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ABSTRACT 
The execution of programmed cell death (PCD) involves the controlled degradation of cellular macromolecules such as proteins and 
nucleic acids. Compared with animal systems, very little is known about the molecular mechanisms regulating macromolecule degra-
dation during plant PCD. Victorin, a host-selective toxin produced by the fungus Cochliobolus victoriae, induces PCD in oat cultivars 
harboring the Vb gene. Victorin-induced PCD displays typical morphological and biochemical features of apoptosis, including nuclear 
DNA laddering, chromatin condensation, cell shrinkage, and a mitochondrial permeability transition. In the oat-victorin system, it has 
been demonstrated for the first time that certain cellular macromolecules are specifically degraded during plant PCD. One example is the 
specific proteolytic cleavage of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Two subtilisin-like 
serine proteases that exhibit caspase-like activity have been identified as associated with Rubisco proteolysis. Another example involves 
the degradation of RNA molecules. Ribosomal RNA species from the cytosol, mitochondria and chloroplasts are all degraded via specific 
degradation intermediates during victorin-induced PCD. Concurrently with rRNA degradation, mRNAs of housekeeping genes such as 
actin and ubiquitin but, interestingly, not those of stress-responding genes such as PR-1 and PR-10, are also targeted for specific degra-
dation. The oat-victorin system, therefore, serves as a model for elucidating the molecular mechanisms regulating macromolecule degra-
dation in the execution phase of plant PCD. 
_____________________________________________________________________________________________________________ 
 
Keywords: apoptosis, DNA laddering, protein cleavage, rRNA/mRNA degradation, victorin  
 
CONTENTS 
 
INTRODUCTION........................................................................................................................................................................................ 77 
INTERNUCLEOSOMAL DNA FRAGMENTATION DURING VICTORIN-INDUCED PCD................................................................. 78 

Nuclear DNA laddering in oat ................................................................................................................................................................. 78 
Signaling molecules and enzymes associated with nuclear DNA laddering in oat .................................................................................. 78 
Is PCD a general response to pathogen attack in plants? ......................................................................................................................... 79 

PROGRAMMED RNA DEGRADATION DURING VICTORIN-INDUCED PCD................................................................................... 79 
Specific RNA degradation in oat ............................................................................................................................................................. 79 
Is RNA degradation a cause or effect of PCD?........................................................................................................................................ 80 
Enzymes associated with RNA degradation during apoptosis ................................................................................................................. 80 

SPECIFIC PROTEIN DEGRADATION DURING VICTORIN-INDUCED PCD...................................................................................... 81 
A variety of proteins are targeted for proteolysis during animal apoptosis.............................................................................................. 81 
Specific proteolytic degradation in oat .................................................................................................................................................... 81 

CONCLUDING REMARKS ....................................................................................................................................................................... 82 
ACKNOWLEDGEMENTS ......................................................................................................................................................................... 82 
REFERENCES............................................................................................................................................................................................. 82 
_____________________________________________________________________________________________________________ 
 
 
INTRODUCTION 
 
Programmed cell death (PCD) is a physiological and patho-
logical process of cell deletion that plays important roles in 
normal tissue homeostasis, stress responses and immune 
system development (Greenberg 1996; Wertz and Hanley 
1996; Jacobson et al. 1997; Danial and Korsmeyer 2004). 
Multi-cellular organisms use the mechanisms of PCD to 
regulate developmental morphogenesis, to remove infected 
or damaged cells from healthy tissues (Jacobson et al. 
1997; Vaux and Korsmeyer 1999; Nagata 2000), and to 
control cell numbers (Jacobson et al. 1997). Intensive study 
of the mechanisms of PCD in animals have identified typi-
cal morphological and biochemical features of PCD (apop-
tosis) (Martin et al. 1994), including condensation and 
shrinkage of the cell, re-organization of the nucleus, mem-

