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ABSTRACT 
Arrest of replication forks at sites of DNA damage may disrupt the cellular replication machinery leading to cell death. Consequently, 
cells have evolved damage tolerance mechanisms that do not remove damage but allow replication through or around DNA lesions, which 
can be repaired subsequently. Damaged templates can be copied by translesion synthesis (TLS), or the damaged segment may be avoided 
by template switching during replication. Non-essential, low fidelity DNA polymerases catalyse TLS in yeast and mammalian cells. 
Mechanisms for targeting TLS polymerases to stalled replication forks include interaction with the sliding clamp proliferating cell nuclear 
antigen (PCNA). Regulation of this interaction and the mode of damage tolerance involves post-translational modification of PCNA, TLS 
polymerase stability and DNA damage surveillance genes. SUMOylation of PCNA at lysine-164 prevents recombination at blocked forks 
and so may participate in tolerance pathway selection. Monoubiquitylation of the same residue is necessary for TLS, and polyubi-
quitylation at lysine-164 promotes damage avoidance. Surprisingly, much less is known about damage tolerance and its importance in 
plants despite their obligate exposure to a major environmental source of DNA damage, solar ultraviolet (UV) radiation. Recent isolation 
and functional characterisation of cDNAs encoding Arabidopsis thaliana homologues of TLS polymerases or PCNA-modifying enzymes 
suggest that plants may rely in part on damage tolerance to help combat the onslaught of UV photoproducts. 
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INTRODUCTION 
 
Their sessile lifestyle and reliance on sunlight for photosyn-
thesis has required plants to evolve highly effective mecha-
nisms to cope with the toxicity of solar ultraviolet (UV) 
radiation. In particular, UV-B (280-320 nm) wavelengths 
induce the formation of cyclobutane pyrimidine dimers 
(CPDs) and pyrimidine (6-4) pyrimidone photoproducts 
[(6-4) photoproducts] in DNA. This damage blocks replica-
tion and transcription of chromosomal templates, and leads 
to gaps in nascent strands (Friedberg et al. 2006; Lopes et 
al. 2006). Consequently, unrepaired UV photoproducts can 

inhibit plant growth and cause plant death (Britt and Fiscus 
2003). To reduce their damage load, plants produce UV-ab-
sorbing compounds in epidermal cells, photoreactivate 
UV-induced CPDs and (6-4) photoproducts, and excise UV 
photoproducts from their DNA (Britt 2004). However, 
shielding and DNA repair do not prevent or eliminate all 
UV-induced lesions, and cell death may result if replication 
forks stall at sites of damage, or strand gaps accumulate. As 
additional insurance, other organisms also employ processes 
to restart blocked replication forks, or fill strand gaps left 
behind moving forks, thereby allowing bypass of UV pho-
toproducts which can then be repaired postreplicatively. The 
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mechanisms responsible involve copying the damaged tem-
plate by translesion synthesis (TLS), or avoiding the da-
mage via template switching (Friedberg et al. 2006; Fig. 1). 
The resulting tolerance of DNA lesions allows growing 
cells to evade replicative arrest, but may generate mutations 
through diminished replication accuracy during TLS. 

In this article, we discuss tolerance of UV photopro-
ducts with emphasis on TLS and reference to the mecha-
nisms involved in the yeast Saccharomyces cerevisiae and 
mammalian cells. Using this framework we review experi-
mental findings, including homology comparisons and cha-
racterisation of gene products or mutants for Arabidopsis 

thaliana, consistent with roles for plant genes in the bypass 
of UV-induced DNA damage. Collectively, the data are 
beginning to paint a picture of damage tolerance similar to 
that in other eukaryotes, but with some features that may be 
unique to plants. 
 
