

# Rapid Multiresidue Method for the Determination of more than 300 Pesticide Residues in Food

Masahiro Okihashi<sup>1\*</sup> • Yoko Kitagawa<sup>1</sup> • Hirotaka Obana<sup>1</sup> • Yukio Tanaka<sup>1</sup> • Yoko Yamagishi<sup>2</sup> • Kuniyo Sugitate<sup>2</sup> • Kaori Saito<sup>2</sup> • Masayuki Kubota<sup>2</sup> • Michiko Kanai<sup>2</sup> • Taisuke Ueda<sup>3</sup> • Syuichi Harada<sup>3</sup> • Yoshio Kimura<sup>3</sup>

Osaka Prefectural Institute of Public Health, Nakamichi 1-3-69, Higashinari-ku, Osaka, 537-0025, Japan
 Thermo Fisher Scientific K.K, C-2F, 3-9 Moriya-cho, Kanagawa-ku, Yokohama, 221-0022, Japan
 Hayashi Pure Chemical. IND., LTD, 3-2-12 Uchihiranomachi, Chuo-ku, Osaka, 540-0037, Japan
 *Corresponding author*: \* okihasi@iph.pref.osaka.jp

# ABSTRACT

The aim of this study was to develop a simple and efficient sample preparation methodology in pesticide multiresidue analysis that shortens the analytical process during extraction and cleanup. We have conducted recovery tests of about 300 pesticides in foods with a modified method reported previously. Ten g of sample was extracted with 20 ml of acetonitrile using a high-speed homogenizer. One gram of NaCl and 4 g of anhydrous MgSO<sub>4</sub> were added and shaken immediately. The tube was centrifuged to separate the sediment and water from the acetonitrile extract. The acetonitrile layer obtained after salting out was loaded into the double-layered SPE cartridge with a graphitized carbon black and primary secondary amine, followed by elution with acetonitrile-toluene (3:1). The eluate was evaporated and the residue was dissolved in acetone-hexane (1:9) or methanol. The test solution was determined by a GC-FPD for organophosphorous pesticides, GC-MS in the NCI mode for organochlorines, pyrethroids and other halogenated pesticides, and GC-MS in the EI mode for other pesticides. LC-MS/MS was also used to determine less volatile pesticides. Recovery studies were performed by fortifying 3 or 5 matrices at 0.05 or 0.1  $\mu$ g/g. Recoveries of about 300 pesticides were mainly 70-110% and the relative standard deviations were below 20%. Limits of detection ranged between 0.1 and 50 ng/g for tested pesticides.

# Keywords: analysis, fruits, QuEChERS, vegetables, pesticides, residues

Abbreviations: EI, electron ionization; ESI, electrospray ionization; FPD, flame photometric detector; GC, gas chromatography; LC, liquid chromatography; MRL, maximum residue limit; MRM, multiple reaction monitoring; MS, mass spectrometry; MS/MS, tandem mass spectrometry; NCI, negative chemical ionization; RSD, relative standard deviation; SIM, selected ion monitoring; SPE, solid phase extraction

# INTRODUCTION

The Japanese Ministry of Health, Labour and Welfare has issued MRLs of about 800 pesticides and veterinary drugs and introduced the positive list system (Notification No. 497-499, 2005). In this system, all agricultural chemicals are regulated under a uniform limit ( $0.01 \ \mu g/g$ ) except for MRLs. Foods in which any agricultural chemical residues are found in excess of MRLs or the uniform limit will be excluded from the market as illegal. This system does not require analyzing all pesticides before distribution, but the demands for pesticide residue analysis of commodities are increasing for various pesticides. The Quarantine Station in Japan has been monitoring imported foods to ensure that pesticide residues do not exceed the MRLs (Hirahara et al. 2005), local governments have monitored their regional markets as a usual policy. Food distributors are eager to monitor their commodities to reduce risks of violation, farm cooperatives want to warrant their products safe, some food companies and supermarkets show "no pesticide" as a value-added product, and consumers' cooperatives want to keep away from residual pesticides. Thus, numerous governmental and private laboratories have an interest to performed residue analysis of foods at early stages of the distribution chain. These institutions monitoring pesticide residues in foods require fast and efficient multiresidue methods with a broad scope of application in order to maximize the coverage of their monitoring targets. To date, many multiresidue analytic methods have been reported (Fillion et al. 2000; Obana et al. 2001; Klein et al. 2003;

Pang *et al.* 2006). In a previous paper, we proposed a rapid multiresidue method for the determination of 180 pesticides in foods using GC-FPD and GC-MS (Okihashi *et al.* 2005) based on the QuEChERS method (Anastassiades *et al.* 2003). The positive aspects of our method against the original QuEChERS were the powerful extraction with the homogenizer and the efficient cleanup with the double-layered SPE. This SPE step involved evaporation and reconstitution by hexane that could remove water-soluble substances, such as sugars and salts, indirectly. In this study, the method was slightly modified and the targets were extended to 380 pesticides and metabolites according to commercially pre-mixed standard solutions. These pesticides were detected by GC-MS in EI and NCI, and by GC-FPD and LC-MS/MS in the positive and negative ESI modes.

# MATERIALS AND METHODS

# Apparatus

# GC-MS (EI) instrument

The extracts were analyzed with a Thermo Fisher (Waltham, MA) TRACE GC Ultra and POLARIS Q ion trap mass spectrometer. EI was applied in the MS instrument. The system was equipped with a split/splitless injection inlet, electronic pressure control, and an AS-2000 auto sampler. Xcalibur software was used for instrument control and data analysis.

# GC-MS (NCI) instrument

The extracts were analyzed with a Shimadzu (Kyoto, Japan) GCMS-QP2010 gas chromatograph mass spectrometer. NCI was applied in the MS instrument. The system was equipped with a split/splitless injection inlet, electronic pressure control, and AOC-20i auto injector. GCMSsolutions software was used for instrument control and data analysis.

## GC-FPD instrument

The extracts were analyzed with a Shimadzu GC-17A gas chromatograph equipped with a FPD, a split/splitless injection inlet, and an AOC-14 auto injector. C-R7A was used for instrument control and data analysis.

# LC-MS/MS instrument

The extracts were analyzed with a Thermo Fisher TSQ Quantum Discovery MAX mass spectrometer using ESI mode. The LC instrument was a Finnigan Surveyor Plus with a quaternary pump and an autosampler. Xcalibur software was used for instrument control and data analysis.

#### Food processor, mill and homogenizer

A Toshiba (Tokyo, Japan) QS-7 food processor was used to comminute fruit and vegetable samples. A Matsushita (Osaka, Japan) MX-X61 was used to mill rice and soybean. A Hitachi (Tokyo, Japan) HG30 homogenizer was used to blend sample and acetonetrile in the extraction step.

#### Tube and centrifuge

For the extraction step, Becton Dickinson (Franklin Lakes, NJ) BLUE MAX 50 ml polypropylene conical tubes were employed. A Hitachi Himac SCR 20B centrifuge was utilized for these tubes.

#### Analytical balance

A Sartorius (Westbury, NY) BP2100S top-loading balance was used to weigh the chopped samples and solid reagents.

#### Solvent evaporator

An Iwaki (ASAHI TECHNO GLASS, Chiba, Japan) REN-1000 and REN-1 rotary evaporator was employed to concentrate eluates.

#### Reagents

#### Acetonitrile, toluene, acetone, n-hexane, methanol, ammonium acetate, anhydrous magnesium sulfate, sodium chloride and water

The organic solvents were of pesticide analysis grade from Wako Pure Chemical Ind. (Osaka, Japan). All solid reagents were of analytical grade from Wako. Ultrapure water from a Millipore (Billerica, MA) MILLI-Q SP TOC water purification system was used for preparing aqueous solutions.

#### Pesticide standard mixture solutions

GC/MS-I, GC/MS-II, GC/MS-III, GC/MS-IV, GC/FPD-V, GC/ MS-VI, LC/MS\_PLMix-1, LC/MS\_PLMix-2, and LC/MS\_PLMix -3 were obtained from Hayashi Pure Chemical (Osaka, Japan). The mixtures contained 50, 49, 49, 59, 65, 36, 60, 12, 31 pesticides respectively and were dissolved in acetone (GC series) or acetonitrile (LC/MS series) at concentrations of 10 µg/ml each. These solutions were used for spiking the samples and also for calibration purposes after appropriate dilution.

# SPE cartridges

Octadecylsilane 500 mg cartridges (ODS) and double-layered cartridges with 500 mg of graphitized carbon black and 500 mg of primary secondary amine (GCB/PSA) were obtained from Supelco (Bellefonte, PA) as ENVI-C18 and ENVI-Carb/PSA, respectively. ODS was preconditioned with 10 ml of acetonitrile and GCB/PSA was preconditioned with the elution of 30 ml mixture of acetone-trile-toluene (3:1).

#### Food samples

Blank samples of rice, soybean, grapefruit, spinach, cabbage used in experiments were purchased from a local market in Osaka. About 500-1000 g of fruit and vegetable samples were well homogenized in the food processor. Rice and soybean were comminuted in the mill. All homogenous samples were placed in plastic storage bags, and stored at -20°C until their use for fortification experiments.

## Extraction and cleanup procedure

Appropriate numbers of 50 ml tubes with caps containing  $4.0 \pm 0.2$ g anhydrous MgSO<sub>4</sub> +  $1.0 \pm 0.1$  g NaCl were prepared in advance. An aliquot of 10 g of sample homogenate was weighed into a 50 ml tube. For samples of grain, 5 g of sample was weighed and 5 ml of water was added. The sample was extracted with 20 ml of acetonitrile by a HG30 homogenizer for 1 min. The MgSO<sub>4</sub> and NaCl in the tube prepared were added and shaken immediately for about 30 s with the screw cap on. The extract was centrifuged for 10 min at 1000 x g to separate the sediment and water from the acetonitrile. Next, 16 ml (equivalent to 8 g or 4 g of sample) of the acetonitrile layer obtained after centrifugation was loaded into a GCB/PSA SPE tube. In the case of fatty samples including rice and soybean, the acetonitrile extract was passed through an ODS SPE tube, followed by washing with 10 ml of acetonitrile, and all eluates were loaded to a GCB/PSA tube. Pesticides were eluted gravitationally with 30 ml of acetonitrile-toluene (3:1). The eluate was evaporated and the residue was dissolved in 8 ml or 4 ml of acetone-hexane (1:9), based on sample size, for GC-FPD and GC-MS analysis, or methanol for LC-MS/MS analysis. The concentration of the sample represented by the test solution was 1 g/ml. Fig. 1 summarizes the procedure.



Fig. 1 Flow chart of the sample analysis method used in this study.

#### Fortifications

In recovery studies, 100  $\mu$ l of GC standard mixture solutions or 50  $\mu$ l of LC-MS/MS standard mixture solutions were added to each 10 g of fruit and vegetable samples. In the case of rice and soybean, 50  $\mu$ l of GC standard mixture solutions or 25  $\mu$ l of LC-MS/MS standard mixture solutions were added to 5 g of samples. The tubes containing fortified sample were left for 30 min to give them time to interact with the matrix.

# Preparation of matrix matched calibration standards

Calibration was achieved by preparing matrix-matched calibration standards from the extracts of blank samples in order to compensate for the matrix effect (Erney *et al.* 1993). Analytes were quantified by using a 3-point calibration with those matrix-matched calibration standards corresponding to the spiked concentration.

#### GC-MS (EI) analysis

GC-MS (EI) analysis was conducted on a Rtx-5ms (Restek, Bellefonte, PA) capillary column of 30 m, 0.25 mm I.D., 0.25  $\mu$ m film thickness, and the following conditions were used: helium carrier gas flow 1.5 ml/min, injection temperature 250°C, injecttion volume 1  $\mu$ l (splitless), MS transfer line temperature 280°C, ion source temperature 250°C, oven temperature program 60°C for 1 min; then 8°C/min ramp to 280°C and held for 5 min. Total run time was 33.5 min. Full scan analysis (80-450 m/z) was used.

