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ABSTRACT 
Sucrose is one of the most common and abundant carbon forms in plants. Most plants synthesize sucrose as a major photosynthetic 
product and use it for long distance carbon transport. Therefore sucrose transport in plants probably is highly regulated and sucrose 
transporters have indispensable roles in the regulation. In the Arabidopsis genome, 69 sugar transporter homologues have been found, 9 of 
which are in the sucrose transporter SUC/SUT family. The SUC/SUT family is further divided into three subfamilies based on homology: 
SUC2/SUT1, SUC3/SUT2 and SUC4 subfamilies. Gene structures, protein structures, kinetics of sucrose transport and subcellular 
localizations differ between these three subfamilies. Sucrose transporter genes have been isolated from many different plants and their 
expressions, regulations and physiological roles have been studied. This review summarizes these studies of sucrose transporters. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
Most plants synthesize sucrose as a major photosynthetic 
product and use it for long-distance carbon transport. Al-
though some plant species use oligosaccharides or polyols 
for long-distance carbon transport (Keller and Pharr 1996; 
Noiraud et al. 2001b), such as the raffinose series of oligo-
saccharides in Cucurbitaceae, sorbitol in Rosaceae and 
mannitol in Apiaceae, these plants also synthesize sucrose 
and use it for long-distance carbon transport. Thus sucrose 
is a universal form of long-distance carbon transport and 
sucrose transport systems have indispensable roles in plant 
growth and development. Riesmeier et al. (1992) identified 
sucrose transporter cDNA (SoSUT1) in the spinach cDNA 
library by using a screening system with a yeast mutant. 
Since then, many sucrose transporter genes have been iden-
tified and characterized for various plant species. The im-
portance of sucrose transporters not only in sucrose phloem 
loading in source leaves, but also in the development of 
various sink organs and tissues such as seeds and fruits, 
have been reported. Sucrose transporters in plants may be 
controlled not only by transcriptional and translational 
regulations, but also by post-translational regulations, inc-

luding protein phosphorylation and oligomerization of dif-
ferent kinds of sucrose transporters. Recent proteome anal-
yses of vacuolar membrane proteins identified sucrose 
transporters of vacuolar membrane. Ward et al. (1998), 
Kühn et al. (1999), Lalonde et al. (1999, 2004), Lemoine 
(2000), Williams et al. (2000) and Kühn (2003) summarized 
sucrose transporters in plants. Here, sucrose transporter stu-
dies in plants are reviewed generally and recent information 
is added. 
 
SUCROSE TRANSPORTER FAMILY AND 
SUBFAMILIES 
 
Sugar transporters in different organisms, including human, 
plants and yeast, belong to a major facilitator superfamily 
(MFS) (Lalonde et al. 2004). At least 69 sugar transporter 
homologues have been found in Arabidopsis and are clas-
sified into eight large families (Shiratake 2007): sucrose 
transporter (SUC/SUT), hexose transporter (STP/HXT), 
polyol transporter (PLT), myo-inositol transporter (ITR/ 
MIT), plastidic glucose transporter (pGlcT), putative mono-
saccharide sensing protein (AZT/MSSP), SFP and one un-
characterized monosaccharide transporter family. Nine suc- 
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Fig. 1 Phylogenetic tree of the SUC/SUT family. An unrooted N-J tree was constructed for sucrose transporters of various plants in the text by using 
CLUSTAL W. The SUC/SUT family was further classified into three subfamilies: SUC2/SUT1, SUC4 and SUC3/SUT2 subfamilies. Ag, Apium 
graveolens; Am, Alonsoa meridionalis; At, Arabidopsis thaliana; Bv, Beta vulgaris; Cit, Citrus sinensis; Dc, Daucus carota; Hv, Hordeum vulgaris; Le, 
Lycopersicon esculentum; Nt, Nicotiana tabacum; Os, Oryza sativa; Pm, Plantago major; Ps, Pisum sativum; Rc, Ricinus communis; Sh, Saccharm 
hybrid; So, Spinacea oleracea; St, Solanum tuberosum; Ta, Triticum aestivum; Vf, Vicia faba; Vv, Vitis vinifera; Zm, Zea mays. 