brane blebbing, formation of apoptotic bodies (Kerr et al. 
1972), chromatin condensation (Earnshaw 1995; O'Brien et 
al. 1998), and nuclear DNA laddering (Wyllie 1980; 
Earnshaw 1995). In plants, PCD has also been recognized as 
an integral part of development and survival programs 
(Greenberg 1996). PCD is essential for plant-specific dev-
elopment, such as the formation of tracheary elements 
(Obara et al. 2001) and cereal aleurone cells (Swanson et al. 
1998). The sequence of the events leading to animal PCD is 
also detectable in plants during development and in res-
ponse to different biotic or abiotic stimuli (Baillieul et al. 
1995). However, the mechanisms of PCD are gradually 
becoming clearer (Drury and Gallois 2006; Bouranis et al. 
2007), although many reports have attempted to classify 
PCD in plants as a form of apoptosis as seen in animals 
(Dangl et al. 1996; Pennell and Lamb 1997). 
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During both animal and plant PCD, a broad spectrum of 
changes is induced in various cellular components. One of 
the typical changes is the degradation of specific cellular 
macromolecules such as proteins and nucleic acids. In ani-
mal apoptosis, various proteins, such as alpha-actinin, 
hnRNP K, lamin B1, PARP-1 (Kaufmann et al. 1993; Laze-
bnik et al. 1994) and Rho GDI 2, have been shown to be 
targeted for proteolytic cleavage. Through a proteomics ap-
proach, even more proteins have been identified as cleaved 
during apoptosis (Thiede et al. 2005). In most cases, acti-
vation of certain proteases, which are cysteine proteases 
that are activated by different pro-apoptotic stimuli (Earn-
shaw et al. 1999), precedes the proteolytic events; although 
it is not clear whether the activated protease is directly res-
ponsible for substrate digestion or not. Nucleic acids such 
as nuclear DNA, rRNA and certain mRNA species are also 
specifically degraded during animal apoptosis. At least in 
some cases, macromolecule degradation is thought to be es-
sential for the regulation and execution of apoptosis. 

In this review, we focus on macromolecule degradation 
during plant PCD, using oat (Avena sativa L.) as a model. 
The host-selective toxin victorin, which is produced by the 
phytopathogenic fungus Cochliobolus victoriae, induces 
apoptosis-like cell death in sensitive oat lines harboring the 
single dominant gene, Vb (Navarre and Wolpert 1999). Cell 
death induced by victorin exhibits characteristic features of 
animal apoptosis, such as a mitochondrial permeability 
transition (Curtis and Wolpert 2002, 2004), chromatin con-
densation (Yao et al. 2001), and nuclear DNA laddering 
(Navarre and Wolpert 1999; Tada et al. 2001; Yao et al. 
2001). More recently, using this system, specific proteolytic 
cleavage of the large subunit of ribulose-1,5-bisphosphate 
carboxylase/oxygenase (Rubisco) and specific degradation 
of various RNA species, including rRNA and mRNA, were 
demonstrated for the first time during plant PCD. Therefore, 
the oat-victorin system is one of the best models for eluci-
dating the molecular mechanisms regulating programmed 
macromolecule degradation in the execution phase of plant 
PCD. 
 
INTERNUCLEOSOMAL DNA FRAGMENTATION 
DURING VICTORIN-INDUCED PCD 

 
Nuclear DNA laddering in oat 
 
Internucleosomal DNA degradation, known as nuclear 
DNA laddering, is observed in many (but not all) apoptotic 
processes (Gavrieli et al. 1992). This process plays an es-
sential role in reducing the autoimmune response (Nagata 
2000) or inflammatory response (Bortner et al. 1995), and 
is considered to be a biochemical hallmark of apoptosis 
(Earnshaw 1995; Kerr et al. 1972; Wyllie 1980). The de-
tailed molecular mechanisms leading to DNA laddering 
have been identified previously for animal apoptosis (for 
detail, see Nagata 1997, 2000). It is usually a two-step pro-
cess in which nuclear DNA is first cleaved into 50- to 300-
kb fragments, termed high molecular weight (HMW) DNA 
fragmentation (Walker et al. 1991); subsequently, the DNA 
is degraded into smaller fragments of oligonucleosomal 
size, known as low molecular weight (LMW) DNA degra-
dation or DNA laddering (Lecoeur 2002). However, DNA 
laddering is not always associated with PCD in animal (Sa-
kahira et al. 1999) or plant cells (Mittler and Lam 1995; 
Dangl et al. 1996). 

In oat cells, as is not often the case with plant PCD, 
clear nuclear DNA laddering can be detected during PCD 
triggered by victorin as well as during PCD triggered by 
various elicitors, toxins or pathogen infection (Fig. 1) (Na-
varre and Wolpert 1999; Tada et al. 2001; Hoat et al. 2006). 
By EM-TUNEL and LM-TUNEL methods, serial morpho-
logical changes in the nucleus and other organelles were 
examined during victorin-induced PCD in oat (Yao et al. 
2001). The results revealed that chromatin condensation 
was an early indicator of PCD, preceding DNA fragmenta-
tion, and that organelles remained morphologically intact at 

relatively later stages than reported in other apoptosis sys-
tems (Yao et al. 2001). Interestingly, EM-TUNEL positive 
signals were mostly observed in the heterochromachin (Yao 
et al. 2001), suggesting that DNA cleavage occurred in the 
more compressed nuclear DNA, rather than in open regions 
such as euchromatin. 