## GC-MS (NCI) analysis

GC-MS (NCI) analysis was conducted on a DB-5 (Agilent, Folsom, CA) capillary column of 30 m, 0.25 mm I.D., 0.25  $\mu$ m film thickness, and the following conditions were used: helium carrier gas flow 1.7 ml/min, injection temperature 250°C, injection volume 1  $\mu$ l (splitless), MS transfer line temperature 250°C, ion source temperature 200°C, oven temperature program 60°C for 1 min; then 20°C/min ramp to 170°C and 6°C/min ramp to 300°C and held for 7 min. Total run time was 35.17 min. The SIM mode was used for recovery experiments.

#### **GC-FPD** analysis

GC-FPD analysis was conducted on a DB-1701 (Agilent) capillary column of 30 m, 0.32 mm I.D., 0.25  $\mu$ m film thickness, and the following conditions were used: helium carrier gas flow 2.0 ml/min, injection temperature 250°C, injection volume 2  $\mu$ l (splitless), detector temperature 280°C, oven temperature program 80°C for 2 min; then 20°C/min ramp to 180°C followed by 4°C/min ramp to 260°C and 10°C/min ramp to 280°C and held for 5 min. Total run time was 34 min.

#### LC-MS/MS analysis

LC-MS/MS analysis was conducted on a Hypersil GOLD (Thermo Fisher) column of 150 mm, 2.1 mm I.D., 5  $\mu$ m particle size. The injection volume was 2  $\mu$ l and oven temperature was 40°C. A gradient elution program at 0.2 ml/min flow, in which both reservoirs contained 5 mM ammonium acetate in (A) water and (B) methanol, was used as follows; 2% solution B ramped to 95% linearly over 15 min then held for 10 min, then returned to 2% solution B and allowed to equilibrate for 10 min. The ESI source was used in the positive and negative mode, and ion transfer tube temperature was 330°C, ion spray voltages were 4200 V/positive and 3250 V/negative respectively.

## **RESULTS AND DISCUSSION**

#### Method modification

In QuEChERS method, PSA particles were used for cleanup procedure as dispersive-SPE (Anastassiades *et al.* 2003). This cleanup was very quick because evaporation and reconstitution steps were not required. Saito *et al.* examined removal efficiencies of various SPE cartridges against pigments and fatty acids, and they reported that the combination of GCB and PSA provided excellent results (Saito *et al.* 2004). We chose traditional SPE of GCB/PSA taking account of cleanup efficiencies. In our previous paper (Okihashi *et al.* 2005), we used acetic acid to control the PSA capacity and improve recoveries of chinomethionat and chlorothalonil. In that case, the weakened PSA allowed the elution of such pesticides as well as many food co-extracted matrix components that deteriorate instrument performance in terms of resolution and detector sensitivity. In routine analysis, it is significant to maintain instruments that work well for accurate results. Frequent maintenance requires much time and consequently decreases total throughput of routine analysis. In this work, we postponed a few pesticides, such as chinomethionat and chlorothalonil, to save time in sample preparation. The extraction and cleanup steps were performed without acetic acid to reduce food matrices and protect instruments. In the case of rice and soybean, an ODS SPE was additionally used to remove excess fat.

#### Measurement

As most GC-MS-instruments are restricted in their capacity of simultaneously recording SIM-ions, the number of pesticides that can be effectively measured within one run is limited for example to max. 200 compounds (Fillion et al. 2000; Pang et al. 2006). In the proposed method, three kinds of GC instruments were used instead of several injections to a GC-MS and it enabled reciprocal confirmation analysis. The standard mixtures of all GC series (GC/MS-I, II, III, IV, VI, GC/FPD-V) were measured by GC-MS (EI), at first. A scan test of each standard mixture solution was conducted initially to obtain its mass spectrum and retention time. Based on the mass spectrum, one ion was selected to quantify each compound. In GC-MS (NCI), the standard mixtures of GC/MS series (GC/MS-I, II, III, IV, VI) were measured. Some pesticides that contained halogen atoms, especially organochlorines and pyrethroids, could be detected at lower levels than those with GC-MS (EI). A scan test of each standard mixture solutions was conducted to choose one quantitative ion for each pesticide. Two SIM measurements that consisted of 4 or 6 segments were designed for these pesticides. In both measurements, 6 to 13 ions were monitored simultaneously in a segment with 0.2 sec. In contrast to GC-MS (EI) no serious interference was observed with GC-MS (NCI), while food matrices were frequently detected and sometimes interfered with the results in GC-MS (EI). Organophosphorous pesticides (GC/ FPD-V) were detected using GC-FPD with a DB-1701, a mid-polarity phase column. In routine analysis, it saves more time to recognize the negative results for various organophosphorous pesticides from one copy of a flat chromatogram. The data from GC-MS is composed of many mass chromatograms and takes some time to confirm in data analysis. GC-FPD is useful to shorten the time needed for identification. But some pairs of pesticides overlapped in a FPD chromatogram. To resolve these pesticides, the data from GC-MS (EI) was used. The quantification ions of these compounds that are amenable to GC analysis are listed in Table 1. The limits of detection were defined based on the noise levels on the chromatograms of the blank sample solution and the respective standard peaks.

The standard mixtures of the LC/MS series (LC/ MS\_PLMix-1, 2, 3) were mixed and measured by LC-MS/ MS using the MRM modes. Suitable transitions from precursor to product ions (MRM transitions) were identified. At first, full scan mass spectra of each pesticide were recorded to obtain retention times and determine precursor ions. Next, the product ions were examined through the daughter scan mode. Then, the most abundant product ion for each compound was chosen for MRM mode. Almost all of the compounds were measured by the positive ESI mode; however, some were also measured by the negative ESI mode. The MRM transition and collision energy of each compound are summarized in Table 2. The dwell time used for each of these analytes was 20 ms. In the positive ESI mode, analytes were divided into two segments to shorten the cycle time. These MRM chromatographic peaks indicated sufficient intensity to detect at a level of 0.1 ng/g except for a few pesticides.