Fig. 2 Gene structures of the SUC/SUT family of Arabidopsis and rice. An N-J tree was constructed by using CLUSTAL W. Gene structures are the 
predictions in ARAMEMNON (http://aramemnon.botanik.uni-koeln.de/). Exons and introns are shown by a blue box and a black line, respectively. 
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rose transporter homologues of Arabidopsis belong to the 
SUC/SUT family, which is, together with the STP/HXT 
family, the most well-characterized family. Homologues of 
the SUC/SUT family exist in other higher and lower orga-
nisms, including Escherichia coli, yeast and human, how-
ever, amino acid identity between the homologues and the 
SUC/SUT family is very low. The homologues are mem-
bers of the MFS and called oligosaccharide/H+ symporter 
(OHS) family (Pao et al. 1998). In most organisms, sucrose 
is a minor sugar and sucrose transport system is not neces-
sary. Therefore, although some members of the OHS family 
can transport sucrose, they are not for sucrose transport but 
for other disaccharides or oligosaccharides, such as lactose 
and raffinose, in organisms other than plants (Pao et al. 
1998). 
 
Gene structures of sucrose transporters 
 
The SUC/SUT family is further divided into three subfami-
lies based on homology: SUC2/SUT1, SUC3/SUT2 and 
SUC4 (Fig. 1). Nine and five sucrose transporter genes are 
in the Arabidopsis and rice genomes, respectively. Their 
gene structures (compositions of exons and introns) were 
compared in this study (Fig. 2). Interestingly, the gene 
structures of these sucrose transporters are very similar 
within each subfamily, but differ between the three subfa-
milies. Genes in the SUC2/SUT1 subfamily have a large 
first exon and small second and third exons. One exception 
in the SUC2/SUT1 subfamily is AtSUC2 that has a large 
first exon and three small exons, but its gene structure is 
still more similar to other members of the SUC2/SUT1 
subfamily than to the other two families. Genes of the 
SUC4 subfamily have large first and second exons and 
three smaller exons. The first and second exons in the 
SUC4 subfamily might correspond to the first large exon in 
the SUC2/SUT1 subfamily. The gene structure of the 
SUC3/SUT2 subfamily is very different from that of the 
SUC2/SUT1 and SUC4 subfamilies because it consists of 
more than ten small exons. 

Interestingly, sucrose transporters of dicotyledons are 
distributed in all three subfamilies, but those of monocoty-
ledons are only in the SUC3/SUT2 and SUC4 subfamilies. 
This suggests that the SUC3/SUT2 and SUC4 subfamilies 
existed in primitive plants before the evolutionary diver-
gence of monocotyledons and dicotyledons. The SUC2/ 
SUT1 subfamily might have appeared in dicotyledons after 
the divergence. Each plant family or species has para-
logues close to each other in the SUC2/SUT1 subfamily. 
For instance, seven paralogues of Arabidopsis and three 
paralogues of celery in the SUC2/SUT1 subfamily form a 
cluster in each of the plants (Fig. 1). This suggests that pa-
ralogues of the SUC2/SUT1 subfamily in each plant spe-
cies might have differentiated in a later period of evolution. 
The major sucrose subfamilies of dicotyledons and mono-
cotyledons are the SUC2/SUT1 subfamily and the SUC3/ 
SUT2 subfamily, respectively, and so dicotyledons and 
monocotyledons each developed their subfamily preferen-
tially during their evolution. 
 
Protein structure and kinetics of sucrose 
transporters 
 
The SUC/SUT family has typical structures of an MFS, 
such as 12 transmembrane domains (TMDs) and 11 loops 
(Fig. 3). The N- and C-terminuses are considered to be in 
the cytosol. The gene (Fig. 2) and protein (Fig. 3) struc-
tures of the SUC3/SUT2 subfamily differ from those of the 
SUC2/SUT1 and SUC4 subfamilies. The SUC3/SUT2 sub-
family, with some exceptions in rice, has extended do-
mains in the central loop (about 50 amino acids longer than 
the other subfamilies) and the N-terminus is about 30 ami-
no acids longer than for the other subfamilies (Barker et al. 
2000, Fig. 3). Yeast sugar sensor proteins, such as SNF3 
and RGT2, have a hexose transporter-like structure with an 
extended domain (Özcan et al. 1996, 1998). Sucrose trans-