 
Signaling molecules and enzymes associated with 
nuclear DNA laddering in oat 
 
Pharmacological studies have indicated that various types 
of Ca2+ inhibitor strongly suppress victorin-induced DNA 
laddering (Tada et al. 2001). Most Ca2+ inhibitors also 
completely prevent victorin-induced cell death as well as 
other cell death-related phenomena such as chromatin con-
densation, RNA degradation and Rubisco cleavage (Na-
varre and Wolpert 1999; Yao et al. 2001; Hoat et al. 2006). 
Therefore, an influx of Ca2+ seems to be an upstream and 
crucial signal during victorin-induced cell death. Indeed, in 
oats, the administration of the calcium ionophore A23187 
alone causes cell death exhibiting nuclear DNA laddering 
(Tada et al. 2001). The protein kinase inhibitor K-252a was 
shown to have no effect on DNA laddering, but it did block 
chromatin condensation induced by victorin (Tada et al. 
2001; Yao et al. 2001). Interestingly, A23187-induced 
DNA laddering was significantly suppressed by K-252a. 
Therefore, protein phosphorylation appears to be involved 
in upstream cell death signaling triggered by A23187, but 
not by victorin. N-acetyl-L-cysteine (NAC), a ROS scaven-
ger was reported to inhibit the mitochondrial oxidative 
burst and delay victorin-induced chromatin condensation 
and DNA degradation (Yao et al. 2002b). We also found 
that NO stimulates the accumulation of ROS in the hyper-
sensitive reaction (HR) lesion (Tada et al. 2004) and func-
tions as an essential mediator in the modulation of H2O2 ac-
cumulation during the defense response (Tada et al. 2004). 

Protease inhibitors such as E-64 (a cysteine protease 
inhibitor) and aprotinin (a serine protease inhibitor) blocked 
both victorin- and A23187-induced DNA laddering (Tada 
et al. 2001). Interestingly, cell extracts derived from oat tis-
sues undergoing victorin-induced PCD caused nuclear col-
lapse and internucleosomal DNA fragmentation in isolated 
nuclei (Kusaka et al. 2004). In a cell-free apoptosis system 
with isolated nuclei, E-64 but not aprotinin still strongly 
suppressed victorin-induced DNA laddering and nuclear 
collapse (Kusaka et al. 2004), indicating that at least one of 
the steps involving an E-64 sensitive cysteine protease is 

Fig. 1 Nuclear DNA laddering in oat cells. Primary leaf segments of the 
victorin-sensitive oat line cv. Iowa X 469 were treated with water (lane 
1); 5 ng ml-1 victorin (lane 2); 5 mM CuSO4 (lane 3); NaN3 (lane 4) for 6 
h. Another oat cultivar Shokan 1 was inoculated with an incompatible 
race of the crown rust fungus (lane 6). Lane 5 represents genomic DNA 
from uninoculated control plants. Nuclear DNA was separated in a 2% 
agarose gel and photographed after staining with 0.5 ug ml-1 ethidium 
bromdide. 
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likely to occur in nuclei. Interestingly, in the cell-free sys-
tem, E-64 effectively prevented DNA laddering but none 
of the specific inhibitors of caspase-1, 2, 3, 4, 5, 6, 8, 9 or 
granzyme B was effective for suppressing DNA laddering 
or nuclear collapse (Kusaka et al. 2004). Therefore, the E-
64-sensitive cysteine protease acting in or with oat nuclei 
to achieve DNA laddering appears to be a protease with 
different catalytic features from caspases or granzyme B. 

In animals, certain endonucleases, including DNase I 
(Peitsch et al. 1993), DNase II (Barry and Eastman 1993), 
NUC18 (Hughes and Cidlowski 1994), CAD (Enari et al. 
1998), and endonuclease G (Li et al. 2001; Parrish et al. 
2001), have been implicated in the degradation of chroma-
tin into multiples of 180-bp nucleosomal units. These nu-
cleases differ in their cation requirement and location with-
in the cell (Peitsch et al. 1994). In some cases, such as with 
CAD, caspase activation precedes the activation of endo-
nuclease for DNA laddering (Enari et al. 1995a, 1995b; 
Martin et al. 1995; Enari et al. 1996, 1998; Nagata 2000). 
It was reported that CAD is responsible not only for DNA 
fragmentation but also for the morphological changes in 
nuclei (Nagata 2003), and that this process is sufficient to 
kill cells (Nagata 2000). 