## Food 1(1), 101-110 ©2007 Global Science Books

# Table 1 Mean recovery (%) and relative standard deviation (%).

| Mix      | Compound                          | Detector  | Ion        | LOD    |           |        | Recov    | ery (% | 6) and RS | SD (%) | ), (n=5) |         |          | — F  | requency |
|----------|-----------------------------------|-----------|------------|--------|-----------|--------|----------|--------|-----------|--------|----------|---------|----------|------|----------|
|          | compound                          | Dettettor | (m/z)      | (ng/g) | Cabbage   |        | Grapefr  | uit    | Spinach   | 1      | Rice     |         | Soybe    | an 1 | requency |
| I        | Acrinathrin                       | NCI       | 333        | 0.5    | 88        | 4      | 89       | 16     | 72        | 3      | 48       | 17      | 28       | 39   | 3        |
| IV       | Allethrin                         | NCI       | 256        | 0.5    | 101       | 3      | 90       | 10     | 102       | 5      | 86       | 7       | 83       | 7    | 5        |
| 1        | Benfluralin<br>DUC a              | NCI       | 555<br>71  | 0.1    | 91        | 2      | /4<br>02 | 2      | 75        | 2      | 12       | 6       | 76       | 10   | 5        |
| ш        | BHC B                             | NCI       | 71         | 0.2    | 87        | 3      | 92       | 4      | 76        | 1      | 96       | 3       | 87       | 5    | 5        |
| ш        | BHC δ-                            | NCI       | 71         | 0.5    | 90        | 3      | 93       | 5      | 75        | 1      | 95       | 2       | 117      | 12   | 5        |
| п        | BHC v-                            | NCI       | 71         | 0.2    | 89        | 4      | 88       | 7      | 82        | 2      | 91       | 5       | 78       | 6    | 5        |
| I        | Bifenox                           | NCI       | 341        | 0.2    | 80        | 4      | 87       | 7      | 90        | 3      | 84       | 11      | 76       | 5    | 5        |
| Ī        | Bifenthrin                        | NCI       | 205        | 2      | 91        | 3      | 89       | 12     | 95        | 2      | 80       | 5       | 63       | 6    | 4        |
| IV       | Bromacil                          | NCI       | 262        | 2      | 83        | 3      | 80       | 16     | 109       | 1      | 86       | 6       | 84       | 4    | 5        |
| III      | Butafenacil                       | NCI       | 390        | 10     | 77        | 3      | 92       | 16     | 85        | 2      | 71       | 9       | 42       | 59   | 4        |
| Ι        | Cafenstrole                       | NCI       | 250        | 1      | 94        | 1      | 84       | 9      | 92        | 3      | 61       | 24      | 46       | 26   | 3        |
| Ι        | Captafol                          | NCI       | 150        | 0.2    | NC        | -      | 69       | 8      | 29        | 5      | NC       | -       | NC       | -    | 0        |
| Ι        | Captan                            | NCI       | 150        | 2      | 16        | 6      | 69       | 7      | 38        | 6      | NC       | -       | NC       | -    | 0        |
| III      | Carfentrazone-ethyl               | NCI       | 375        | 0.5    | 74        | 3      | 96       | 9      | 83        | 3      | 85       | 6       | 80       | 6    | 5        |
| IV       | Chinomethionat                    | NCI       | 206        | 0.1    | NC        | -      | 35       | 15     | NC        | -      | NC       | -       | NC       | -    | 0        |
| Ι        | Chlorfenapyr                      | NCI       | 349        | 0.1    | 78        | 4      | 87       | 10     | 86        | 3      | 88       | 8       | 77       | 5    | 5        |
| VI       | Chlormefos                        | NCI       | 185        | 1      | 90        | 4      | 93       | 7      | 77        | 3      | 75       | 15      | 29       | 75   | 4        |
| I        | Chlornitrofen                     | NCI       | 281        | 0.5    | 78        | 4      | 88       | 8      | 89        | 3      | 91       | 5       | 71       | 4    | 5        |
| I        | Chlorobenzilate                   | NCI       | 278        | 10     | 84<br>NC  | 4      | 90       | 10     | 89<br>NC  | 4      | 90       | 25      | /3<br>NC | 3    | 5        |
| I<br>VI  | Chlorothalonil                    | NCI       | 200        | 0.2    | NC<br>07  | -      | 24       | 25     | NC<br>04  | -      | 39<br>76 | 25      | NC 77    | -    | 5        |
| V I<br>T | Cyflutenamia                      | NCI       | 207        | 0.2    | 87        | 2<br>1 | 90       | 10     | 94        | 1      | 76       | 13      | 63       | 8    | 3        |
| III      | Cyhalothrin                       | NCI       | 207        | 0.5    | 82        | 2      | 90       | 0      | 80        | 3      | 70       | 13      | 67       | 10   | 4        |
| T        | Cynermethrin                      | NCI       | 203        | 0.2    | 82        | 4      | 90       | 11     | 90        | 1      | 77       | 12      | 64       | 6    | 4        |
| VI       | DEF                               | NCI       | 257        | 01     | 93        | 2      | 88       | 7      | 91        | 3      | 70       | 9       | 63       | 6    | 4        |
| T        | Deltamethrin                      | NCI       | 79         | 2      | 88        | 3      | 89       | 8      | 75        | 4      | 69       | 12      | 71       | 17   | 4        |
| VI       | Dialifos                          | NCI       | 185        | 1      | 87        | 3      | 89       | 10     | 93        | 2      | 71       | 18      | 49       | 17   | 4        |
| Ι        | Dichlofluanid                     | NCI       | 207        | 0.5    | 83        | 3      | 74       | 9      | 80        | 3      | 75       | 14      | 28       | 8    | 4        |
| Ι        | Dicofol                           | NCI       | 250        | 0.2    | 83        | 3      | 86       | 7      | 77        | 2      | 86       | 4       | 68       | 4    | 4        |
| Ι        | Dimethipin                        | NCI       | 211        | 2      | 86        | 3      | 82       | 5      | 86        | 5      | 76       | 25      | 95       | 5    | 5        |
| VI       | Diniconazol                       | NCI       | 289        | 0.2    | 101       | 1      | 79       | 11     | 102       | 6      | 77       | 11      | 77       | 6    | 5        |
| VI       | Ditalimfos                        | NCI       | 299        | 0.2    | 51        | 18     | 78       | 5      | 25        | 19     | NC       | -       | NC       | -    | 1        |
| Ι        | Dithiopyr                         | NCI       | 386        | 0.1    | 88        | 3      | 87       | 7      | 82        | 2      | 92       | 8       | 86       | 4    | 5        |
| Ι        | Endosulfan-α                      | NCI       | 242        | 0.5    | 81        | 3      | 88       | 8      | 83        | 2      | 92       | 3       | 72       | 5    | 5        |
| Ι        | Endosulfan-β                      | NCI       | 242        | 2      | 86        | 3      | 87       | 8      | 89        | 5      | 85       | 7       | 69       | 6    | 4        |
| Ι        | Fenarimol                         | NCI       | 276        | 0.2    | 89        | 3      | 80       | 12     | 94        | 3      | 81       | 12      | 73       | 7    | 5        |
| VI       | Fenchlorphos                      | NCI       | 211        | 0.1    | 84        | 3      | 95       | 8      | 82        | 2      | 83       | 7       | 70       | 5    | 5        |
| III      | Fenoxanil                         | NCI       | 201        | 0.5    | 86        | 3      | 92       | 14     | 84        | 3      | 86       | 6       | 83       | 5    | 5        |
| 11       | Fenpropathrin                     | NCI       | 141        | 0.5    | 89        | 3      | 86       | 10     | 101       | 4      | /6       | 10      | 66       | 6    | 4        |
| 11       | Fenvalerate                       | NCI       | 211        | 0.2    | 82        | 4      | 90       | 15     | 80<br>70  | 2      | 13       | 15      | 60<br>61 | 9    | 4        |
|          | Fipronii                          | NCI       | 204<br>221 | 0.2    | 83<br>78  | 2<br>2 | 04       | 0      | 110       | 1      | 00       | 22<br>5 | 86       | 1    | 5        |
| т<br>П   | Flucethripate                     | NCI       | 243        | 0.5    | 84        | 4      | 93<br>88 | 11     | 90        | 1      | 93<br>71 | 21      | 73       | 6    | 5        |
| П        | Flutolanil                        | NCI       | 243        | 0.2    | 98        | 1      | 75       | 12     | 94        | 4      | 80       | 9       | 81       | 6    | 5        |
| п        | Fluvalinate                       | NCI       | 294        | 0.2    | 86        | 4      | 89       | 11     | 79        | 3      | 61       | 18      | 26       | 41   | 3        |
| IV       | Folpet                            | NCI       | 146        | 1      | 28        | 12     | 64       | 13     | 45        | 11     | NC       | -       | NC       | -    | 0        |
| Π        | Fthalide                          | NCI       | 272        | 0.1    | 79        | 5      | 84       | 7      | 78        | 1      | 84       | 9       | 71       | 5    | 5        |
| III      | Indanofan                         | NCI       | 174        | 2      | 75        | 4      | 92       | 16     | 82        | 2      | 81       | 11      | 80       | 7    | 5        |
| II       | Iprodione                         | NCI       | 329        | 5      | 90        | 2      | 82       | 17     | 96        | 3      | 69       | 17      | 70       | 5    | 4        |
| II       | Isoprothiolane                    | NCI       | 262        | 1      | 98        | 2      | 84       | 6      | 96        | 3      | 83       | 10      | 79       | 6    | 5        |
| II       | Kresoxim-methyl                   | NCI       | 174        | 1      | 97        | 2      | 85       | 11     | 95        | 4      | 75       | 12      | 76       | 6    | 5        |
| VI       | Leptophos                         | NCI       | 241        | 0.5    | 77        | 4      | 92       | 11     | 89        | 2      | 71       | 14      | 47       | 6    | 4        |
| II       | Metribuzin                        | NCI       | 198        | 0.2    | 102       | 3      | 70       | 8      | 88        | 3      | 82       | 13      | 77       | 6    | 5        |
| III      | Nitralin                          | NCI       | 345        | 0.5    | 81        | 3      | 72       | 10     | 59        | 7      | 72       | 10      | 82       | 6    | 4        |
| IV       | Paclobutrazol                     | NCI       | 256        | 0.5    | 85        | 4      | 89       | 10     | 113       | 6      | 94       | 6       | 88       | 9    | 5        |
| 11       | Pendimethalin                     | NCI       | 281        | 0.5    | 98        | 4      | 83       | 14     | 87        | 2      | 85       | 5       | 78       | 5    | 5        |
| 11       | Pentoxazone                       | NCI       | 240        | 1      | 90<br>51  | 11     | 84       | 14     | 95        | 5      | /9       | 15      | 65<br>74 | 6    | 4        |
| 11       | Procymidone                       | NCI       | 282        | 20     | 51<br>102 | 11     | 82<br>85 | 5<br>7 | 94        | 2      | 84<br>00 | 14      | /4<br>84 | 7    | 4        |
| п        | Propyzalilide<br>Puroflufon othul | NCI       | 233        | 0.5    | 76        | 4      | 85<br>85 | ,<br>0 | 91<br>114 | 5      | 00<br>72 | 18      | 04<br>74 | 7    | 5        |
| VI<br>VI | Pyrazophos                        | NCI       | 373        | 2      | 03        | 2      | 84       | 10     | 05        | 3      | 74       | 15      | 77       | 7    | 5        |
| m        | Pyridaben                         | NCI       | 217        | 5      | 75        | 3      | 93       | 9      | 84        | 2      | 81       | 10      | 72       | 5    | 5        |
| п        | Pyrifenox F                       | NCI       | 226        | 1      | 94        | 2      | 77       | 10     | 95        | 4      | 81       | 8       | 84       | 9    | 5        |
| П        | Pyrifenox Z                       | NCI       | 384        | 5      | 103       | 5      | 86       | 4      | 75        | 3      | 66       | 21      | 87       | 6    | 4        |
| IV       | Quintozene                        | NCI       | 249        | 0.2    | 88        | 2      | 93       | 8      | 106       | 2      | 93       | 17      | 68       | 4    | 4        |
| Ш        | Quizalofop-ethvl                  | NCI       | 372        | 5      | 83        | 4      | 93       | 6      | 80        | 2      | 82       | 12      | 78       | 6    | 5        |
| VI       | Spirodiclofen                     | NCI       | 311        | 0.5    | 65        | 11     | 86       | 11     | 42        | 11     | 14       | 13      | NC       | -    | 1        |
| IV       | Tecnazene                         | NCI       | 215        | 0.1    | 80        | 3      | 93       | 8      | 99        | 3      | 77       | 11      | 59       | 11   | 4        |
| III      | Tefluthrin                        | NCI       | 241        | 0.1    | 92        | 2      | 93       | 4      | 72        | 2      | 93       | 4       | 81       | 5    | 5        |
| IV       | Tetraconazole                     | NCI       | 117        | 0.2    | 91        | 2      | 88       | 11     | 105       | 2      | 96       | 4       | 90       | 3    | 5        |
| IV       | Tetramethrin                      | NCI       | 331        | 5      | 83        | 3      | 98       | 10     | 113       | 3      | 83       | 7       | 80       | 5    | 5        |
| III      | Thifluzamide                      | NCI       | 85         | 0.5    | 84        | 3      | 90       | 17     | 83        | 3      | 84       | 7       | 82       | 5    | 5        |
| III      | Thiobencarb                       | NCI       | 132        | 5      | 95        | 2      | 91       | 3      | 75        | 3      | 85       | 4       | 78       | 7    | 5        |
| III      | Thiocyclam                        | NCI       | 136        | 0.5    | 58        | 7      | 72       | 9      | 55        | 4      | 43       | 16      | NC       | -    | 1        |