port activity has not detected for yeast-expressed tomato 
LeSUT2 (Barker et al. 2000), and so LeSUT2 is hypothe-
sized to act as a sucrose sensor. However, the SUC3/SUT2 
subfamily, such as common plantain PmSUC3, rice 
OsSUT1 and barley HvSUT1, have the ability to transport 
sucrose (Hirose et al. 1997; Toyofuku et al. 2000; Barth et 
al. 2003; Sivitz et al. 2005). The knockout mutant of Arabi-
dopsis AtSUT2 has no conspicuous phenotype (Barth et al. 
2003), suggesting that AtSUT2 does not act as a sensor 
because a more marked phenotype would be expected for 
such a sensor. Whether members of the SUC3/SUT2 subfa-
mily act as sucrose sensors is still debatable (Eckardt 2003). 

Fig. 3 Protein structure of the SUC2/SUT1 subfamily (AtSUC2/ 
SUT1), SUC4 subfamily (AtSUC4) and SUC3/SUT2 subfamily 
(AtSUC3/SUT2). Transmembrane domains were predicted by HMMTOP 
(http://www.enzim.hu/hmmtop/). Sucrose transporters have 12 transmem-
brane domains (TMDs) and 11 loops. The SUC3/SUT2 subfamily has ex-
tended domains in the central loop and N-terminus. 
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The SUC2/SUT1 subfamily was identified first and its 
sucrose transport activity was characterized well. It in-
cludes high-affinity sucrose transporters with Km values 
for sucrose of 100 μM to 2 mM (Kühn 2003). The SUC4 
subfamily with few exceptions, include low-affinity suc-
rose transporters of Km about 5 mM (Weise et al. 2000; 
Weschke et al. 2000). The SUC3/SUT2 subfamily, such as 
common plantain PmSUC3, rice OsSUT1 and barley 
HvSUT1, show low-affinity sucrose transport activities 
(Hirose et al. 1997; Toyofuku et al. 2000; Barth et al. 
2003; Sivitz et al. 2005). Most members of the SUC3/ 
SUT2 subfamily have extended domains in the central loop 
and the N-terminus, and the domains are considered to be 
important for affinity for sucrose or for regulation of trans-
port activity or both. Schulze et al. (2000) exchanged the 
N-terminuses of the SUC3/SUT2 subfamily (AtSUT2, low 
affinity for sucrose) and the SUC2/SUT1 subfamily 
(StSUT1, high affinity for sucrose): AtSUT2 with the N-
terminus of StSUT1 showed higher affinity and StSUT1 
with the N-terminus of AtSUT2 showed lower affinity 
compared with their native forms. This shows the impor-
tance of the N-terminus for affinity of sucrose transport. 
Conversely, deletion and replacement of the extended cen-
tral loop domain of the SUC3/SUT2 subfamily does not af-
fect transport activity (Meyer et al. 2000; Schulze et al. 
2000), suggesting that the loop domain is not required for 
transport. The function of the extended central loop of the 
SUC3/SUT2 subfamily is still unclear. 
 
Subcellular localization (vacuolar sucrose 
transporters) 
 
