embryogenesis 
 
Retinal histogenesis in mammalian species lasts for weeks 
to months and follows an invariant temporal scheme. The 
ganglion cells are the first to be born, followed by amacrine 
cells, cones, horizontal cells, rods, bipolar cells and ulti-
mately Müller glia. This histogenic process is largely com-
pressed in Xenopus embryos. Tritiated thymidine injections 
throughout the stages of retinogenesis reveals that more 
than 95% of the embryonic retinal cells are born within a 25 
hour period (from stage 24 to stage 41), resulting in a large 
overlap of neurogenesis in the different layers (Holt et al. 
1988). Nevertheless, experiments precisely examining the 
retinal birth sequence in the frog have demonstrated the 
same order of genesis as compared with mammalians (Rap-
aport et al. 1996). Irrelevant of the species, these in vivo 
birthdates are conserved in explants or dissociated retinal 
cell cultures, strongly suggesting the existence of a temporal 
control of retinoblast determination. 

 
Post-embryonic histogenesis in amphibians 
 
The retina of amphibians, like that of fish, continues to 
grow postembryonically and throughout life, due to the ad-
dition of new cells originating from the ciliary marginal 
zone (CMZ). This region, located at the peripheral edge of 
the retina, is a continuously proliferative neuroepithelium 
(Fig. 4). The CMZ has the outstanding feature of displaying 
a spatial organization that mirrors all developmental stages 
of retinogenesis. Self-renewing stem cells are confined to 
the most peripheral region while differentiating retinal 
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progenitors are located more centrally (Wetts et al. 1989; 
Dorsky et al. 1995; Perron et al. 1998). Such an organiza-
tion that recapitulates the temporal order of retinal embry-
onic histogenesis has proved to be a powerful system to 
gain insight into the genetic cascade controlling retinoge-
nesis. The tadpole CMZ (Dorsky et al. 1995, 1997; Harris 
and Perron 1998; Perron et al. 1998; Ohnuma et al. 1999), 
as well as the metamorphic CMZ (Casarosa et al. 2005), 
can be subdivided in four distinct zones according to the re-
lative expression patterns of several genes, including com-
ponents of the Notch pathway, bHLH and homeodomain 
transcription factors, and cell cycle regulatory components 

(Fig. 5). Thus, the zone where a gene is expressed provides 
a first clue to position it in the genetic hierarchy controlling 
retinogenesis. Moreover, coexpression of distinct genes in-
side of a particular domain allows the prediction for func-
tional relationships, which can be subsequently tested and 
that in some cases have now been demonstrated (see below). 

Another advantage of amphibian retina that may help 
uncover the mechanisms sustaining neurogenesis is their re-
generation capacity. In urodele amphibians like the newt, 
complete retina and lens regeneration occurs throughout 
their lives (reviewed in Okada 1980). In contrast, anuran 
amphibians have been thought to maintain this capacity 
only in the larval stage, while losing it following metamor-
phosis. However, Yoshii et al. recently reported that the 
neural retina regenerates following its surgical removal in 
the mature anuran amphibian, Xenopus laevis. The neural 
retina regenerates both from transdifferentiation of the reti-
nal pigment epithelial cells and from differentiation of stem 
cells in the CMZ (Yoshii et al. 2007). These findings offer a 
novel experimental model to investigate the molecular regu-
latory network involved in retinogenesis in physiological 
and pathological conditions. 

 
Retinal histogenesis: mechanistic role of 
environmental cues and cellular competence 
 