| Tabl     | Table 1 (cont.)                       |          |              |                  |                       |               |                     |                 |            |               |                  |         |          |        |           |
|----------|---------------------------------------|----------|--------------|------------------|-----------------------|---------------|---------------------|-----------------|------------|---------------|------------------|---------|----------|--------|-----------|
| Mix      | Compound                              | Detector | Ion<br>(m/z) | $LOD_{(ng/g)}$ – | Cabbag                |               | Reco                | very (%         | 6) and R   | <u>SD (%)</u> | ), (n=5)<br>Diag |         | Sauhaan  | — I    | Frequency |
| Ш        | Tolylfluanid                          | NCI      | 212          | (ng/g)<br>5      | <u>- Cabbag</u><br>18 | <u>e</u><br>9 | <u>Graper</u><br>69 | <u>run</u><br>4 | <u>37</u>  | 5             | NC               | -       | NC       | -      | 0         |
| Ш        | Triadimefon                           | NCI      | 127          | 0.5              | 90                    | 4             | 90                  | 7               | 77         | 1             | 90               | 4       | 82       | 5      | 5         |
| III      | Trichlamide                           | NCI      | 230          | 2                | 77                    | 4             | 89                  | 7               | 80         | 2             | 86               | 4       | 82       | 5      | 5         |
| III      | Uniconazole P                         | NCI      | 291          | 2                | 87                    | 3             | 83                  | 11              | 83         | 3             | 77               | 9       | 75       | 4      | 5         |
| III      | Vinclozolin                           | NCI      | 241          | 0.1              | 83                    | 3             | 93                  | 4               | 78         | 1             | 91               | 3       | 82       | 8      | 5         |
| VI       | 2,6-Dichlorobenzamide                 | EI       | 173          | 5                | 90                    | 7             | 67                  | 15              | 122        | 4             | 68               | 25      | 92<br>97 | 15     | 2         |
| IV       | Acetochlor                            | EI       | 188          | 2                | 84<br>87              | 5             | 93<br>87            | 2               | 111        | 4             | 99<br>87         | 5<br>6  | 8/       | 2<br>2 | 5         |
| IV       | Ametryn                               | FI       | 227          | 5                | 88                    | 9             | 114                 | 9               | 114        | 4             | 101              | 4       | 91       | 4      | 5         |
| IV       | Amitraz                               | EI       | 162          | 50               | 60                    | 37            | 35                  | 55              | 62         | 7             | 53               | 13      | 51       | 8      | 0         |
| Ι        | Atrazine                              | EI       | 200          | 5                | 88                    | 5             | 85                  | 5               | 117        | 2             | 86               | 8       | 93       | 4      | 5         |
| VI       | Azaconazole                           | EI       | 217          | 5                | 85                    | 7             | 90                  | 24              | 114        | 1             | 75               | 14      | 85       | 6      | 4         |
| VI       | Azamethiphos                          | EI       | 199          | 20               | 86                    | 3             | 72                  | 11              | 95         | 3             | NC               | -       | NC       | -      | 3         |
| VI       | Azinphos-ethyl                        | EI       | 132          | 5                | 82                    | 6             | 100                 | 15              | 118        | 10            | 64               | 32      | 92       | 7      | 4         |
|          | Azoxystrobin                          | EI       | 344          | 10               | 84<br>66              | 4             | 85                  | 4               | 111        | 4             | 65<br>00         | 25      | 93       | 9<br>5 | 4         |
| IV       | Benfuresate                           | FI       | 163          | 2                | 83                    | 3             | 90                  | 10              | 106        | 3             | 98               | 4       | 94       | 5      | 5         |
| VI       | Benzvlaminopurine                     | EI       | 225          | -                | NC                    | -             | NC                  | -               | NC         | -             | NC               | -       | NC       | -      | 0         |
| III      | Bifenazate                            | EI       | 258          | 2                | 60                    | 8             | 101                 | 18              | 76         | 6             | 74               | 18      | 99       | 10     | 4         |
| Ι        | Bioresmethrin                         | EI       | 143          | 5                | 68                    | 6             | 70                  | 15              | 77         | 9             | 66               | 16      | 72       | 6      | 3         |
| IV       | Biphenyl                              | EI       | 154          | 2                | 56                    | 16            | 74                  | 23              | 62         | 10            | 52               | 25      | 16       | 57     | 0         |
| IV       | Bitertanol                            | EI       | 170          | 5                | 52                    | 5             | NC                  | -               | 111        | 3             | 102              | 4       | 91       | 4      | 3         |
| l<br>VI  | Bromobutide                           | EI       | 232          | 2                | 89                    | 6             | 88                  | 10              | 109        | 3             | 83               | 5       | 85       | 3      | 5         |
| VI<br>I  | Bromopropylate                        | EI       | 341          | 2                | 90<br>86              | 5             | 87<br>87            | 10              | 115        | 2             | 79<br>86         | 5       | 70       | 0<br>6 | 5         |
| VI       | Bromuconazole                         | EI       | 295          | 20               | 85                    | 8             | 76                  | 30              | 112        | 4             | 83               | 9       | 80       | 13     | 4         |
| I        | Buprofezin                            | EI       | 175          | 5                | 82                    | 8             | NC                  | -               | 117        | 3             | 87               | 5       | 81       | 6      | 4         |
| IV       | Butachlor                             | EI       | 160          | 2                | 74                    | 4             | 106                 | 21              | 103        | 4             | 95               | 6       | 85       | 5      | 4         |
| IV       | Butylate                              | EI       | 146          | 5                | 57                    | 11            | 75                  | 55              | 70         | 11            | 66               | 22      | 41       | 22     | 1         |
| IV       | Carbetamide                           | EI       | 119          | 20               | 75                    | 5             | 89                  | 16              | 113        | 3             | 98               | 6       | 99       | 6      | 5         |
| IV       | Chlomethoxynil                        | EI       | 266          | 5                | 72                    | 5             | 136                 | 14              | 105        | 5             | 105              | 7       | 89       | 4      | 4         |
| IV       | Chloridazon                           | EI       | 221          | 5                | NC<br>02              | -             | NC                  | -               | 107        | 10            | 95               | 9       | 89<br>72 | 10     | 3         |
| I<br>IV  | Chlorpropulate                        | EI       | 251          | 2                | 93<br>78              | 4             | 112                 | 10              | 113        | 2             | 00<br>98         | 6       | 73<br>87 | 10     | 5         |
| VI       | Chlorthiophos                         | EI       | 325          | 2                | 83                    | 5             | 85                  | 7               | 113        | 6             | 80               | 7       | 80       | 9      | 5         |
| IV       | Cinmethylin                           | EI       | 105          | 5                | 56                    | 7             | 92                  | 19              | 112        | 4             | 92               | 10      | 80       | 5      | 4         |
| Ι        | Clofentezine                          | EI       | 137          | 20               | 86                    | 6             | 57                  | 29              | 108        | 6             | 20               | 42      | 7        | 55     | 2         |
| Ι        | Clomeprop                             | EI       | 288          | 2                | 86                    | 7             | 89                  | 14              | 116        | 4             | 87               | 6       | 80       | 9      | 5         |
| VI       | Crimidine                             | EI       | 142          | 2                | 89<br>70              | 4             | 87                  | 3               | 117        | 3             | 78               | 10      | 75       | 16     | 5         |
| I<br>T   | Cyanazine<br>Cyhalofon hutyl          | EI       | 225<br>357   | 2                | /9<br>85              | 0<br>6        | 85<br>90            | 7               | 115        | 2<br>4        | 80<br>78         | 12      | 87<br>87 | 0<br>7 | 5         |
| Ī        | Cyproconazole                         | EI       | 222          | 5                | 82                    | 6             | 82                  | 17              | 113        | 4             | 79               | 8       | 93       | 4      | 5         |
| I        | Cyprodinil                            | EI       | 224          | 2                | 89                    | 6             | 76                  | 8               | 116        | 4             | 82               | 5       | 81       | 4      | 5         |
| Ι        | Desmedipham                           | EI       | 181          | 5                | NC                    | -             | NC                  | -               | 124        | 3             | 77               | 21      | 115      | 4      | 1         |
| Ι        | Dichlobenil                           | EI       | 171          | 2                | 73                    | 3             | 66                  | 16              | 115        | 5             | 69               | 14      | 30       | 63     | 2         |
| VI       | Diclobutrazol                         | EI       | 270          | 5                | 84                    | 5             | 84                  | 8               | 106        | 3             | 77               | 9       | 82       | 8      | 5         |
|          | Diclocymet<br>Dialofluanid matabalita | EI       | 277          | 5<br>50          | 75<br>86              | 2             | 96<br>NC            | 7               | 100        | 13            | 100              | 5       | 88       | 4      | 5         |
| I        | Dicloran                              | EI       | 176          | 20               | 95                    | 2             | 46                  | 7               | 110        | 4             | 68               | 11      | 81       | 4      | 3         |
| v        | Dicrotophos                           | EI       | 127          | 5                | 90                    | 6             | 77                  | 30              | 104        | 2             | 86               | 6       | 98       | 6      | 4         |
| Ι        | Diethofencarb                         | EI       | 225          | 2                | 87                    | 4             | 87                  | 10              | 116        | 2             | 80               | 12      | 87       | 6      | 5         |
| Ι        | Difenoconazole                        | EI       | 323          | 5                | 89                    | 8             | 80                  | 8               | 105        | 4             | 77               | 15      | 94       | 9      | 5         |
| I        | Diflufenican                          | EI       | 266          | 2                | 85                    | 5             | 81                  | 7               | 110        | 4             | 84               | 7       | 86       | 7      | 5         |
| I        | Dimepiperate                          | EI       | 91           | 50               | NC<br>80              | -             | 83<br>75            | 10              | 115        | 8             | 87               | 5       | 8/       | 1      | 4         |
| III      | Dimethenamid                          | EI       | 154          | 2                | 81                    | 2             | 98                  | 5               | 117        | 2             | 82<br>87         | 5       | 89       | 4      | 5         |
| I        | Dimethenamid                          | EI       | 154          | 2                | 87                    | 5             | 85                  | 14              | 105        | 2             | 100              | 5       | 90       | 3      | 5         |
| ĪV       | Dimethomorph                          | EI       | 301          | 5                | 73                    | 3             | 89                  | 34              | 114        | 5             | 111              | 6       | 93       | 7      | 4         |
| IV       | Dioxathion                            | EI       | 270          | 50               | 95                    | 9             | 115                 | 30              | 99         | 7             | 104              | 5       | 117      | 6      | 4         |
| Ι        | Diphenamid                            | EI       | 167          | 2                | 91                    | 4             | 84                  | 12              | 115        | 1             | 82               | 12      | 91       | 4      | 5         |
| IV       | Diphenylamine                         | EI       | 169          | 2                | 94                    | 6             | 73                  | 32              | 82         | 3             | 103              | 6       | 50       | 7      | 3         |
| l        | EPIC                                  | EI       | 128          | 10               | 63                    | 8             | 61<br>85            | 16              | 90         | 4             | 61<br>85         | 21      | 29       | 52     | 1         |
|          | Esprocard                             | EI       | 222          | 2                | 80<br>75              | 5             | 83<br>96            | 10              | NC         | 1             | 85<br>NC         | 5       | /o<br>NC | 4      | 2         |
| IV       | Etobenzanid                           | EI       | 304          | 50               | NC                    | -             | 90<br>77            | 21              | 106        | -             | 46               | 22      | 79       | - 9    | 2         |
| I        | Etofenprox                            | EI       | 163          | 2                | 93                    | 4             | 84                  | 6               | 107        | 3             | 85               | 3       | 72       | 6      | 5         |
| IV       | Etoxazole                             | EI       | 330          | 5                | 76                    | 6             | 134                 | 44              | 113        | 5             | 92               | 5       | 87       | 4      | 4         |
| IV       | Etoxazole metabolite                  | EI       | 246          | 20               | 56                    | 24            | NC                  | -               | 35         | 13            | NC               | -       | 18       | 7      | 0         |
| Ι        | Etridiazole                           | EI       | 211          | 5                | 78                    | 4             | 80                  | 7               | 97         | 4             | 62               | 33      | 33       | 46     | 3         |
| IV       | Famoxadone                            | EI       | 330          | 5                | 72                    | 3             | 93                  | 9               | 102        | 4             | 103              | 4       | 90       | 6      | 5         |
| II<br>IV | Fenduconazole                         | EI       | 129          | 5                | 84<br>18              | ./            | 57                  | 42              | 116<br>100 | 2             | 12               | 16<br>7 | 92<br>88 | 7      | 4         |
| I        | Fenoxapron-ethvl                      | EI       | 288          | 2                |                       | 9<br>4        | 92<br>84            | 25              | 111        | 6             | 87               | 5       | 79       | 5      | 4         |
| VI       | Fenoxycarb                            | EI       | 255          | 10               | NC                    | -             | NC                  | -               | 94         | 6             | 50               | 42      | 87       | 17     | 2         |
| IV       | Fenpropimorph                         | EI       | 128          | 2                | 78                    | 1             | 91                  | 10              | 107        | 2             | 89               | 7       | 67       | 2      | 4         |