The SUC/SUT family has been shown (Kühn et al. 1997; 
Barker et al. 2000; Reinders et al. 2002) or are considered 
to be in the plasma membrane. Therefore, many reports 
have discussed the roles of the SUC/SUT family for only 
in plasma membrane (see the next section “PHYSIOLOGI-
CAL ROLES OF SUCROSE TRANSPORTERS”). In 
plants, the vacuole is the most important organelle for suc-
rose storage, and some organs and tissues specialized for 
sucrose storage, such as sugar cane stalk, sugar beet tap-
root and fruits, accumulate sucrose at almost 1 M. Sucrose 
transport activities have been reported for isolated vacuoles 
or vacuolar membrane vesicles from different plant mate-
rials, such as beet taproot (Doll et al. 1979; Briskin et al. 
1982; Getz 1991; Getz and Klein 1995; Echeverría and 
Gonzalez 2000), sugarcane stalk (Thom and Komor 1984; 
Williams et al. 1990; Getz et al. 1991; Preisser and Komor 
1991), artichoke tuber (Keller 1992; Greutert and Keller 
1993; Pontis et al. 2002), pineapple leaves (McRae et al. 
2002) and tomato fruit (Milner et al. 1995). Despite the im-
portance of sucrose transport in vacuolar membranes and 
the detection of its activity, no protein and gene for vacu-
olar sucrose transporters have been isolated. Getz et al. 
(1993, 1994) and Thom et al. (1992) tried to identify suc-
rose transporters in vacuolar membranes, but they failed. 

Recently, proteomic analyses of vacuolar membrane 
proteins of Arabidopsis have been done and some sugar 
transporters were identified (Carter et al. 2004; Sazuka et 
al. 2004; Shimaoka et al. 2004; Szponarski et al. 2004). 
Shimaoka et al. (2004) discovered AtSUC1 in their proteo-
mic analysis, but positive subcellular localization of 
AtSUC1 was not determined. More recently, Endler et al. 
(2006) identified a sucrose transporter homologue 
(HvSUT2) of the SUT4 subfamily by proteome analysis of 
vacuolar membrane proteins of barley mesophyll cells. 
Endler et al. (2006) also showed that GFP fusion proteins 
of HvSUT2 and its homologue of Arabidopsis (AtSUT4) 
are expressed in the vacuolar membrane of Arabidopsis 
leaves and onion epidermis. Endler et al. (2006) was the 
first report to clearly show the presence of the SUC/SUT 
subfamily in the vacuolar membrane and to show that 
some members of the SUT4 subfamily have roles in the 
vacuolar membrane. Immunolocalization has shown that 
LeSUT4 of the SUT4 subfamily in tomato is localized in 

the plasma membrane of sieve elements (SE) (Reinders et 
al. 2002). Endler et al. (2006) and Reinders et al. (2002) 
suggested that the SUT4 subfamily localizes both in the 
plasma membrane and in the vacuolar membrane, but whe-
ther the same transporter localizes in both membranes or 
different transporters in different membranes is unclear. 
The presence of the SUC/SUT subfamily in other organ-
elles has not been reported. Subcellular localization of each 
sucrose transporter should be checked carefully to deter-
mine its physiological functions. 
 
PHYSIOLOGICAL ROLES OF SUCROSE 
TRANSPORTERS 
 
Sucrose is a major carbon form for long-distance transport 
in plants, and so sucrose transporters are probably active 
everywhere in the plant. Fig. 4 shows a schematic diagram 
of sucrose transport in plants and the sites of sucrose trans-
porters. 
 
Roles in phloem loading 
 
Generally, sucrose concentration in sieve tubes is higher 
than in photosynthetic cells, and SE and companion cells 
(CC) are isolated apoplastically from photosynthetic cells 
in many sucrose-loading plants (Gamalei 1989). Thus suc-
rose transporters have to take up sucrose from apoplast to 
the SE and CC. This mechanism is called apoplastic 
phloem loading. 

Sucrose transporter mRNA and protein are found in the 
phloem of source leaves, such as potato StSUT1, StSUT2 
and StSUT4 (Riesmeier et al. 1993; Kühn et al. 1997; 
Weise et al. 2000; Reinders et al. 2002), tomato LeSUT1 
and LeSUT4 (Barker et al. 2000; Weise et al. 2000; Rein-
ders et al. 2002), Arabidopsis AtSUT2, AtSUT3 and AtSUT4 
(Truernit and Sauer 1995; Stadler and Sauer 1996; Schulze 
et al. 2000; Weise et al. 2000; Meyer et al. 2004; Stadler et 
al. 2005), sugar beet BvSUT1 (Vaughn et al. 2002), wheat 
TaSUT1 (Aoki et al. 2004), and rice OsSUT1 (Matsukura et 
al. 2000). Although some of them, such as AtSUC3 (Meyer 
et al. 2000; Schulze et al. 2000), are most abundant in the 
phloem of major veins or petioles and may participate in 
sucrose retrieval, many of them are localized in minor veins 
in source leaves and participate in phloem loading. 