TLS BY SPECIALISED POLYMERASES 
 
TLS past UV photoproducts in eukaryotes is catalysed by 
non-essential, low fidelity DNA polymerases (Pols) that 
may accommodate lesions in more open active sites (Pra-
kash et al. 2005). These include Pol zeta (Pol�), a B family 
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Fig. 1 Models for DNA damage avoidance and translesion synthesis. A lesion might block leading strand synthesis (in this figure) and uncouple lagging 
strand synthesis which might proceed past the damage site. The damage could be avoided if replication fork regression or strand invasion provided an 
alternative template (the nascent lagging strand) for continuation of leading strand synthesis. Depending on the physical parameters involved, junction 
migration, displacement (D)-loop collapse or junction resolution might enable synthesis of both strands to resume beyond the lesion. Replacement of the 
blocked replicative polymerase by a TLS polymerase would allow limited synthesis past the lesion. The replication machinery could then recommence 
leading and lagging strand synthesis. 
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polymerase first linked to TLS in yeast and later in human 
cells (Morrison et al. 1989; Gibbs et al. 1998), as well as 
several Y family polymerases discovered over the past dec-
ade, Pol eta (Pol�), Pol iota (Pol�), Pol kappa (Pol�) and 
Rev1 (Prakash et al. 2005; Yagi et al. 2005; Dumstorf et al. 
2006). 
 
Pol� 
 
Pol� efficiently replicates CPDs, in particular thymine-thy-
mine (TT) dimers, in a relatively error-free manner (Mc-
Culloch et al. 2004; Gibbs et al. 2005; Prakash et al. 2005). 
It also may initiate synthesis from recombination interme-
diates during damage avoidance (Mcllwraith et al. 2005). 
For TLS in vivo, Pol� interacts with ubiquitylated prolifer-
ating cell nuclear antigen (PCNA), the eukaryotic sliding 
clamp needed for processive DNA replication (Kannouche 
et al. 2004; Prakash et al. 2005; Plosky et al. 2006; Parker 
et al. 2007). The Pol�-PCNA interaction is mediated by a 
PCNA interaction peptide (PIP) box and an ubiqui-
tin-binding zinc finger (UBZ) (Bienko et al. 2005; Plosky 
et al. 2006; Parker et al. 2007). PCNA, the heteropenta-
meric clamp loader replication factor C (RFC) and the he-
terotrimeric single-strand binding protein replication pro-
tein A (RPA) cooperatively stimulate DNA synthesis by 
Pol� by increasing nucleotide insertion efficiency but not 
processivity (Prakash et al. 2005). However, the effect of 
these accessory replication factors on TLS polymerase ac-
tivity is sequence-dependent and processivity can be in-
creased in the right context (Vidal et al. 2004). The impor-
tance of Pol�-mediated TLS in defence against UV photo-
products is clear. Inactivation of Pol� sensitises yeast, 
mouse and human cells to the lethal and mutagenic effects 
of UV (Prakash et al. 2005; Dumstorf et al. 2006; Lin et al. 
2006). These outcomes might reflect decreased error-free 
avoidance of UV photoproducts (Mcllwraith et al. 2005) 
and less efficient, more inaccurate replication of CPDs by 
other TLS polymerases (Prakash et al. 2005). The increase 
in UV mutagenesis could also explain why Pol� defici-
encies increase UV-induced skin cancer in mice (Dumstorf 
et al. 2006; Lin et al. 2006) and cause the variant form of 
the human skin cancer-prone disorder xeroderma pigmen-
tosum (Johnson et al. 1999; Masutani et al. 1999). 

Arabidopsis POLH encodes a Pol� homologue 
(AtPol�) (Santiago et al. 2006; Table 1). The predicted 
AtPol� and its Oryza sativa (rice) counterpart (NP_ 
916191) have the five Y family polymerase domains essen-
tial for DNA synthesis, and two conserved forms of the 
carboxyl-terminal PIP box present in human and yeast 
Pol� (Prakash et al. 2005). However, both plant Pol� ho-
mologues lack the carboxyl-terminal UBZ that human and 
yeast Pol� requires for enhanced binding to monoubiqui-
tylated PCNA (Bienko et al. 2005; Plosky et al. 2006; Par-
ker et al. 2007). Human Pol� also lacks a UBZ but binds 
ubiquitylated PCNA via its PIP box and at least one of two 
ubiquitin-binding motifs (UBM) not present in human or 
yeast Pol� (Bienko et al. 2005; Plosky et al. 2006). Intri-
guingly, AtPol� and its rice counterpart have a single se-
quence homologous to the two Pol� UBMs that partially 
overlaps the site of the UBZ in human Pol�. These obser-
vations suggest that if plant Pol� binds ubiquitylated 
PCNA, it may uniquely do so through a UBM rather than a 
UBZ. 