Following specification of the eye field, retinal precursor 
descendants progressively generate the different retinal cell 
types. Lineage experiments using retroviral infection in ro-
dents (Turner and Cepko 1987; Turner et al. 1990) or tracer 
injection of single cells in the Xenopus optic cup (Holt et al. 
1988; Wetts and Fraser 1988) demonstrated the multipo-
tency of retinal progenitors towards any type of retinal cell. 
In addition, the apparent randomness in the clones cellular 
composition suggested that non-lineage-dependent mecha-
nisms are involved in specifying cell identity (Holt et al. 
1988). This led to the hypothesis that the local environment 
has an instructive role in cell fate decisions. Indeed, studies 
in Xenopus and other systems have shed light on the im-
portance of extrinsic factors in the regulation of retinal cell 
determination (reviewed in Cepko 1999). Signaling from 
postmitotic neurons has been shown to modulate cell fate 
decisions of retinoblasts. For example, selective ablation of 
monoaminergic amacrine cells in the frog retina results in 
overproduction of these cells by retinal progenitors (Reh 
and Tully 1986). These data suggest that such lineages are 
sensitive to feedback by inhibitory environmental signals. 
Many diffusible signals have been found to influence histo-
genesis in the retina (reviewed in Agathocleous and Harris 
2006). Misexpression of the growth factor FGF-2 affects the 
proper ratio of the various retinal cell types, particularly 
photoreceptors (McFarlane et al. 1998; Patel and McFarlane 
2000). Accordingly, lack of photoreceptors is observed in 
transgenic tadpoles expressing a dominant negative FGFR-
4a under the control of a promoter that is active in retinal 
progenitors (Zhang et al. 2003). This is consistent with the 
idea of an endogenous FGF signal influencing cell fate deci-
sions in the developing vertebrate retina. Another example 
of extrinsic signaling affecting retinoblast decisions is the 
cell to cell signaling mediated by the Delta-Notch pathway. 
Experiments in the frog retina demonstrated a role for 
Delta-Notch signaling in regulating cell competence 
through inhibition of progenitor differentiation (Dorsky et al. 
1995; Dorsky et al. 1997; reviewed in Rapaport and Dorsky 
1998; Perron and Harris 2000). Misexpression of an active-
ted form of Notch “freezes” progenitors in an undifferen-
tiated, neuroepithelial state (Dorsky et al. 1995). Conversely, 
progenitors where Notch signaling is blocked from early 
stages through overexpression of a dominant negative form 
of Delta, escape from lateral inhibition and adopt early reti-
nal fates, i.e. cones and ganglion cells (Dorsky et al. 1997). 
In contrast, inhibition of Notch signaling at later stages bia-
ses cells towards later cell types i.e. rod photoreceptors, de-
monstrating the importance of timing in the function of 
Delta. This led to a model where retinal progenitors, which 
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change their competence over time, use lateral inhibition 
mediated by Delta-Notch to generate the different retinal 
cell types in appropriate numbers at the right stage of dev-
elopment. 

Despite the growing wealth of data on the nature of ex-
trinsic factors and feedback mechanisms involved in retinal 
determination, no instructive environmental cues affecting 
particular fates have been identified so far. Rather, it is now 
established that environmental signals can alter the relative 
proportions of each cell type generated at a given time, but 
cannot influence progenitors to make temporally inappropr-
iate cell types. Evidence comes from heterochronic trans-
plant experiments, some of which have been performed in 
amphibians. Cells from young Xenopus embryonic retinas 
were dissociated and grown together with those from older 
embryos, and the timing of photoreceptor birth assayed. 
Young cells appeared uninfluenced by older cells, expres-

sing photoreceptor markers on the same time schedule as 
when cultured alone (Rapaport et al. 2001). A similar result 
was obtained in vivo by heterochronic grafts of optic vesicle 
plugs from young embryos into older hosts (Rapaport and 
Dorsky 1998; Rapaport et al. 2001). Thus, retinal progeni-
tors intrinsically acquire the ability to respond to photore-
ceptor-inducing cues by a mechanism that runs on a cell au-
tonomous schedule. Such findings in various species led to 
the development of the “competence model” of retinal dev-
elopment, which proposes that progenitors pass through in-
trinsically determined competence states, during which they 
are capable of giving rise to a limited subset of cell types 
under the influence of extrinsic signals (reviewed in Livesey 
and Cepko 2001). The model predicts that the conserved or-
der of histogenesis is based in part on an intracellular timer 
that controls the appropriate expression of intrinsic cues res-
ponsible for successive changes in competence (discussed 
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Fig. 5 Gene expression patterns in the 
Xenopus CMZ. Schematic representa-
tion of the different zones in the CMZ, 
based on the expression of various 
genes as indicated in the table. mRNAs 
of these genes were detected either only 
in zone 1, from zone 2 to 4, in zones 3 
and 4, in all the CMZ or only in zone 4. 
Double in situ hybridizations for genes 
expressed in zone 1 have not been per-
formed yet, preventing us to know 
whether they overlap in zone 2 or not. 
Note that Vax2 is only expressed in the 
ventral CMZ (Casarosa et al. 2005). 
References are under parentheses: (a) 
Perron et al. 2003; (b) our unpublished 
data; (c) Perron et al. 1999; (d) Perron 
et al. 1998; (e) Sölter et al. 2006; (f) 
Casarosa et al. 2005; (g) van Raay et al. 
2005; (h) Boy et al. 2004; (i) Amato et 
al. 2005; (j) Ohnuma et al. 2002a. 
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below). 
 