In plant cells undergoing PCD, activation of several 
specific endonucleases has been reported (for detail see 
Mittler and Lam 1995; Dominguez and Cejudo 2006). One 
of these endonuceases, ZEN1, has been cloned and shown 
to degrade nuclear DNA in tracheary elements without 
characteristic ladder formation (Ito and Fukuda 2002). 
During apoptotic cell death induced by victorin, activation 
of a specific endonuclease of 28 kDa (p28) was detected 
(Tada et al. 2001; Kusaka et al. 2004). The activation of 
p28 preceded the occurrence of chromosomal DNA degra-
dation, and mostly paralleled DNA laddering regardless of 
cell death triggers (Tada et al. 2001). Pharmacological stu-
dies using a cell-free system revealed that nucleases and 
the cysteine proteases were essential components for nu-
clear DNA fragmentation, and both types of enzymes acted 
cooperatively to induce DNA laddering and nuclear col-
lapse (Kusaka et al. 2004). 

 
Is PCD a general response to pathogen attack in 
plants? 
 
Nuclear DNA laddering was observed in oat leaves infec-
ted with a wide range of plant pathogens including an obli-
gate parasite, P. coronata f. sp. avenae (Tada et al. 2001; 
Yao et al. 2002a; Tada et al. 2004); a facultative biotroph 
parasite, M. grisea; pathogenic bacteria, P. syringae pv. 
atropurpurea and P. syringae pv. Coronafaciens; and rye-
grass mottle virus. All of these pathogens induced most of 
the apoptotic features, such as chromatin condensation, in 
and around the infection sites (Yao et al. 2002a). Intri-
guingly, apoptotic responses occurred in both incompatible 
and compatible interactions. In the case of the crown rust 
fungus, DNA laddering was observed at a later stage of 
infection in the compatible interaction compared with the 
incompatible one. In contrast, when oat was inoculated 
with the blast fungus, chromatin condensation and DNA 
laddering were detected earlier in oat cells infected with a 
compatible strain than an incompatible one (Yao et al. 
2002a). Previous investigations in other plant species also 
demonstrated that, in some cases, DNA laddering is detec-
ted in both incompatible and compatible plant-pathogen in-
teractions (Ryerson and Heath 1996; Dickman et al. 2001; 
Kiba et al. 2006), whereas in other cases, no nuclear DNA 
laddering was observed in either compatible or incompati-
ble interactions (Mittler and Lam 1995; Ryerson and Heath 
1996; Del Pozo and Lam 1998). Because PCD can be trig-
gered by initiation of a hypersensitive response and by 
some toxins, it can occur in both compatible and incompa-
tible interactions. At least in oats, PCD seems to be a com-
mon and general response to pathogen attack (Yao et al. 
2002a). 
 

PROGRAMMED RNA DEGRADATION DURING 
VICTORIN-INDUCED PCD 

 
Specific RNA degradation in oat 
 
Specific rRNA degradation is known to occur during ani-
mal apoptosis in some cell lines (Houge et al. 1995; Lafar-
ga et al. 1997; Nadano and Sato 2000; King et al. 2000; 
Kulka et al. 2003). Originally, rRNA degradation was re-
ported to occur in cAMP-induced apoptosis of a rat mye-
loid leukemia cell line (Houge et al. 1993) and in X-ray-in-
duced apoptosis of human lymphocytes (Delic et al. 1993). 
Later, cleavage of rRNA during apoptosis was observed in 
several other combinations of cell types and triggers, but 
not in every cell type or in response to every trigger (Craw-
ford et al. 1997; Samali et al. 1997; Kulka et al. 2003). In-
terestingly, 28S and 18S rRNA molecules were sometimes 
differently targeted for degradation (Houge et al. 1993; Ba-
nerjee et al. 2000; King et al. 2000). 