## Food 1(1), 101-110 ©2007 Global Science Books

| Tabl      | e 1 (cont.)                     |          |              | LOD           |          |        |                | (0)             | () I.B             |                    |                         |        |           |          |           |
|-----------|---------------------------------|----------|--------------|---------------|----------|--------|----------------|-----------------|--------------------|--------------------|-------------------------|--------|-----------|----------|-----------|
| Mix       | Compound                        | Detector | lon<br>(m/z) | LOD<br>(ng/g) | Cabbage  |        | Reco<br>Grapef | very (%<br>ruit | 6) and R<br>Spinac | <u>SD (%</u><br>:h | <u>), (n=5)</u><br>Rice |        | Soybear   | <u> </u> | Frequency |
| III       | Ferimzone                       | EI       | 239          | 20            | 77       | 5      | 99             | 16              | 96                 | 8                  | 111                     | 8      | 106       | 11       | 5         |
| Π         | Fludioxonil                     | EI       | 248          | 2             | 90       | 5      | 116            | 9               | 111                | 2                  | 85                      | 16     | 102       | 4        | 5         |
| IV        | Flumioxazin                     | EI       | 354          | 5             | 80       | 6      | 86             | 29              | 107                | 1                  | 76                      | 14     | 66<br>40  | 18       | 3         |
|           | Fluquinconazole                 | EI       | 340<br>233   | 2             | 85<br>87 | 5      | /1<br>80       | 10              | 114                | 4                  | 05<br>76                | 17     | 49<br>80  | 21<br>4  | 3<br>5    |
| IV        | Flusilazole metabolite          | EI       | 235          | 2             | 82       | 1      | 119            | 7               | 99                 | 6                  | 104                     | 4      | 85        | 4        | 5         |
| IV        | Furametpyr                      | EI       | 298          | 2             | 75       | 5      | 97             | 19              | 107                | 1                  | 102                     | 5      | 89        | 6        | 5         |
| IV        | Furametpyr metabolite           | EI       | 296          | 2             | 45       | 7      | 93             | 18              | 109                | 4                  | 96                      | 6      | 84        | 6        | 4         |
| II        | Halfenprox                      | EI       | 265          | 5             | 83       | 5      | 87             | 16              | 113                | 4                  | 78                      | 4      | 73        | 9        | 5         |
| II        | Hexaconazole                    | EI       | 214          | 5             | 100      | 17     | 75             | 12              | 115                | 10                 | 79                      | 7      | 90<br>NG  | 6        | 5         |
| Ш         | Indoxacarb MP                   | EI       | 264          | 5             | 72       | 5      | 104            | 9               | 111                | 1                  | 95                      | 6      | NC<br>80  | -        | 4         |
|           | Iprobenios<br>Lenacil           | EI       | 204<br>153   | 2             | 94<br>74 | 0<br>4 | 103            | 10              | 114                | 23                 | 82<br>77                | 0<br>8 | 89<br>97  | 5        | 5         |
| III       | MCPB                            | EI       | 142          | 5             | NC       | -      | NC             | -               | 90                 | 3                  | 59                      | 11     | 36        | 43       | 1         |
| III       | MCPB-ethyl                      | EI       | 211          | 50            | 70       | 3      | 80             | 37              | 103                | 6                  | 87                      | 18     | 78        | 6        | 4         |
| II        | Mefenacet                       | EI       | 192          | 5             | 90       | 5      | 85             | 19              | 149                | 11                 | 12                      | 90     | 105       | 7        | 3         |
| II        | Mepronil                        | EI       | 269          | 5             | 77       | 8      | 62             | 50              | 115                | 6                  | 79                      | 11     | 81        | 8        | 4         |
| Π         | Metalaxyl                       | EI       | 160          | 5             | 88       | 6      | 82             | 13              | 119                | 5                  | 78                      | 11     | 91        | 4        | 5         |
| IV        | Metminostrobin                  | EI       | 191          | 5             | 77       | 3      | 97<br>NG       | 1               | 112                | 4                  | 93                      | 4      | 91<br>72  | 5        | 5         |
|           | Metribuzin DA                   | EI       | 184<br>154   | 50            | 84<br>79 | 12     | NC             | -               | 87<br>74           | 5                  | 84<br>NC                | 1/     | /Z<br>NC  | 25       | 3<br>2    |
| VI        | Molinate                        | EI       | 126          | 5             | 76       | 4      | 80             | 7               | 107                | 3                  | 72                      | 11     | 51        | 41       | 4         |
| П         | Myclobutanil                    | EI       | 179          | 5             | 87       | 6      | 87             | 23              | 114                | 2                  | 74                      | 12     | 93        | 4        | 4         |
| VI        | Napropamide                     | EI       | 128          | 5             | 75       | 7      | 61             | 38              | 107                | 2                  | 62                      | 18     | 87        | 6        | 3         |
| VI        | Nereistoxin                     | EI       | 149          | -             | NC       | -      | NC             | -               | NC                 | -                  | NC                      | -      | NC        | -        | 0         |
| II        | Nitrofen                        | EI       | 283          | 5             | 76       | 4      | 84             | 13              | 109                | 4                  | 66                      | 8      | 82        | 11       | 4         |
| V         | Omethoate                       | EI       | 156          | 20            | 78       | 10     | 52             | 36              | 95                 | 5                  | 72                      | 12     | 62<br>79  | 22       | 3         |
|           | o-Phenylphenol                  | EI       | 170          | 50            | 8/       | 2      | 101            | 9<br>7          | 95                 | 4                  | 96                      | 4      | 78        | 3        | 5         |
| III<br>IV | Oxadetrinii                     | EI       | 175          | 30<br>2       | 84<br>78 | 2      | 100            | 14              | 113                | 4                  | 99<br>96                | 5      | 89<br>87  | 3        | 5         |
| II        | Oxadixyl                        | EI       | 132          | 5             | 90       | 5      | 75             | 45              | 117                | 4                  | 72                      | 15     | 93        | 6        | 4         |
| Ш         | Oxpoconazole                    | EI       | 179          | 10            | 66       | 9      | NC             | -               | 102                | 6                  | 102                     | 5      | 84        | 8        | 3         |
| III       | Oxpoconazole fumarate           | EI       | 114          | 5             | 78       | 4      | 115            | 8               | 108                | 5                  | 103                     | 7      | 86        | 7        | 5         |
| II        | Penconazole                     | EI       | 248          | 2             | 93       | 6      | 76             | 17              | 115                | 3                  | 67                      | 6      | 90        | 5        | 4         |
| II        | Permethrin                      | EI       | 183          | 5             | 81       | 4      | 78             | 16              | 109                | 5                  | 83                      | 5      | 72        | 8        | 5         |
| III       | Phenmedipham                    | EI       | 167          | 5             | 92       | 6      | /5<br>07       | 15              | 99                 | 3                  | 100                     | 6      | 95        | 15       | 5         |
| III<br>IV | Phenothrin                      | EI       | 183          | 5             | 73       | 4      | 107            | 29              | 90<br>108          | 4                  | 98                      | 5      | 50<br>71  | 30       | 5<br>4    |
| V         | Phorate                         | EI       | 231          | 5             | 85       | 8      | 80             | 22              | 83                 | 3                  | 82                      | 4      | 84        | 5        | 4         |
| V         | Phosphamidon                    | EI       | 127          | 5             | 88       | 5      | 97             | 14              | 102                | 4                  | 75                      | 7      | 93        | 7        | 5         |
| III       | Piperonyl-butoxide              | EI       | 176          | 2             | 75       | 4      | 99             | 4               | 106                | 4                  | 97                      | 5      | 87        | 5        | 5         |
| II        | Pretilachlor                    | EI       | 238          | 2             | 85       | 7      | 88             | 20              | 108                | 2                  | 92                      | 24     | 84        | 5        | 4         |
| VI        | Prohydrojasmon                  | EI       | 83           | 20            | 92       | 1      | 76             | 27              | 101                | 2                  | 82                      | 8      | ~/9<br>~~ | 6<br>2   | 4         |
|           | Prometryn<br>Propachlor         | EI       | 120          | 2             | 85<br>71 | 4<br>9 | 101            | 20              | 108                | 23                 | 99                      | 4      | 00<br>69  | 2<br>8   | 3<br>4    |
| II        | Propanil                        | EI       | 161          | 10            | 80       | 2      | 82             | 16              | 126                | 7                  | 88                      | 13     | 93        | 5        | 4         |
| II        | Propargite                      | EI       | 135          | 20            | 80       | 5      | 89             | 20              | 114                | 5                  | 87                      | 12     | 84        | 10       | 5         |
| II        | Propiconazole                   | EI       | 259          | 10            | 77       | 7      | 73             | 26              | 112                | 14                 | 88                      | 7      | 91        | 6        | 4         |
| VI        | Pyraclostrobin                  | EI       | 132          | 20            | NC       | -      | NC             | -               | 117                | 8                  | 95                      | 24     | 92        | 8        | 2         |
| II        | Pyrazoxyfen                     | EI       | 367          | 50            | 84       | 7      | NC             | -               | 129                | 22                 | NC                      | -      | NC        | -        | 1         |
| 11<br>11  | Pyributicarb<br>Pyrimethanil    | EI       | 105          | 2             | 8/       | 4      | 83<br>78       | 21<br>14        | 112                | 2                  | 87                      | 5<br>5 | 12        | 3        | 4         |
| ш         | Pyrimidifen                     | EI       | 198          | 2             | 70       | 7      | 103            | 14              | 104                | 2                  | 75                      | 21     | 71        | 8        | 4         |
| II        | Pyriminobac-methyl E            | EI       | 302          | 2             | 90       | 6      | 79             | 10              | 110                | 4                  | 75                      | 13     | 88        | 7        | 5         |
| III       | Pyriminobac-methyl Z            | EI       | 302          | 2             | 77       | 4      | 110            | 8               | 108                | 3                  | 98                      | 6      | 91        | 5        | 5         |
| II        | Pyriproxyfen                    | EI       | 136          | 2             | 98       | 11     | 91             | 8               | 111                | 1                  | 84                      | 6      | 77        | 7        | 5         |
| Π         | Pyroquilon                      | EI       | 130          | 5             | 97       | 4      | 63             | 25              | 113                | 3                  | 78                      | 8      | 88        | 7        | 4         |
| I         | Quinoclamine                    | EI       | 207          | 5             | NC<br>07 | -      | NC             | -               | 111                | 1                  | 72                      | 14     | 38        | 10       | 2         |
| Ш<br>П    | Silafluofen                     | EI       | 286          | 2             | 97       | 4      | 81<br>01       | 20              | 108                | 4                  | 70<br>84                | 4      | 67        | 9<br>4   | 4         |
| VI        | Simeconazole                    | EI       | 195          | 20            | 90       | 6      | 78             | 15              | 117                | 3                  | 86                      | 10     | 87        | 5        | 5         |
| П         | Simetryn                        | EI       | 213          | 2             | NC       | -      | 76             | 8               | NC                 | -                  | 79                      | 8      | 94        | 5        | 3         |
| VI        | Sulfotep                        | EI       | 322          | 2             | 92       | 6      | 87             | 6               | 113                | 2                  | 80                      | 7      | 71        | 12       | 5         |
| III       | Swep                            | EI       | 187          | 5             | 92       | 3      | 89             | 20              | 105                | 5                  | 98                      | 3      | 94        | 3        | 5         |
| III       | Tebuconazole                    | EI       | 250          | 5             | 75       | 5      | 129            | 9               | 93                 | 9                  | 90                      | 5      | 91        | 5        | 4         |
| III       | Tebufenpyrad                    | EI       | 333          | 2             | 76       | 2      | 101            | 14              | 107                | 6                  | 98                      | 4      | 81        | 6        | 5         |
| IV<br>IV  | I erbacıl<br>Tərbuqarb          | EI       | 161          | 5             | 80<br>82 | 5      | NC<br>0º       | - 10            | 111<br>106         | 2                  | 103                     | 4      | 96        | 4        | 4         |
|           | Terroucard                      | EI       | 205<br>356   | 2 5           | 02<br>84 | 2      | 98<br>98       | 10              | 100                | 2<br>6             | 96                      | 5      | 90<br>79  | 4        | 5<br>5    |
| IV        | Thenvlchlor                     | EI       | 288          | 2             | 76       | 4      | 105            | 12              | 114                | 4                  | 96                      | 9      | 88        | 6        | 5         |
| III       | Thiamethoxam                    | EI       | 212          | 5             | 57       | 13     | 67             | 23              | 89                 | 6                  | 95                      | 8      | 76        | 15       | 3         |
| IV        | Tolfenpyrad                     | EI       | 383          | 5             | 70       | 3      | 98             | 21              | 108                | 4                  | 97                      | 6      | 90        | 7        | 4         |
| III       | Tolylfluanid metabolite         | EI       | 214          | 20            | 132      | 6      | 148            | 24              | 147                | 5                  | 150                     | 8      | 136       | 3        | 0         |
| III<br>IV | 1 riadimenol<br>Trifloxystrohin | EI       | 168<br>116   | 5             | NC<br>70 | -      | 122            | 20              | NC<br>107          | -                  | 101                     | 15     | 91<br>02  | 9<br>⊿   | 2         |
| 1 V       | moxysuoom                       | EI       | 110          | 5             | 70       | 5      | 104            | 55              | 10/                | +                  | 25                      | U      | 74        | +        | 4         |