Knockdown and knockout of sucrose transporter genes 
expressed in the phloem showed clearly their participation 
in phloem loading. Antisense-transgenic potato plants of 
StSUT1 under the control of the CaMV35S promoter or 
phloem-specific promoters accumulate high amounts of 
sugars and starch in source leaves and their photosynthetic 
activity decreases, as shown by Riesmeier et al. (1994), 
Kühn et al. (1996, 2003), Lemoine et al. (1996) and Schulz 
et al. (1998). Growth of transformants decreases and the 
plants have a reduced number of smaller tubers. These re-
ports show that sucrose transporters in the phloem have in-
dispensable roles in sucrose phloem loading and long-dis-
tance transport of photoassimilates. Antisense-suppression 
of phloem-specific sucrose transporters has been reported 
for other plants, such as NtSUT1 in tobacco (Bürkle et al. 
1998), LeSUT1 in tomato (Hackel et al. 2006) and OsSUT1 
in rice (Ishimaru et al. 2001; Scofield et al. 2002). Al-
though antisense-transformation of OsSUT1 does not affect 
photosynthetic activity (Ishimaru et al. 2001; Scofield et al. 
2002), other antisense-plants show phenotypes consistent 
with an essential role of sucrose transporters in phloem 
loading and long-distance carbon transport. Arabidopsis 
knockout mutant of phloem-specific AtSUC2 show a simi-
lar phenotype of transgenic plants that suppress their suc-
rose transporters in the phloem (Gottwald et al. 2000). Leg-
gewie et al. (2003) produced potato plants that had overex-
pressed spinach SoSUT1 under the control of the CaMV35S 
promoter. Sucrose transport activity in plasma membrane 
vesicles from transformants was higher than for wild-type 
plants, but the impact of SoSUT1 overexpression on photo-
synthesis and on potato tuber yield was little. 
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Oligosaccharide-loading plants accumulate photosyn-
thetic products by symplastic phloem loading (Turgeon 
2006). That is, sucrose moves from photosynthetic cells to 
CC through plasmodesmata, oligosaccharides are synthe-
sized from sucrose in CC, and then oligosaccharides move 
to SE through plasmodesmata. In polyol-loading plants, 
polyols are considered to accumulate apoplastically by pol-
yol transporters (Noiraud et al. 2001c; Watari et al. 2004). 
Sucrose transporters are also expressed in the phloem of 
oligosaccharide-loading plants, such as AmSUT1 in Alon-
soa meridionalis (Knop et al. 2001, 2004), and of polyol-
loading plants, such as AgSUT1 in celery (Noiraud et al. 
2000a) and PmSUC2 and PmSUC3 in common plantain 
(Stadler et al. 1995; Barth et al. 2003). These results sug-
gest that sucrose transporters partly contribute to phloem 
loading in oligosaccharide-loading plants (symplastic 
phloem loaders) and polyol-loading plants. 
 
Roles in sink organs and tissues 
 
Sucrose from source leaves through the phloem is unload-
ed in sink organs and tissues. Both symplastic and apoplas-
tic mechanisms have been suggested for sucrose unloading 
(Patrick and Offler 1996). In symplastic unloading, sucrose 
moves from SE to sink cells thorough plasmodesmata (Fig. 
4), supported by the existence of relatively high density 
plasmodesmata between SE and CC to sink cells and by 
the movement of fluorescent dye from phloem to sink cells 
(Patrick and Offler 1996). In apoplastic unloading, sucrose 
moves from the phloem to apoplast first and then it is 
transported into sink cells by sucrose transporters, or it is 

converted to fructose and glucose by apoplastic invertase 
and then hexose transporters transport them into sink cells 
(Fig. 4). Expressions of sucrose transporters in various sink 
organs and tissues have been reported, and so they very 
likely participate in sucrose unloading in sink organs and 
tissues. 