In the oat-victorin system, various RNA species inclu-
ding cytosolic 28S and 18S rRNA, mitochondrial 18S RNA, 
and chloroplastic 23S rRNA, in addition to the mRNAs of 
housekeeping genes, were shown to be cleaved via specific 
intermediates during apoptotic cell death (Fig. 2) (Hoat et 
al. 2006). In contrast, the same RNA molecules were rather 
randomly degraded without specific intermediates during 
necrotic cell death induced by a high concentration (30 

Fig. 2 Degradation of rRNA is induced in different organelles during 
victorin-induced apoptosic cell death. Primary leaf segments of the 
victorin-sensitive oat line cv. ‘Iowa X469’ were treated with 5 ng ml-1 
victorin for the time periods indicated in the figure. Total RNA was 
extracted and analyzed by ethidium bromide staining (a) and by northern 
analysis with probes for cytosolic 18S rRNA (b), mitochondrial 18S rRNA 
(c) and chloroplastic 23S rRNA (d). The arrowheads indicate the major 
degradation products of the rRNA species. On the left the positions of 
RNA molecular length markers are indicated. (from Hoat et al. (2006) The 
Plant Journal 46, 922-933, with kind permission, Blackwell Publishing. 
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mM) of CuSO4 or heat shock (Hoat et al. 2006). Interes-
tingly, only constitutive, but not stress-inducible, mRNAs 
were degraded during apoptotic death of oat cells induced 
by victorin or other apoptotic inducers (Hoat et al. 2006). 
The degradation of housekeeping mRNAs was detectable 
as early as DNA laddering, but later than rRNA degra-
dation (Hoat et al. 2006), suggesting that the degradation 
of mRNA is not an early event preceding other apoptosis 
hallmarks (Hoat et al. 2006). These observations suggest 
that subsets of mRNAs might be selectively targeted for, or 
protected from, degradation during PCD in oat. Selective 
degradation of mRNAs during PCD appears to be a biolo-
gically relevant phenomenon because dying cells no longer 
require housekeeping genes, but may need the products of 
stress-responsive genes such as anti-microbial proteins to 
prevent proliferation of an invading pathogen. In oat cells, 
there may be some mechanism to protect newly synthe-
sized mRNAs; alternatively, selective mRNA degradation 
could just be due to the subcellular localization of an 
mRNA species in the dying cells. Although housekeeping 
mRNAs are distributed in the cytoplasm, newly synthe-
sized mRNAs could be mostly located in the nucleus 
where they would be relatively safe from attack by nucle-
ases. 

The degradation of cytosolic 18S/28S rRNA and mito-
chondrial 18S rRNA was shown to precede the cleavage of 
chloroplastic 23S rRNA and DNA fragmentation during 
victorin-induced PCD (Hoat et al. 2006), suggesting that 
the effect of victorin on the chloroplasts occurred later than 
its effect on mitochondria (Navarre and Wolpert 1995). In 
animal systems, it was also reported that the timing of 
RNA degradation differed among RNA species in some 
cases. In HA-1 fibroblastic cells, for example, there was 
much less degradation of 28S/18S rRNA and this occurred 
much later than degradation of mitochondrial 16S rRNA, 
during H2O2-induced apoptosis (Crawford et al. 1997). 
Mitochondria play an essential role in the regulation of 
PCD in both animal and plant cells (Susin et al. 1999). A 
reduction in the mitochondrial membrane potential occurs 
in the early stages of apoptosis and coincides with a de-
crease in mitochondrial translation, and often with ROS 
production on the mitochondrial membrane (Crawford et al. 
1997; Yao et al. 2002b). The victorin-induced collapse of 
mitochondrial membrane potential sufficiently affects mi-
tochondrial function to influence the coordinated pathways 
that regulate Rubisco cleavage, DNA laddering and other 
morphological changes (Curtis and Wolpert 2004). Na-
varre and Wolpert (1995) showed binding of victorin to the 
glycine decarboxylase complex (GDC) in mitochondria, 
and inhibition of GDC activity. Nevertheless, it is still not 
clear whether the GCD is a biological significant target of 
victorin (Curtis and Wolpert 2002, 2004; Tada et al. 2005), 
dysfunction of mitochondria caused by victorin may lead 
to degradation of mitochondrial 16S rRNA at a relatively 
early stage of victorin-induced PCD. 

 
Is RNA degradation a cause or effect of PCD? 
 
Total protein synthesis is dramatically decreased in apop-
totic cells (Deckwerth and Johnson 1993). The apoptosis-
associated cleavage of cytoplasmic mRNAs (Del Prete et 
al. 2002) and rRNA (Houge et al. 1995) might cause the 
down-regulation of protein synthesis during apoptosis (Del 
Prete et al. 2002). In addition to RNA degradation, the 
apoptosis-related specific cleavage of translation initiation 
factors (eIF4GI, eIF4GII) (Clemens et al. 1998; Marissen 
et al. 2000), which act as a bridge between eIF4E and eIF3 
and allow an mRNA molecule to associate with the 40S ri-
bosomal subunit during the translation process, was sug-
gested to be a mechanism of translational control during 
apoptosis (Marissen and Lloyd 1998; Bushell et al. 2004). 
The degradation of rRNA occurred coincidentally with the 
cessation of cellular protein synthesis in most cases (Na-
dano and Sato 2000). In addition, protein synthesis inhibit-
tors such as cycloheximide or anisomycin are widely used 