| Tabl | e I (cont.)         |          | Ion           | LOD    |           |        | Dage     | VOPU (0           | () and DCI | ) (0/ | ) (n=5)                 |    |          |     |           |
|------|---------------------|----------|---------------|--------|-----------|--------|----------|-------------------|------------|-------|-------------------------|----|----------|-----|-----------|
| Mix  | Compound            | Detector | 1011<br>(m/z) | (ng/g) | Cabba     | σe     | Granef   | ivery (7<br>Fruit | Sninach    | J (70 | <u>, (11–5)</u><br>Rice |    | Sovhean  | — I | Frequency |
| III  | Trifluralin         | EI       | 264           | 2      | <u>90</u> | 3      | 105      | 3                 | 93         | 5     | 84                      | 7  | 79       | 7   | 5         |
| IV   | Xylylcarb           | EI       | 122           | 5      | 89        | 4      | 100      | 5                 | 110        | 4     | 98                      | 8  | 100      | 4   | 5         |
| V    | Anilofos            | FPD      | 226           | 20     | 114       | 10     | 77       | 7                 | 102        | 6     | 92                      | 3  | 97       | 6   | 5         |
| V    | Azinphos-methyl     | FPD      | 132           | 10     | 117       | 17     | 77       | 8                 | 107        | 7     | 88                      | 4  | 101      | 7   | 5         |
| V    | Butamifos           | FPD      | 286           | 10     | 102       | 2      | 88       | 4                 | 88         | 5     | 86                      | 2  | 87       | 5   | 5         |
| V    | Cadusafos           | FPD      | 159           | 5      | 97        | 3      | 93       | 1                 | 95         | 4     | 86                      | 3  | 82       | 7   | 5         |
| V    | Carbophenothion     | FPD      | 342           | 10     | 98        | 2      | 84       | 7                 | 100        | 3     | 89                      | 3  | 85       | 5   | 5         |
| V    | Chlorpyrfos         | FPD      | 314           | 5      | 102       | 2      | 94       | 3                 | 94         | 3     | 86                      | 3  | 86       | 4   | 5         |
| V    | Chlorpyrifos-methyl | FPD      | 286           | 5      | 96        | 3      | 91       | 2                 | 94         | 3     | 80                      | 6  | 86       | 3   | 5         |
| V    | Cyanofenphos        | FPD      | 169           | 10     | 110       | 8      | 87       | 6                 | 100        | 6     | 90                      | 2  | 94       | 7   | 5         |
| V    | Cyanophos           | FPD      | 243           | 5      | 95        | 5      | 94       | 6                 | 87         | 8     | 85                      | 4  | 95       | 7   | 5         |
| V    | Demeton-S-methyl    | FPD      | 109           | 10     | 97        | 4      | 90       | 2                 | 85         | 4     | 79                      | 8  | 83       | 9   | 5         |
| V    | Diazinon            | FPD      | 179           | 5      | 99        | 3      | 89       | 1                 | 94         | 3     | 87                      | 3  | 88       | 3   | 5         |
| V    | Dichlotenthion      | FPD      | 279           | 5      | 102       | 2      | 92       | 1                 | 95         | 3     | 88                      | 3  | 85       | 3   | 5         |
| V    | Dicniorvos          | FPD      | 185           | 10     | 80        | 6      | 126      | 2                 | 117        | 3     | 54<br>121               | 65 | 107      | 6   | 3         |
| V    | Dimethoate          | FPD      | 0/<br>205     | 10     | 112       | 4      | 95       | 5                 | 08         | 4     | 151                     | 4  | 07       | 4   | 5         |
| V    | Dimethylvinphos     | FPD      | 295           | 10     | 07        | 1      | 90       | 4                 | 98         | 2     | 87<br>77                | 4  | 97       | 6   | 5         |
| V    | Dioxabelizoios      |          | 186           | 10     | 97        | 3      | 95       | 1                 | 75         | 2     | 00                      | 3  | 95       | 4   | 5         |
| v    | Edifembos           | FPD      | 310           | 10     | 90<br>110 | 4<br>0 | 91       | 1                 | 96         | 5     | 90                      | 5  | 95       | 4   | 5         |
| v    | FPN                 | FPD      | 169           | 10     | 110       | 9      | 83       | 8                 | 100        | 5     | 88                      | 4  | 114      | 11  | 5         |
| v    | Ethion              | FPD      | 231           | 5      | 104       | 2      | 90       | 6                 | 97         | 4     | 91                      | 2  | 98       | 6   | 5         |
| v    | Ethoprophos         | FPD      | 158           | 5      | 97        | 3      | 92       | 1                 | 95         | 4     | 87                      | 2  | 91       | 4   | 5         |
| v    | Etrimfos            | FPD      | 181           | 10     | 98        | 4      | 91       | 1                 | 75         | 3     | 85                      | 3  | 81       | 5   | 5         |
| v    | Fenamiphos          | FPD      | 303           | 10     | 103       | 9      | 90       | 6                 | 104        | 6     | 89                      | 2  | 94       | 8   | 5         |
| v    | Fenitrothion        | FPD      | 260           | 5      | 100       | 1      | 90       | 3                 | 95         | 3     | 87                      | 3  | 92       | 5   | 5         |
| V    | Fensulfothion       | FPD      | 293           | 10     | 114       | 11     | 83       | 9                 | 104        | 6     | 91                      | 2  | 98       | 6   | 5         |
| V    | Fenthion            | FPD      | 278           | 5      | 101       | 2      | 91       | 2                 | 82         | 3     | 88                      | 3  | 84       | 6   | 5         |
| V    | Fonofos             | FPD      | 246           | 5      | 100       | 2      | 91       | 4                 | 95         | 3     | 85                      | 3  | 86       | 3   | 5         |
| V    | Formothion          | FPD      | 93            | 5      | 87        | 3      | 86       | 2                 | 73         | 4     | 31                      | 67 | 42       | 66  | 3         |
| V    | Fosthiazate         | FPD      | 227           | 20     | 105       | 1      | 92       | 4                 | 103        | 3     | 95                      | 3  | 103      | 8   | 5         |
| V    | Isazophos           | FPD      | 172           | 5      | 97        | 6      | 77       | 12                | 97         | 4     | 90                      | 3  | 95       | 4   | 5         |
| V    | Isocarbophos        | FPD      | 136           | 10     | 98        | 3      | 91       | 2                 | 91         | 2     | 83                      | 12 | 97       | 9   | 5         |
| V    | Isofenphos          | FPD      | 213           | 10     | 103       | 1      | 90       | 4                 | 98         | 3     | 90                      | 3  | 93       | 5   | 5         |
| V    | Isoxathion          | FPD      | 177           | 10     | 104       | 4      | 90       | 5                 | 101        | 4     | 89                      | 3  | 94       | 6   | 5         |
| V    | Malathion           | FPD      | 127           | 10     | 100       | 1      | 91       | 3                 | 95         | 3     | 86                      | 6  | 94       | 6   | 5         |
| V    | Mecarbam            | FPD      | 160           | 10     | 105       | 7      | 89       | 6                 | 96         | 6     | 85                      | 5  | 93       | 7   | 5         |
| V    | Methacritos         | FPD      | 208           | 5      | 85        | 2      | 92       | 2                 | 8/         | 4     | 80                      | 4  | 82       | 3   | 5         |
| V    | Methidathion        | FPD      | 145           | 10     | 103       | 3      | 91       | 2                 | 99         | 4     | 88                      | 4  | 95       | 6   | 5         |
| V    | Merinphos           | FPD      | 127           | 5      | 94<br>100 | 4      | 95       | 2                 | 90         | 4     | 70                      | 10 | 02       | 6   | 5         |
| v    | Notocrotopilos      | FPD      | 145           | 10     | 80        | 2      | 91<br>67 | 2                 | 93<br>60   | 2     | 71                      | 6  | 93<br>70 | 7   | 2         |
| v    | Parathion           | FPD      | 291           | 5      | 102       | 1      | 90       | 3                 | 95         | 4     | 89                      | 3  | 95       | 6   | 5         |
| v    | Parathion-methyl    | FPD      | 263           | 5      | 99        | 1      | 90       | 3                 | 96         | 3     | 88                      | 3  | 91       | 5   | 5         |
| v    | Phenthoate          | FPD      | 274           | 10     | 103       | 2      | 91       | 4                 | 94         | 3     | 88                      | 3  | 95       | 5   | 5         |
| v    | Phosalone           | FPD      | 182           | 20     | 115       | 13     | 79       | 10                | 109        | 7     | 88                      | 4  | 94       | 7   | 5         |
| v    | Phosmet             | FPD      | 160           | 20     | 116       | 11     | 82       | 8                 | 103        | 6     | 68                      | 23 | 87       | 14  | 4         |
| v    | Piperophos          | FPD      | 320           | 10     | 110       | 9      | 83       | 8                 | 100        | 5     | 90                      | 3  | 96       | 6   | 5         |
| V    | Pirimiphos-methyl   | FPD      | 290           | 5      | 101       | 2      | 94       | 2                 | 94         | 3     | 89                      | 3  | 90       | 4   | 5         |
| V    | Profenophos         | FPD      | 337           | 10     | 105       | 3      | 91       | 7                 | 97         | 6     | 79                      | 11 | 90       | 6   | 5         |
| V    | Propaphos           | FPD      | 220           | 5      | 104       | 3      | 59       | 7                 | 87         | 5     | 92                      | 3  | 90       | 6   | 4         |
| V    | Prothiophos         | FPD      | 309           | 5      | 105       | 4      | 92       | 4                 | 117        | 4     | 89                      | 2  | 79       | 4   | 5         |
| V    | Pyraclofos          | FPD      | 360           | 20     | 123       | 14     | 79       | 7                 | 123        | 8     | 92                      | 3  | 99       | 6   | 3         |
| V    | Pyridafenthion      | FPD      | 340           | 10     | 114       | 11     | 83       | 7                 | 104        | 5     | 88                      | 3  | 96       | 9   | 5         |
| V    | Quinalphos          | FPD      | 156           | 5      | 103       | 1      | 90       | 4                 | 98         | 3     | 87                      | 2  | 90       | 5   | 5         |
| V    | Sulprophos          | FPD      | 322           | 10     | 103       | 7      | 88       | 6                 | 82         | 4     | 90                      | 3  | 88       | 7   | 5         |
| V    | Terbufos            | FPD      | 231           | 5      | 91        | 5      | 78       | 7                 | 85         | 4     | 87                      | 3  | 88       | 3   | 5         |
| V    | Tetrachlorvinphos   | FPD      | 329           | 10     | 101       | 1      | 91       | 5                 | 97         | 4     | 88                      | 4  | 95       | 6   | 5         |
| V    | Thiometon           | FPD      | 125           | 5      | 94        | 3      | 90       | 2                 | 57         | 4     | 80                      | 5  | 68       | 6   | 3         |
| V    | Tolclotos-methyl    | FPD      | 265           | 5      | 99        | 2      | 91       | 2                 | 94         | 4     | 88                      | 3  | 91       | 5   | 5         |
| V    | Triazophos          | FPD      | 162           | 5      | 112       | 9      | 86       | 7                 | 113        | 5     | 90                      | 3  | 88       | 7   | 5         |

 V
 Triazophos
 FPD
 162
 5
 112
 9
 86
 7
 113
 5
 90

 NC = Not calculated because of low sensitivity or recovery, or matrix interference.
 Frequency = Number of pesticide-commodity combinations where recoveries and RSDs within the acceptable range.
 Solution
 Solution

 Table 2 Mean recovery (%) and relative standard deviation (%).