Intrinsic factors governing neural cell fate 
decisions 

 
bHLH and homeodomain families of transcription 
factors 
 
Classical assays of putative determination factors in Xeno-
pus widely used blastomere mRNA injection for overex-
pression studies or misexpression of dominant-negative/ 
positive form of candidate genes. However, this technique 
is not always suitable for investigating gene function in the 
context of retinogenesis as early effects often preclude cor-
rect interpretation of later phenotypes observed in the retina. 
To bypass this limitation, Holt et al. developed the lipo-
fection technique (Fig. 4) whereby targeted transfection of 
a limited number of precursors in the presumptive retina 
allows for clonal analysis of gene perturbation effects du-
ring retinal development, without affecting early eye mor-
phogenesis (Holt et al. 1990). Lipofection also offers the 
possibility of loss-of-function experiments through the 
transfection of morpholino oligonucleotides into retino-
blasts (Ohnuma et al. 2002b). This technique has undoub-
tedly contributed to build the widely accepted model stipu-
lating that basic helix-loop-helix (bHLH) activators, in 
combination with homeodomain factors, are responsible for 
neuronal cell type specification (reviewed in Hatakeyama 
and Kageyama 2004). 

The first bHLH misexpression in the Xenopus retina 
was Xath5 (Kanekar et al. 1997). This Drosophila atonal-
related gene promotes ganglion genesis when overexpres-
sed in vivo. Consistent with this data, is the almost com-
plete depletion of retinal ganglion cells (RGCs) in zebrafish 
and mouse Xath5 mutants (Brown et al. 2001; Kay et al. 
2001; Wang et al. 2001). Xath5 may push retinal precursors 
towards a ganglion cell fate by directly regulating the ex-
pression of RGC differentiation factors. Several direct tar-
gets of Xath5, which may account for its effects, have been 
identified, including transcriptional regulators (XBrn3d, 
Xebf2, Xebf3, XETOR and NKL), an RNA binding protein 
(elrC) and a cell cycle component (XGadd45-�) (Hutcheson 
and Vetter 2001; Vetter and Brown 2001; Logan et al. 2005). 
Similar to Xath5, misexpression of bHLH genes Xath3 and 
X-ngnr-1 biases progenitors towards early cell types at the 
expense of late born cells (Perron et al. 1999). However, 
these various bHLH factors display some differences in 
their respective effects on each cell type, suggesting that in 
addition to their general proneural activity they may contri-
bute to some aspect of neural cell type specification in the 
retina (Perron et al. 1999). 

Another set of transcription factors affecting retinal cell 
fate belongs to the superfamily of homeodomain proteins 
(HD). In Xenopus, XOtx5b is expressed in both photorecep-
tors and bipolar cells, while a closely related member of the 
same family of transcription factors, XOtx2, is expressed in 
bipolar cells only. Lipofection of retinal precursors with 
XOtx5b biases them toward photoreceptor fates, whereas a 
similar experiment with XOtx2 promotes bipolar cell gene-
sis (Viczian et al. 2003). Xvsx1, which is expressed in reti-
nal progenitors and bipolar cells (D'Autilia et al. 2006), has 
also recently been shown to support bipolar cell determi-
nation (Decembrini et al. 2006). Another example is Xbh1, 
which has proved to play a crucial role in retinal cell deter-
mination, acting as a switch towards ganglion cell fate 
(Poggi et al. 2004). 

The observation that several transcription factors may 
be expressed in the same progenitors has raised the possibi-
lity of a combinatorial mode of action. This question has 
been extensively addressed in Xenopus through experi-
ments where each of six retinally expressed bHLH trans-
cription factors (NeuroD; X-ngnr-1; Xath3; Xath5; Xash1; 
Xash3) were coexpressed in retinal progenitors with each of 
eight retinally expressed HD transcription factors (XRx1; 
XOptx2; XSix3; XPax6; XOtx2; XOtx5b; XBH; XChx10) 

using lipofection (Wang and Harris 2005). The effects of 
each combinations were assayed on the six major cell types 
in the retina and demonstrated possible intrinsic combinat-
orial coding. 