to induce apoptosis in certain mammal cell lines, such as 
human promyelocytic leukemia HL-60 cells (Martin et al. 
1990), rat myeloid leukemia cells (Houge et al. 1993), and 
S49 Neo cells (King et al. 2000). These results support the 
idea that inhibition of protein synthesis by rRNA or mRNA 
degradation could be a cause of apoptosis. However, there 
are several reports that argue against this idea. First, admi-
nistration of cycloheximide does not induce apoptosis in 
every cell type, but rather causes significant decreases in 
the extent of apoptosis induced by other triggers in various 
cell types (for detail see Wertz and Hanley 1996; King et al. 
2000). In addition, it was reported that the protein synthe-
sizing ability of ribosomes remained intact after 28S rRNA 
degradation (Houge and Døskeland 1996; Kulka et al. 
2003). Therefore, it is still a matter of debate whether chan-
ges in protein synthesis can be a trigger of apoptosis (Na-
dano and Sato 2000). In oat cells, cycloheximide did not in-
duce DNA laddering or RNA degradation when adminis-
tered alone (data not shown), but suppressed DNA ladder-
ing in victorin-induced PCD (Tada et al. 2001). Therefore, 
in oat cells, inhibition of protein synthesis itself might not 
be sufficient to induce apoptotic cell death even though 
rRNA degradation might contribute to the progression of 
apoptotic cell death by inhibiting unnecessary protein syn-
thesis and/or facilitating the recycling of ribonucleotides 
(Hoat et al. 2006). 

In oat, RNA degradation was mostly concomitant with 
nuclear DNA laddering, even though the two processes are 
mediated by different signaling pathways with some over-
lap (Hoat et al. 2006). In some other systems, however, it 
has been shown that there is no clear correlation between 
DNA cleavage and RNA degradation. In HL-60 cells, for 
example, apoptotic cell death with massive DNA cleavage 
was induced without any degradation of rRNA; in okadaic 
acid-treated Molt-4 cells, rRNA fragmentation was ob-
served without DNA laddering (Samali et al. 1997). It was 
also indicated that rRNA degradation in virus-infected cells 
occurred prior to the execution of apoptosis (Goswami et al. 
2004) and was independent of caspase-induced DNA de-
gradation (Nadano and Sato 2000). 

 
Enzymes associated with RNA degradation during 
apoptosis 
 
Programmed RNA degradation must require activation of 
specific ribonucleases (King et al. 2000), since RNA is ran-
domly degraded when exposed to cell lysates containing 
various RNase activities (Houge et al. 1995). In animal sys-
tems, the RNase L enzyme is thought to be a member of a 
multi-component system for RNA degradation during 
apoptosis (Goswami et al. 2004). RNase L activation was 
concomitant with the degradation of rRNA and mRNA, and 
caspase activation, during apoptosis (Houge et al. 1995; 
Banerjee et al. 2000; Del Prete et al. 2002). The degrada-
tion of 28S rRNA is reduced by inhibition of caspases, sug-
gesting that caspases play an important role in RNA clea-
vage during apoptotic cell death (King et al. 2000). The 
caspase-3 specific inhibitor suppresses rRNA degradation 
as well as inhibition of protein synthesis in Jurkat cells. 
This may indicate that the degradation of rRNA could be a 
physiologically important cellular signal for the malfunc-
tion of the protein synthesis machinery during apoptosis in 
Jurkat cells (Nadano and Sato 2000). 

In the oat-victorin system, the degradation of rRNAs 
occurs via the same specific intermediates regardless of the 
cell death trigger, indicating that cleavage of RNA mole-
cules is catalyzed by the same or a similar ribonuclease. 
Pharmacological studies indicated that an E-64-sensitive 
cysteine protease and an aprotinin-sensitive serine protease 
were involved in particular steps of mRNA degradation 
during victorin-induced PCD (Hoat et al. 2006). These pro-
teases may activate a specific RNase by proteolytic clea-
vage, or may make the conformation of an mRNA-contain-
ing ribo-protein complex accessible to the RNase. Adminis-
tration of the protein synthesis inhibitor cycloheximide did 

80



DNA and RNA degradation in oats. Hoat et al. 

 

not significantly affect rRNA/mRNA degradation, indica-
ting that, like other apoptotic effector molecules, the en-
zymes responsible for RNA degradation are already pre-
sent in cells and become active when apoptosis is induced 
(King et al. 2000). 
 