| M:    | Compound             | Detector | Precursor>daughter ion (m/z) | LOD   | Rec     |    | Frequences |     |      |    |          |
|-------|----------------------|----------|------------------------------|-------|---------|----|------------|-----|------|----|----------|
| IVITA | Compound             | Detector | collision energy (eV)        | (g/g) | Cabbage |    | Grapefr    | uit | Rice |    | requency |
| 2     | Acephate             | ESI+     | 184>143(10)                  | 0.1   | 29      | 11 | 64         | 9   | 57   | 9  | 0        |
| 3     | Acetamiprid          | ESI+     | 223>126(22)                  | 0.1   | 81      | 6  | 63         | 2   | 77   | 5  | 2        |
| 2     | Acibenzolar-S-methyl | ESI+     | 211>136(32)                  | 1     | 101     | 13 | 91         | 18  | 91   | 8  | 3        |
| 1     | Aldicarb             | ESI+     | 208>116(10)                  | 0.1   | 98      | 15 | 60         | 15  | 66   | 19 | 1        |
| 1     | Aminocarb            | ESI+     | 209>137(25)                  | 0.1   | 93      | 8  | 65         | 6   | 80   | 11 | 2        |
| 1     | Bendiocarb           | ESI+     | 224>167(10)                  | 0.1   | 91      | 10 | 60         | 4   | 75   | 14 | 2        |
| 1     | Benfuracarb          | ESI+     | 411>195(25)                  | 0.1   | 48      | 44 | NC         | -   | 71   | 40 | 0        |
| 3     | Benzobicvclon        | ESI+     | 447>257(26)                  | 0.1   | 34      | 21 | 41         | 3   | 25   | 22 | 0        |

| Tab | le 2 (cont.)                |              |                                                        |                              |               |                |                             |                        |                 |         |           |
|-----|-----------------------------|--------------|--------------------------------------------------------|------------------------------|---------------|----------------|-----------------------------|------------------------|-----------------|---------|-----------|
| Mix | <b>Compound</b>             | Detector     | Precursor>daughter ion<br>(m/z): collision energy (eV) | $\frac{\text{LOD}}{(g/g)}$ _ | Rec<br>Cabbas | covery (<br>Pe | <u>(%)</u> and F<br>Granefr | <u>RSD (%).</u><br>mit | , (n=5)<br>Rice | I       | Frequency |
| 2   | Benzobicyclon metabolite    | ESI+         | 355>165(23)                                            | 0.1                          | 45            | 8              | 88                          | 1                      | 61              | 14      | 1         |
| 2   | Benzofenap                  | ESI+         | 431>105(36)                                            | 0.1                          | 92            | 3              | 84                          | 5                      | 83              | 11      | 3         |
| 1   | Butocarboxim                | ESI+         | 208>75(10)                                             | 0.1                          | 106           | 18             | 58                          | 30                     | 55              | 32      | 1         |
| 1   | Butocarboxim sulfoxide      | ESI+         | 207>132(10)                                            | 0.1                          | 59            | 10             | 65                          | 22                     | 42              | 10      | 0         |
| 1   | Carbaryl                    | ESI+         | 202>145(12)                                            | 0.1                          | 95            | 11             | 55                          | 6                      | 75              | 14      | 2         |
| 2   | Carbendazim                 | ESI+         | 192>160(20)                                            | 0.1                          | 85            | 5              | 94                          | 4                      | 52              | 16      | 2         |
| 1   | Carboturan                  | ESI+         | 222>165(15)                                            | 0.1                          | 101           | 11             | NC<br>92                    | -                      | 84              |         | 2         |
| 1   | Carbofuran-3-hydroxy        | ESI+         | 238>181(12)                                            | 0.1                          | 96            | 9              | 83<br>NC                    | 9                      | 93              | 22      | 3         |
| 1   | Carposullan                 | ESI+         | 381 > 100(15)<br>324 > 120(18)                         | 0.1                          | 19            | 40             | NC 57                       | -7                     | 93              | 12      | 0         |
| 2   | Cupyruron                   | ESI+<br>FSI+ | 303 > 185(14)                                          | 0.1                          | 99            | 18             | 86                          | 9                      | 83              | 10      | 3         |
| 2   | Cyazofamid                  | ESI+         | 325 > 108(15)                                          | 0.1                          | 99            | 20             | 37                          | 9                      | 68              | 8       | 1         |
| 2   | Cycloprothrin               | ESI+         | 499>181(38)                                            | 0.1                          | 93            | 23             | 59                          | 22                     | 52              | 12      | 0         |
| 3   | Diflubenzuron               | ESI+         | 311>141(31)                                            | 0.1                          | 100           | 7              | 29                          | 12                     | 38              | 8       | 1         |
| 2   | Dimethirimol                | ESI+         | 210>71(36)                                             | 0.1                          | 88            | 6              | 43                          | 3                      | 91              | 8       | 2         |
| 1   | Dioxacarb                   | ESI+         | 224>123(18)                                            | 0.1                          | 90            | 6              | 70                          | 10                     | 74              | 8       | 3         |
| 3   | Dymron                      | ESI+         | 269>151(14)                                            | 0.1                          | 100           | 16             | 37                          | 10                     | 80              | 10      | 2         |
| 1   | Ethiofencarb                | ESI+         | 226>107(14)                                            | 0.1                          | 92            | 15             | 31                          | 27                     | 63              | 21      | 1         |
| 3   | Ethoxyquin                  | ESI+         | 218>174(32)                                            | 1                            | 18            | 52             | 103                         | 8                      | NC              | -       | 1         |
| 2   | Fenbutatin oxide            | ESI+         | 519>351(38)                                            | 0.1                          | 48            | 8              | NC                          | -                      | 55              | 10      | 0         |
| 1   | Fenobucarb                  | ESI+         | 208>95(17)                                             | 0.1                          | 98            | 12             | 81                          | 15                     | 80              | 8       | 3         |
| 2   | Fenpyroximate E             | ESI+         | 422>366(15)<br>422>266(15)                             | 0.1                          | 95            | 10             | 69<br>70                    | 3                      | //<br>Q/        | 15      | 2         |
| 2   | Fenpyroximate Z             | ESI+         | 422 > 300(13)<br>350 > 107(10)                         | 0.1                          | 99<br>118     | 21             | 79                          | 4                      | 04<br>70        | 14      | 3         |
| 3   | Felufenovuron               | ESI+         | 480>158(20)                                            | 0.1                          | Q4            | 6              | 47                          | 6                      | 64              | 17      | 1         |
| 1   | Furathiocarb                | ESI+         | 383>195(20)                                            | 0.1                          | 100           | 10             | 82                          | 10                     | 83              | 16      | 3         |
| 2   | Hexythiazox                 | ESI+         | 353>228((16)                                           | 0.1                          | 93            | 10             | 38                          | 5                      | 74              | 16      | 2         |
| 3   | Imazalil                    | ESI+         | 297>159(24)                                            | 1                            | 91            | 4              | 75                          | 7                      | 115             | 13      | 3         |
| 3   | Imibenconazole              | ESI+         | 411>125(36)                                            | 0.1                          | 93            | 2              | 75                          | 5                      | 74              | 11      | 3         |
| 3   | Imidacloprid                | ESI+         | 256>209(16)                                            | 0.1                          | 55            | 6              | 70                          | 4                      | 55              | 3       | 1         |
| 1   | Isoprocarb                  | ESI+         | 194>95(16)                                             | 0.1                          | 91            | 7              | 74                          | 5                      | 84              | 9       | 3         |
| 3   | Isouron                     | ESI+         | 212>167(18)                                            | 0.1                          | 96            | 7              | 61                          | 4                      | 87              | 9       | 2         |
| 2   | Linuron                     | ESI+         | 249>182(18)                                            | 0.1                          | 99            | 6              | 73                          | 10                     | 75              | 9       | 3         |
| 2   | Mepanipyrim                 | ESI+         | 224>77(40)                                             | 0.1                          | 97            | 4              | 57                          | 6                      | 85              | 9       | 2         |
| 2   | Mepanipyrim metabolite      | ESI+         | 244>226(21)                                            | 0.1                          | 96            | 5              | 69                          | 3                      | 89              | 8       | 2         |
| 3   | Methabenzthiazuron          | ESI+         | 222>165(15)                                            | 0.1                          | 91            | 6              | 74                          | 5                      | 79<br>50        | 9       | 3         |
| 3   | Methamidophos               | ESI+         | 142>94(14)<br>226>160(10)                              | 0.1                          | 62<br>00      | 3<br>15        | 57<br>25                    | /                      | 59<br>65        | 10      | 0         |
| 1   | Methomy                     | ESI+         | 220 > 109(10)<br>163 > 88(10)                          | 0.1                          | 110           | 15             | 23<br>73                    | 0                      | 81<br>81        | 10      | 1         |
| 1   | Metolcarb                   | ESI+         | 165 > 109(12)                                          | 0.1                          | 91            | 10             | 45                          | 7                      | 80              | 13      | 2         |
| 2   | Nitenpyram                  | ESI+         | 271 > 126(34)                                          | 0.1                          | 58            | 9              |                             | 9                      | 53              | 8       | 0         |
| 1   | Oxamyl                      | ESI+         | 237 > 72(15)                                           | 0.1                          | 80            | 3              | 68                          | 20                     | 54              | 25      | 1         |
| 2   | Oxaziclomefone              | ESI+         | 376>190(15)                                            | 0.1                          | 103           | 11             | 84                          | 8                      | 84              | 20      | 3         |
| 3   | Pencycuron                  | ESI+         | 329>125(30)                                            | 0.1                          | 101           | 4              | 70                          | 4                      | 89              | 9       | 3         |
| 2   | Phoxim                      | ESI+         | 299>129(12)                                            | 0.1                          | 93            | 22             | 70                          | 13                     | 75              | 10      | 2         |
| 1   | Pirimicarb                  | ESI+         | 239>182(16)                                            | 0.1                          | 94            | 7              | 78                          | 6                      | 87              | 8       | 3         |
| 2   | Probenazole                 | ESI+         | 224>41(13)                                             | 1                            | 21            | 17             | 6                           | 18                     | NC              | -       | 0         |
| 2   | Prochloraz                  | ESI+         | 376>308(14)                                            | 0.1                          | 104           | 28             | 63                          | 12                     | 76              | 22      | 1         |
| 1   | Promecarb                   | ESI+         | 208>151(10)                                            | 0.1                          | 105           | 15             | 51                          | 12                     | 81              | 8       | 2         |
| 3   | Propamocarb                 | ESI+         | 189>102(19)                                            | 0.1                          | 98            | 3              | 72                          | 6                      | 96              | 9       | 3         |
| 1   | Propoxur                    | ESI+         | 210>168(11)                                            | 0.1                          | 85            | 8              | 61<br>NG                    | 5                      | /4              | 18      | 2         |
| 3   | Pymetrozin                  | ESI+         | 218>105(22)                                            | 0.1                          | /0            | 3<br>80        | NC<br>14                    | -                      | 43              | 12      | 1         |
| 2   | Sethoyudim                  | ESI+         | 439 > 173(20)<br>328 > 178(20)                         | 0.1                          | 76            | 10             | 14                          | 11                     | 66              | 1/1     | 1         |
| 2   | Spinosyn A                  | ESI+         | 528 > 1/8(20)<br>732 > 1/2(35)                         | 0.1                          | 91            | 2              | 80                          | 8                      | 71              | 8       | 1         |
| 3   | Spinosyn D                  | ESI+         | $732 \times 142(33)$<br>$746 \times 142(34)$           | 0.1                          | 88            | 1              | 81                          | 6                      | 69              | 10      | 2         |
| 2   | Tebufenozide                | ESI+         | 353>133(18)                                            | 0.1                          | 117           | 19             | 78                          | 9                      | 88              | 12      | 3         |
| 2   | Tepraloxydim DMP            | ESI+         | 245>117(23)                                            | 0.1                          | 95            | 5              | 86                          | 7                      | 92              | 8       | 3         |
| 2   | Tepraloxydim OH-DMP         | ESI+         | 261>211(10)                                            | 0.1                          | 93            | 10             | 88                          | 6                      | 91              | 6       | 3         |
| 1   | Terbucarb                   | ESI+         | 278>222(10)                                            | 0.1                          | 98            | 11             | 86                          | 5                      | 84              | 19      | 3         |
| 3   | Thiabendazole               | ESI+         | 202>175(28)                                            | 0.1                          | 95            | 2              | NC                          | -                      | 87              | 11      | 2         |
| 3   | Thiabendazole metabolite    | ESI+         | 218>191(27)                                            | 0.1                          | NC            | -              | NC                          | -                      | NC              | -       | 0         |
| 2   | Thiocyclam                  | ESI+         | 182>137(17)                                            | 0.1                          | 86            | 7              | 84                          | 11                     | 90              | 10      | 3         |
| 1   | Thiodicarb                  | ESI+         | 355>88(16)                                             | 0.1                          | 48            | 31             | 57                          | 9                      | 46              | 40      | 0         |
| 1   | Thiofanox                   | ESI+         | 219>145(15)                                            | 0.1                          | 92            | 23             | 60                          | 18                     | 60              | 22      | 0         |
| 1   | Thiofanox sulfone           | ESI+         | 251>76(10)                                             | 0.1                          | 82            | 10             | 74                          | 19                     | 77              | 12      | 3         |
| 1   | Thiotanox sulfoxide         | ESI+         | 235>104(10)                                            | 0.1                          | 101           | 12             | 90                          | 17                     | 85              | 13      | 3         |
| 3   | Tribenuron methyl           | ESI+         | 396>155(15)<br>100>1(2(24)                             | 1                            | 09            | 45             | 08                          | 40                     | 28<br>00        | 45      | 0         |
| 3   | Triflumizele                | ESI+         | 190>103(24)                                            | 0.1                          | 89<br>104     | 2              | /U<br>60                    | 5                      | 88<br>90        | 10      | 5         |
| 2   | Triflumizole metabolita     | ESI+         | 295>215(24)                                            | 0.1                          | 95            | ∠1<br>0        | 56                          | 12                     | 80<br>87        | 24<br>8 | 2         |
| 2   | Triforin                    | ESI+         | 435>390(12)                                            | 0.1                          | NC            | -              | 45                          | 11                     | 54              | 10      | 0         |
| 1   | Trimethacarb. 2 3 5- 3 4 5- | ESI+         | 194>137(12)                                            | 0.1                          | 95            | 9              | 51                          | 7                      | 86              | 5       | 2         |
| 3   | Vamidothion                 | ESI+         | 288>146(14)                                            | 0.1                          | 87            | 11             | 65                          | 14                     | 69              | 11      | 1         |
| 1   | XMC                         | ESI+         | 180>123(12)                                            | 0.1                          | 97            | 12             | 34                          | 6                      | 77              | 13      | 2         |