 
Post-transcriptional regulation 
 
While these data demonstrate the crucial role of homeobox 
and bHLH genes in retinal cell identity, they do not address 
the question of how the neurogenetic timing is controlled. 
Moore et al. found that the timing of bHLH function relies 
on posttranslational regulation, allowing bHLH factors with 
overlapping expression to function independently. Specific-
ally, NeuroD function in the retina can be inhibited by glyc-
ogen synthase kinase 3� (GSK3�), while Xath5 function 
can be inhibited by Notch (Moore et al. 2002). Thus, the 
varying context in which bHLH proteins act may be crucial 
to drive their effect on specific retinal cell types. Recently, 
Decembrini and collaborators demonstrated that the three 
Xenopus HD transcription factors Xotx5b, Xvsx1 and Xotx2 
are initially transcribed, but not translated in early retinal 
progenitors (Decembrini et al. 2006). Interestingly, their 
translational onset coincides with photoreceptor (Xotx5b) 
and bipolar cell (Xvsx1 and Xotx2) birth. Perturbation of cell 
cycle progression experiments suggest that decreased cell 
cycle duration that normally occurs in late progenitors, is 
necessary to remove translational inhibition of these genes 
(Decembrini et al. 2006). These data strongly support the 
idea that a retinal cell clock measures cell cycle length, 
rather than the absolute time spent in division, to provide 
regulatory cues authorizing genesis of a particular cell type 
at the appropriate moment. Translational inhibitors are pre-
sumably part of such a clock machinery, but their molecular 
nature is at present unknown. 

RNA-binding proteins and micro-RNAs may be good 
candidates to play such key roles in the post-transcriptional 
regulation of gene expression during retinogenesis. We re-
cently described the expression patterns of different neural 
RNA binding proteins (RBPs) in the developing and post-
embryonic Xenopus retina (Fig. 5). Distinct spatio-temporal 
expression was found for RBPs belonging to different fam-
ilies (Amato et al. 2005). This is reminiscent of previously 
described cell-type-specific expression profiles of trans-
cription factors and suggests that these post-translational re-
gulators may be crucially involved at multiple steps of ret-
inogenesis. Accordingly, we demonstrated that the RBP 
XSeb4R exerts a proneural role in the developing retina 
downstream of the bHLH factor NeuroD (Boy et al. 2004). 
A great challenge is now to assess other RBPs functions and 
identify their targets to gain new insights into the genetic 
network governing retinal cell determination. 

 
Gliogenesis in Xenopus retina 

 
In contrast to the large amount of data concerning neuronal 
cell type specification, mechanisms sustaining the genera-
tion of glial versus neuronal cells remain more ambiguous. 
Müller cells, the principal glial population in the retina, are 
generated from the same pool of multipotent stem cells that 
give rise to retinal neurons. Recent studies have shed light 
upon the extracellular and intracellular signaling pathways 
that regulate Müller glial cell genesis. 

Accumulating evidence supports the involvement of cell 
cycle components in the cell fate determination process and 
conversely, molecules originally thought to have a primary 
role in cell determination, have been shown to influence cell 
proliferation (reviewed in Ohnuma et al. 2001; Ohnuma and 
Harris 2003; Cremisi et al. 2003). A surprising inducer of 
glial fate in the Xenopus retina was found to be p27Xic1, a 
cyclin-dependent kinase inhibitor (CDKI) of the Cip/Kip 
subfamily. Expression of p27Xic1 progressively increases 
as retinal histogenesis proceeds. Its overexpression enhan-
ces the generation of Müller cells, while lipofection with an 
antisense construct reduces by half their percentage (Oh-
numa et al. 1999). Thus, it is likely that the gradual increase 
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of p27Xic1 in the developing retina not only limits the 
number of retinal cells but also increasingly favors the fate 
of the last cell type to be born in the retina, the Müller glia. 
The CDKIs p16Xic2 and p17Xic3 share similar properties 
in Müller cell fate specification (Daniels et al. 2004). 
Finally, Ohnuma and collaborators demonstrated that 
p27Xic1 gliogenic activity necessitates an active Delta-
Notch pathway, in accordance with the observation that 
Müller cells are the last cells in the Xenopus retina to ex-
press Notch1 (Ohnuma et al. 1999). 