SPECIFIC PROTEIN DEGRADATION DURING 
VICTORIN-INDUCED PCD 

 
A variety of proteins are targeted for proteolysis 
during animal apoptosis 
 
Proteins are basic structural components of the cell and or-
ganelles, and also key players in various signaling path-
ways. Destruction of key substrates in cellular homeostatic 
pathways is an essential biochemical mechanism underly-
ing the apoptotic process (Yuan et al. 1993; Casciola-Ro-
sen et al. 1994). In animal systems, a variety of proteins 
have been shown to be specifically cleaved during apop-
tosis. Early in apoptosis, poly-(ADP-ribose)-polymerase 
(PARP) is cleaved into distinct 89- and 24-kDa fragments 
by the action of caspase-3 (Kaufmann et al. 1993; Lazeb-
nik et al. 1994). The specific cleavage of PARP has been 
used as a hallmark of apoptotic cell death in different types 
of cell responding to a wide range of apoptotic triggers 
(Kaufmann et al. 1993; Lazebnik et al. 1994; Tewari et al. 
1995; Hercer and Wang 1999; Whitacre et al. 1999). 
PARP synthesizes and transfers ADP-ribose polymers onto 
the glutamic acid residues of acceptor proteins (Schreiber 
et al. 2006); functionally, it is involved in DNA damage 
repair (Wang et al. 1997; Trucco et al. 1999). DNA-depen-
dent protein kinase (DNA-PK), another protein involved in 
the DNA damage response and cell cycle control (Hari et 
al. 1995), was also reported to be degraded into specific 
fragments in several cell types undergoing apoptosis (Song 
et al. 1996). Therefore, the cleavage of PARP and/or 
DNA-PK may facilitate DNA fragmentation in apoptosis 
(Shiokawa et al. 1994) by inactivating the DNA repair sys-
tem (Wang et al. 1997). This process occurs concomitantly 
with DNA laddering, or precedes it in some cases (Kimura 
et al. 1998). However, apoptosis can occur even when 
either PARP cleavage or DNA fragmentation is prevented 
(Herceg and Wang 1999), suggesting that these events can 
be dissociated and, therefore, may not be in a cause-effect 
relationship with each other (Li and Drazynkiewicz 2000). 

Degradation of structural proteins is also an early fea-
ture of apoptosis. The degradation of lamin B1 leads to the 
collapse of the cell nucleus during apoptosis (Rao et al. 
1996). Chromatin condensation and breakdown of the nu-
clear envelope may occur as a result of disruption of nu-
clear lamina architecture (Weaver et al. 1996). Cytoskele-
ton proteins such as actin (Kayalar et al. 1996), the cyto-
plasmic actin-severing protein gelsolin (Kothakota et al. 
1997), a major component of the cortical cytoskeleton, fo-
drin (Martin et al. 1995), and a protein component of the 
microfilament system, Gas2 (Brancolini et al. 1992), are 
also known to be targets for proteolytic degradation during 
apoptosis. 

An interesting class of proteins targeted for degrada-
tion during apoptosis is those involved in the splicing of 
mRNA (Casciola-Rosen et al. 1996). The 70-kDa protein 
component of the U1 small nuclear ribonucleoprotein, 
which is essential for the splicing of precursor mRNA and 
for the recognition of the 5� splice site (Sharp 1994), is 
observed as a 40-kDa fragment during apoptosis, and the 
kinetics of its cleavage coincide with the appearance of 
cells with an apoptotic morphology (Casciola-Rosen et al. 
1994). In addition, it has recently been shown that non-
coding RNA in the spliceosomal U1 snRNP complex can 
be a target for degradation. The U1 snRNP complex con-
tains the U1 snRNA molecule and the U1 snRNP specific 
proteins U1-70K, U1A, and U1C, plus a common set of 
eight proteins called the Sm proteins (Hoet et al. 1995). 
Recent studies have indicated that U1 snRNA is specifi-
cally cleaved during apoptotic cell death in many systems 

(Degen et al. 2000). 
 