#### Table 2 (cont.)

| Mix   | Compound              | Detector | Precursor>daughter ion       | LOD   | Rec    | Recovery (%) and RSD (%), (n=5) |     |     |      |    |          |  |  |
|-------|-----------------------|----------|------------------------------|-------|--------|---------------------------------|-----|-----|------|----|----------|--|--|
| IVIIA | Compound              | Detector | (m/z); collision energy (eV) | (g/g) | Cabbag | Cabbage                         |     | uit | Rice |    | requency |  |  |
| 1     | Xylylcarb             | ESI+     | 180>123(12)                  | 0.1   | 93     | 13                              | 67  | 6   | 83   | 11 | 2        |  |  |
| 3     | 1-Naphthylacetic acid | ESI-     | 185>141(15)                  | 1     | NC     | -                               | NC  | -   | NC   | -  | 0        |  |  |
| 3     | Acequinocyl           | ESI-     | 387>341(31)                  | 0.1   | NC     | -                               | NC  | -   | 129  | 51 | 0        |  |  |
| 3     | Acequinocyl hydroxy   | ESI-     | 341>313(28)                  | 0.1   | 8      | 55                              | 60  | 19  | 46   | 40 | 0        |  |  |
| 2     | Acibenzolar acid      | ESI-     | 179>107(20)                  | 0.1   | NC     | -                               | 37  | 18  | 11   | 14 | 0        |  |  |
| 3     | Chlorfluazuron        | ESI-     | 538>518(12)                  | 0.1   | 83     | 20                              | 135 | 18  | 122  | 7  | 1        |  |  |
| 3     | Diuron                | ESI-     | 231>186(18)                  | 0.1   | 91     | 4                               | 40  | 6   | 96   | 4  | 2        |  |  |
| 3     | Fluazinam             | ESI-     | 463>416(20)                  | 0.1   | 78     | 9                               | 72  | 14  | 65   | 6  | 2        |  |  |
| 3     | Inabenfide            | ESI-     | 337>122(18)                  | 0.1   | 71     | 6                               | 38  | 13  | 90   | 3  | 2        |  |  |
| 3     | Lufenuron             | ESI-     | 509>326(18)                  | 0.1   | 77     | 16                              | 67  | 19  | 111  | 4  | 2        |  |  |
| 2     | Methoxyfenozide       | ESI-     | 367>149(22)                  | 0.1   | 77     | 7                               | 56  | 8   | 72   | 2  | 2        |  |  |
| 3     | Teflubenzuron         | ESI-     | 379>339(13)                  | 0.1   | 80     | 50                              | 58  | 19  | 147  | 3  | 0        |  |  |
| 2     | Tepraloxydim          | ESI-     | 340>248(18)                  | 0.1   | 22     | 61                              | 52  | 14  | 61   | 16 | 0        |  |  |

NC = Not calculated because of low sensitivity or recovery, or matrix interference.

Frequency = Number of pesticide-commodity combinations where recoveries and RSDs within the acceptable range.

#### **Recovery test**

The recovery tests of GC series of mixtures were conducted in quintuplicate for each sample of cabbage, grapefruit, spinach, rice and soybean at a level of 0.1  $\mu$ g/g, and the recovery tests for LC/MS series mixtures were also conducted as in quintuplicate for each sample of cabbage, grapefruit and rice at a level of 0.05  $\mu$ g/g. The recovery data obtained with the matrix-matched standards are listed in **Table 1** (GC series) and **Table 2** (LC/MS series).

Xylylcarb was contained in both the mixtures of GC/ MS-IV and LC/MS\_PLMix-1. The results of xylylcarb with GC-MS (EI) showed good recoveries in all investigated food while the result of LC-MS/MS showed poor recovery in grapefruit. It could not be explained why LC-MS/ MS showed such low recovery despite matrix-matched standards. Klein et al. and Pang et al. also reported about 30 of the compounds determined by LC-MS/MS respecttively (Klein et al. 2003; Pang et al. 2006). Their results of recovery tests showed similar to our results, i.e., some of tested compounds sometimes indicated poor recoveries. Some kinds of interaction might have happened which could not be corrected with the matrix matching. Furthermore, many compounds showed low recoveries in LC-MS/MS analysis and relatively high RSDs in GC-MS (EI) analysis. The LC/MS series mixtures contain polar compounds and their recoveries might be affected by the change of pH. High RSDs in GC-MS (EI) analysis might have been caused by the high amount of co-extracts that interfered in GC-MS (EI) chromatograms. In contrast, organophosphorous pesticides measured by GC-FPD had lower RSDs. It was speculated that GC-FPD was more accurate than GC-MS

The tolylfluanid metabolite showed very high levels of recovery while its original compounds showed lower levels of recovery. It was thought that tolylfluanid decomposed through extraction and/or cleanup and/or evaporation. No recovery for thiabendazole in grapefruit was determined because the blank sample contained thiabendazole residues at levels which would mask the low-spiked pesticide. In this case, the matrix matched calibration curve had an extremely high y-intercept compared to the spiking level. Some compounds, such as benzylaminopurine and nereistoxin, could not be monitored at tested concentrations including matrix matched standards because of low sensitivity and/or interferences from matrices.

Fig. 2 shows the results of Table 1 and 2 in a graphic plot of recovery against RSD. A result of a compound that showed from 70 to 120% of recovery and 20% RSD or less was considered good, and this square range was regarded as an acceptable range. The frequencies of plotting within acceptable ranges were counted for all analytes. Fig. 3 shows the number of analyte fixed with the frequency. It shows 161 compounds determined by GC and 27 compounds determined by LC-MS/MS plotted within acceptable range for all tested foods. An additional 67 + 28 com-



Fig. 2 Plot of mean recovery against RSD of 382 pesticides and metabolites. (A) Determined by GC-MS (EI) (147), GC-MS (NCI) (80) and GC-FPD (59) spiked at 0.1  $\mu$ g/g, n=5. (B) Determined by LC-MS/MS (ESI+) (84) and LC-MS/MS (ESI-) (12) spiked at 0.05  $\mu$ g/g, n=5. Frames indicate the acceptable range of 70-120%/recovery and 0-20%/RSD.

pounds measured by GC and 29 compounds measured by LC-MS/MS also indicated acceptable results in the majority of tested foods (see **Table 1** and **2** for details). It was concluded that 256 compounds for GC analysis and 56 com-



**Fig. 3 Summary of recovery tests.** Each bar shows the number of pesticides giving mean recoveries and RSDs within the acceptable range. (**A**) Determined by GC, tested for 5 foods. (**B**) Determined by LC, tested for 3 foods.

pounds for LC-MS/MS analysis were applicable for screening analysis in the proposed method. Approximately 80% of initially planned pesticide/matrix combinations investigated showed good recoveries and precision.

#### CONCLUSION

A rapid multiresidue method to determine more than 300 pesticide residues in food has been studied. The method is based on a simple acetonitrile extraction with SPE cleanup and determination by GC-FPD, GC-MS and LC-MS/MS. The proposed method exhibited good sensitivity and recovery and allows for rapid analysis. A single chemist could prepare from 6 homogenized samples to 6 test solutions within 4 hours. The method requires only a small volume of solvent per sample and needs no special equipments in sample preparation. It covers a wide range of pesticides, is applicable to various fruits and vegetables, and is ideally suited for use in a regulatory laboratory.

## REFERENCES

- Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. *Journal of AOAC International* 86, 412-431
- Erney DR, Gillespie AM, Gilvydis DM, Poole CF (1993) Explanation of the matrix-induced chromatographic response enhancement of organophosphorus pesticides during open tubular column gas chromatography with splitless or hot on-column injection and flame photometric detection. *Journal of Chromatography A* 638, 57-63
- Fillion J, Sauvé F, Selwyn J (2000) Multiresidue method for the determination of residues of 251 pesticides in fruits and vegetables by gas chromatography/ mass spectrometry and liquid chromatography with fluorescence detection. *Journal of AOAC International* 83, 698-713
- Hirahara Y, Kimura M, Inoue T, Uchikawa S, Otani S, Haganuma A, Matsumoto N, Hirata A, Maruyama S, Iizuka T, Ukyo M, Ota M, Hirose H, Suzuki S, Uchida Y (2005) Validation of multiresidue screening methods for the determination of 186 pesticides in 11 agricultural products using gas chromatography (GC). Journal of Health Science 51, 617-627
- Klein J, Alder L (2003) Applicability of gradient liquid chromatography with tandem mass spectrometry to the simultaneous screening for about 100 pesticides in crops. *Journal of AOAC International* 86, 1015-1037
- Notification No. 497-499 (November 29, 2005) Positive List System for Agricultural Chemical Residues in Foods. Ministry of Health, Labour and Welfare, Japan
- Obana H, Akutsu K, Okihashi M, Hori S (2001) Multiresidue analysis of pesticides in vegetables and fruits using two-layered column with graphitized carbon and water absorbent polymer. *The Analyst* **126**, 1529-1534
- Okihashi M, Kitagawa Y, Akutsu K, Obana H, Tanaka Y (2005) Rapid method for the determination of 180 pesticide residues in foods by gas chromatography/mass spectrometry and flame photometric detection. *Journal of Pesticide Science* 30, 368-377
- Pang GF, Fan CL, Liu YM, Cao YZ, Zhang JJ, Li XM, Li ZY, Wu YP, Guo TT (2006) Determination of residues of 446 pesticides in fruits and vegetables by three-cartridge solid-phase extraction-gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. *Journal of* AOAC International 89, 740-771
- Saito Y, Kodama S, Matsunaga A, Yamamoto A (2004) Multiresidue determination of pesticides in agricultural products by gas chromatography/mass spectrometry with large volume injection. *Journal of AOAC International* 87, 1356-1367