Sugar transporters are expressed in various sink organs 
and tissues, such as RcScr1 in seedlings of Ricinus com-
munis (Weig and Komor 1996; Bick et al. 1998), DcSUT1 
in sink tissues of carrot (Shakya and Strum 1998), ShSUT1 
protein in veins of sugarcane stem (Rae et al. 2005), 
NtSUT3 in pollen of tobacco (Lemoine et al. 1999), 
GhSUT1 in elongating cotton fibers (Ruan et al. 2001), 
OsSUT1-5 in various sink organs of rice including develop-
ing grains (Furbank et al. 2001; Aoki et al. 2003), common 
plantain PmSUC1, pea PsSUT1, fava bean VfSUT1, barley 
HvSUT1 and HvSUT2, and wheat TaSUT1 in developing 
seeds (Gahrtz et al. 1996; Weber et al. 1997; Tegeder et al. 
1999; Weschke et al. 2000; Takeda et al. 2001; Aoki et al. 
2002, 2006). Arabidopsis AtSUCs have been detected in 
sink organs and tissues: AtSUC3 in, for example, guard 
cells, trichome, germinating pollen, root tip, carpel cell 
layer, (Meyer et al. 2000, 2004), AtSUC5 in endosperm 
(Baud et al. 2005), AtSUC8 and AtSUC9 in various sink or-
gans including floral tissues (Sauer et al. 2004; Sivitz et al. 
2007). These transporters may have roles in the phloem or 
post-phloem unloading. Sucrose transporters, which may 
have a role in sugar accumulation, are also expressed in 
fruit and include CitSUT1 and CitSUT2 in citrus (Li et al. 
2003), VvSUC11, VvSUC12 and VvSUC27 in grapevine 
(Davies et al. 1999; Ageorges et al. 2000; Manning et al. 
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2001), LeSUT2 in tomato (Reinders et al. 2002). 
Tomato LeSUT2 is expressed predominantly in sink 

organs, such as immature leaves and fruit (Reinders et al. 
2002), and its antisense-inhibition markedly decreases in 
fruit and seed development and pollen germination (Hackel 
et al. 2006). Arabidopsis AtSUC9 is expressed in sink tis-
sues throughout the shoot to the flowers and knockout mut-
ants of AtSUC9 are early flowering (Sivitz et al. 2007). 
Seed-specific overexpression of StSUT1 in pea increases 
sucrose uptake and the growth rate in developing cotyl-
edons (Rosche et al. 2002). These results show the impor-
tance of sucrose transporters in plant development, espe-
cially in sink strength. 
 
EXPRESSION AND REGULATION OF SUCROSE 
TRANSPORTERS 
 
Sucrose transport activity is regulated at the gene expres-
sion level of sucrose transporters, and gene expressions are 
regulated by organ or tissue specificity (see the section 
“PHYSIOLOGICAL ROLES OF SUCROSE TRANS-
PORTERS”), developmental cues, circadian rhythm, 
stresses and environmental factors. Expressions of potato 
StSUT1 and celery AgSUT1 expression decreases by salt 
stress (Noiraud et al. 2000a). Sugar beet BvSUT1 is in-
duced by cutting and ageing (Sakr et al. 1997), and Arabi-
dopsis AtSUC3 is induced by wounding (Meyer et al. 
2004). Arabidopsis AtSUC2 gene was induced in a syncyt-
ium cell-complex formed by nematode infection, which 
suggests the AtSUC2 gene is induced by pathogen infection 
(Juergensen et al. 2003). Walnut JrSUT1 is expressed in 
xylem parenchyma cells and the expression is up-regulated 
by freeze-thaw cycles, suggesting the participation of 
JrSUT1 in cold tolerance (Decourteix et al. 2006). Expres-
sion of potato StSUT1 and Arabidopsis AtSUC2 is under 
developmental control and both are induced during sink-to-
source transition in leaves (Riesmeier et al. 1993; Truernit 
and Sauer 1995). Maize ZmSUT1 is expressed in mature 
leaves and the expression changes diurnally (Aoki et al. 
1999), suggesting that its expression changes to regulate 
the sucrose export rate from leaves. Sucrose controls the 
expression of sucrose transporters: tomato LeSUT2 is in-
duced (Barker et al. 2000), but other SUT genes are down-
regulated by sucrose (Chiou and Bush 1998; Vaughn et al. 
2002). 
 