Specific proteolytic degradation in oat 
 
Various researchers have reported that caspase-specific in-
hibitors can suppress different forms of plant PCD induced 
by pathogen attack (Del Pozo and Lam 1998) or treatment 
with elicitors (Elbaz et al. 2002). Activation of a caspase-
3–like protease was reported to occur concomitantly with 
PARP cleavage during heat shock–induced PCD in N. taba-
cum suspension cells (Tian et al. 2000). However, no plant 
proteases exhibiting significant sequence homology to cas-
pases have been identified, even in Arabidopsis or rice, 
whose genomes have been fully decoded. 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 
4.1.1.39), (Rubisco), the most abundant protein in leaves, is 
a bifunctional enzyme that catalyzes two competing reac-
tions, photosynthetic CO2 fixation and photorespiratory car-
bon oxidation, in the stroma of chloroplasts (Evans and 
Seemann 1989; Ishida et al. 1998). Rubisco is subjected to 
several forms of post-translational modification, including 
the removal of two N terminal amino acid residues and ace-
tylation of Pro-3 of the large subunit of Rubisco (LSU) 
(Mulligan et al. 1988); e-methylation of Lys-14 of the LSU 
(Houtz et al. 1989); proteolytic cleavage of the small sub-
unit (SSU) by the stromal processing protease (VanderVere 
et al. 1995); and a-methylation of Met-1 of the processed 
form of the SSU (Grimm et al. 1997). Navarre and Wolpert 
(1999) first reported that treatment of oat leaf slices with 
victorin in the dark led to the accumulation of a truncated 
form of the LSU missing the first 14 amino acids. The ef-
fect of victorin on the LSU is markedly different between 
light and dark conditions. Under light conditions, no detec-
table truncated LSU was observed, indicating that the 
cleaved product was degraded too quickly, or that there 
may be a different mechanism of LSU breakdown in the 
light (Navarre and Wolpert 1999). The degradation of Ru-
bisco, which can occur under various stressful conditions 
(Ferreira and Teixeira 1992), may affect photosynthesis and 
nitrogen economy in plants during senescence (Mehta et al. 
1992; Ishida et al. 1998). It was reported that reactive oxy-
gen species (ROS) can trigger the degradation of Rubisco 
(Mehta et al. 1992; Mitsuhashi et al. 1992) or directly di-
gest Rubisco (Ishida et al. 1998) during ROS-induced cell 
death (Casano and Trippi 1992). 

The victorin-induced cleavage of Rubisco was preven-
ted by E-64 (a Cys protease inhibitor) and leupeptin (a Cys 
and Ser protease inhibitor) (Navarre and Wolpert 1999; 
Coffeen and Wolpert 2004) as well as by caspase-specific 
inhibitors (Coffeen and Wolpert 2004). The initial step of 
Rubisco fragmentation may occur within chloroplasts, pos-
sibly due to the action of a Rubisco specific protease(s) or 
the specific modification of Rubisco, followed by general 
proteolysis (Huffaker 1990). Similar to DNA laddering and 
RNA degradation, inhibitors of calcium signaling were 
mostly effective in blocking LSU cleavage induced by vic-
torin (Navarre and Wolpert 1999). Interestingly, naphthyl 
acid phosphate (NAP), a phosphatase inhibitor, caused LSU 
cleavage in leaf slices in the absence of victorin (Navarre 
and Wolpert 1999). Pretreatment of leaf slices with cyclo-
heximide or kanamycin did not suppress Rubisco cleavage, 
indicating that the protease involved is post-translationally 
activated (Navarre and Wolpert 1999). Recently, two prote-
ases that are apparently involved in the Rubisco proteolytic 
cascade were purified and characterized (Coffeen and Wol-
pert 2004). These proteases, designated as saspase-1 and 
saspase-2, were shown to be sensitive to caspase-specific 
inhibitors that were effective in suppressing LSU cleavage 
(Coffeen and Wolpert 2004). Surprisingly, the saspases dis-
played amino acid sequences homologous to plant subtili-
sin-like Ser proteases, indicating that, in plants, Ser prote-
ases may exhibit biological functions similar to those of 
animal caspases belonging to the family of Cys proteases. 
Unlike caspases, saspases were constitutively present in an 
active form in the cell, but were likely relocalized to the 
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extracellular fluid after the induction of PCD by victorin 
(Coffeen and Wolpert 2004). 
 
CONCLUDING REMARKS 
 
Because PCD is a form of cell death, it involves a dis-
mantling of cellular structures through degradation of bio-
macromolecules in the cell. In fact, the great majority of 
molecular events during PCD consist of degradation of va-
rious cellular macromolecules. The macromolecular degra-
dation appears to function either as a key process for faci-
litating PCD or just as a cleaning process of dead cells for 
recycling cellular materials. In either case, most of the pro-
cesses seem to be dictated by an innate program. Eluci-
dating the molecular mechanisms of macromolecule degra-
dation, therefore, will help decipher the innate program of 
PCD in plants as well as in animals. 
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