Consistent with the above results, is the finding that 
components of the Notch pathway are gliogenic. In the Xe-
nopus retina, lipofection of retinal progenitors with 
XSu(H)Ank, a constitutively active form of the Notch me-
diator Suppressor of Hairless, leads to accelerated cell cycle 
exit and concomitant increase of Müller cells (Ohnuma et 
al. 2002a). Although it remains to be determined whether 
Notch has an instructive role in Xenopus gliogenesis as it 
has been recently proposed in rodents (Tomita et al. 1996; 
Bao and Cepko 1997; Furukawa et al. 2000), its ability to 
inhibit expression and activity of proneural bHLH genes 
(reviewed by Artavanis-Tsakonas et al. 1999) surely contri-
butes to favor glial versus neuronal cell fate. This is 
achieved through activation of bHLH transcriptional re-
pressors of the E(spl)/Hairy/Her family. We recently iden-
tified a novel member of this family in Xenopus, XHes2, 
which inhibits glial cell genesis when knocked down, while 
dramatically biases retinal precursors towards a glial fate 
when overexpressed (Sölter et al. 2006). We showed that 
the gliogenic activity of XHes2 relies on its ability to inhi-
bit neuronal differentiation by at least two distinct mecha-
nisms: it not only negatively regulates X-ngnr-1 and 
NeuroD transcription, but it also physically interacts with a 
subset of proneural bHLH proteins. The next step will be to 
identify other transcription factors that act downstream or 
in collaboration with XHes2, as well as target genes that 
function to repress neurogenesis or to promote gliogenesis 
in the retina. 

 
Outlook: Xenopus as a model to investigate 
retinal subtype specification 

 
Diversity among neuronal cell types 
 
The different neuronal cell types in the retina are still div-
ided in cellular subtypes, based on morphological and bio-
chemical criteria, and according to established connections. 
More than twenty types of amacrine cells and many classes 
of ganglion cells have been identified, although the func-
tional relevance of such diversity is far from being ex-
plained (MacNeil and Masland 1998). Mechanisms sus-
taining the specification of the different neuronal subclasses 
are largely unknown. Harris and Messersmith showed that 
two cellular inductions are involved in photoreceptor deter-
mination during development in the retina (Harris and Mes-
sersmith 1992). The first is responsible for biasing cells to-
ward either a generic photoreceptor or a cone fate, while 
the second directs cells toward a rod cell fate. The prevalent 
model, based on this data plus others in rodents (Bramblett 
et al. 2004; Chow et al. 2004) thus proposes that the com-
petence of a precursor is restricted in a step-wise manner so 
that the determination process initially leads to a generic 
cell type and subsequently specifies the subtype. 

 
Early biases in amacrine subtypes revealed in 
Xenopus 
 
The above model can be questioned due to the extensive 
lineage experiments performed in the laboratory of Moody 
and collaborators (Huang and Moody 1995, 1997; reviewed 
in Zaghloul et al. 2005). Indeed, some retinal subtypes 
seem to be specified as soon as the early cleavage stage. 
Transplantations experiments of individual blastomeres de-
monstrate that some of them are intrinsically biased to pro-
duce specific neurotransmitter subtypes of amacrine cells 

(Moody et al. 2000). These data have contributed to refine 
the previous vision of retinal cell fate being independent of 
lineage mechanisms. It now seems that early lineage biases 
account for the determination of at least certain cell sub-
types and that progenitors of the eye field are presumably 
mosaic, consisting of both multipotent stem cells and fate-
restricted progenitors (reviewed in Zaghloul et al. 2005; see 
Cayouette et al. 2006 for more general discussion of retinal 
lineage biases). In the course of the discovery of the under-
lying molecular cues involved in this process, Zaghloul and 
Moody (Zaghloul and Moody 2007) recently found that two 
transcription factors expressed during the formation of the 
eye field, Rx1 and Pax6, may be involved in early amacrine 
neurotransmitter subtypes specification in Xenopus. It is 
therefore tempting to re-evaluate the implication of other 
factors, known to be involved in retinal cell fate decision, 
focusing more closely on their effects on retinal subtypes 
specification. 
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