Mysterious occurrence of sucrose transporter 
mRNA and protein in sieve elements and pollen 
 
In situ hybridization and immunolocalization showed that 
both StSUT1 mRNA and StSUT1 protein are localized in 
SE in potato source leaves (Kühn et al. 1997). Both 
StSUT1 mRNA and StSUT1 protein have a high turnover 
rate (Kühn et al. 1997). However, SE lacks a nucleus and 
ribosome, and so SE cannot synthesize StSUT1 mRNA and 
StSUT1 protein by itself. How does the StSUT1 protein 
appear in SE? Although Kühn et al. (1997) suggested the 
possibility of targeting StSUT1 mRNA or StSUT1 protein 
or both from CC to SE through plasmodesmata, the mecha-
nism is still unclear. 

A large amount of AtSUC1 mRNA, but no AtSUC1 
protein, is in mature pollen of Arabidopsis (Stadler et al. 
1999), and after pollination the AtSUC1 protein starts to 
appear inside the pollen. This suggests that AtSUC1 
mRNA in mature pollen might be ready for AtSUC1 pro-
tein synthesis after pollination. 
 
Post translational regulation 
 
Many enzymatic activities and transport activities are reg-
ulated by protein phosphorylation. Protein phosphatase in-
hibitors, such as okadaic acid, reduce sucrose transport ac-
tivity in plasma membrane vesicles of sugar beet (Roblin et 
al. 1998; Ransom-Hodgkins et al. 2003), suggesting that 
protein phosphorylation is included in regulation of suc-

rose transporters. Homo- and hetero-oligomerization of 
transporters often affect transporter activities, such as Km 
values and Vmax. Oligomerization was reported for tomato 
sucrose transporters: LeSUT4 colocalizes with LeSUT1 
and LeSUT2 in SE (Barker et al. 2000), and LeSUT4 inter-
acts with LeSUT1 and LeSUT2 (Reinders et al. 2002). The 
extended domains in the central loop and N terminus of the 
SUC3/SUT2 subfamily have the potential to regulate suc-
rose transporters, including oligomerization. 
 
CONCLUSIONS AND FURTHER PERSPECTIVES 
 
Sucrose is a major carbon form for long-distance carbon 
transport in most plants. Therefore sucrose transporters have 
indispensable roles in source leaves and in various sink 
organs and tissues, and sucrose transport activity is likely 
highly regulated to control carbon partitioning in plants. 
Since the early 1990s, study of sucrose transporters has 
advanced dramatically and our understanding has deepened. 
However, our knowledge is still fragmentary. Information, 
such as biochemical character, gene and protein expressions 
and phenotype of transformants or mutants, exists for each 
sucrose transporter. However, different sucrose transporters 
always cooperate in sucrose transport in plants. Therefore, 
we should pay more attention to joint activities by different 
sucrose transporters. 

To understand carbohydrate transport in plants, we also 
have to pay attention to other sugar transporters, such as the 
STP/HXT, PLT, ITR/MIT, pGlcT, AZT/MSSP and SFP 
families. Lalonde et al. (2004) and Shiratake (2007) sum-
marize these transporter families. The STP/HXT family is 
well-characterized and the studies were summarized 
(Lalonde et al. 1999; Büttner and Sauer 2000; Williams et al. 
2000). Although less information had been reported for 
other families, the studies about the PLT and ITR/MIT fami-
lies were summarized by Noiraud et al. (2001b). Recently 
Wormit et al. (2006) reported that a member of AZT/MSSP 
family in Arabidopsis, AttMT localizes in vacuolar mem-
brane. Arabidopsis MEX, which localizes in chloroplast en-
velope, allows growth of E. coli, which lacks an endoge-
nous maltose transporter (Niittylä et al. 2004), suggesting 
MEX is a maltose transporter. Interestingly, MEX has no 
similarity with other sugar transporter families. Further in-
vestigations are needed to clarify carbohydrate transport in 
plants. 
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