Expression of the AtPOLH cDNA in a yeast rad30 
(RAD30 encodes Pol�) deletion mutant fully complement-
ted the UV sensitivity of the mutant, and this complement-
tation was abolished by mutating residues in one of the 
highly conserved polymerase domains in AtPol� (Santiago 
et al. 2006). These data must be interpreted cautiously be-
cause it is not clear if steps were taken to prevent photo-
reactivation during the complementation experiments, 
AtPOLH actually was expressed in yeast cells, or expres-
sion of AtPOLH reduced the rate of yeast DNA replication, 
which could indirectly decrease UV sensitivity. In studies 
to be reported elsewhere, however, we demonstrate that an 

AtPOLH mutation increases the sensitivity of Arabidopsis 
to UV-B radiation and AtPol� interacts with both yeast and 
Arabidopsis PCNA. The latter data are consistent with 
AtPol� being able to function in TLS in Arabidopsis, but 
are not conclusive. 
 
Pol� and Pol� 
 
Pol�, a Pol� paralogue, and Pol�, a homologue of Escheri-
chia coli Pol IV, are absent from yeast but may participate 
in UV photoproduct bypass in multicellular organisms (Pra-
kash et al. 2005; Yagi et al. 2005). Purified human Pol� in-
corporated nucleotides opposite a TT or thymine-uracil 
CPD or TT (6-4) photoproduct and bypassed the lesions 
(Tissier et al. 2000; Vaisman et al. 2006). Other investiga-
tors detected insertion only opposite the 3� base of a TT 
(6-4) photoproduct, and did not observe extension (Zhang 
et al. 2001; Prakash et al. 2005). Such discrepancies may 
reflect different assay conditions and sequence contexts 
which influence Pol� activity in vitro (Vidal et al. 2004). 
Recently, inactivation of Pol� was found to reduce UV mu-
tagenesis in mouse fibroblasts, slightly sensitise them to 
UV-induced killing, and potentiate UV-induced skin can-
cer in mice also deficient in Pol� (Dumstorf et al. 2006). 

Table 1 Summary of damage tolerance genes or candidate genes. 
Homo 
sapiens 

Saccharomyces 
cerevisiae 

Arabidopsis 
thaliana 

A. thaliana 
locusb 

Genes encoding translesion synthesis polymerasesa 

POLH RAD30 AtPOLH At5g44740 
POLI Not present Not present  
POLK Not present AtPOLK At1g49980 
REV1 REV1 AtREV1 At5g44750 
REV3 REV3 AtREV3 At1g67500 
REV7 REV7 AtREV7 At1g16590 

Genes encoding replication/checkpoint clamps or loaders 
PCNA POL30 AtPCNA-1 At1g07370 
  AtPCNA-2 At2g29570 
Not present RAD9 Not present  
HUS1 MEC3 AtHUS1 At1g52530 
RAD1 DDC1 AtRAD1-like At4g17760 
RAD9 RAD17 AtRAD9 At3g05480 
RAD17 RAD24 AtRAD17 At5g66130 
RFC1 RFC1 AtRFC1 At5g22010 
RFC2 RFC2 AtRFC2 At1g63160 
RFC3 RFC3 AtRFC3 At5g27740 
RFC4 RFC4 AtRFC4 At1g21690 
RFC5 RFC5 AtRFC5 At1g77470 

Genes encoding PCNA modifying enzymes or related proteins 
 UBC9 AtSCE1A At3g57870 
 SIZ1 AtSIZ1 At5g60420 
SENP1, 2, 3 ULP1 AtULP1C At1g10570 
  AtULPID At1g60220 
Not present ULP2 AtULP2A At4g04130 
  AtULP2B At4g19310 
PLAA DOA1 AtDOA1 At3g18860 
HHR6A, B RAD6 AtUBC1 At1g14400 
  AtUBC2 At2g02760 
  AtUBC3 At5g62540 
RAD18 RAD18 Not present  
USP1 Not present Not present  
 UBC13 AtUBC13A At1g78870 
  AtUBC13B At1g16890 
MMS2 MMS2 AtUEV1A At1g23260 
  AtUEV1B At1g70660 
  AtUEV1C At2g36060 
  AtUEV1D At3g52560 
Not present RAD5 AtRAD5A At5g43530 
  AtRAD5B At5g22750 
SHPRH Not present Not present  
Not present SRS2 Not present  
a The designation ‘Not present’ does not exclude the possibility of functional 
homologues. 
b Candidate genes were identified from the Arabidopsis genome database at The 
Arabidopsis Information Resource (TAIR) (http://www.arabidopsis.org) by 
homology searches using human or yeast proteins as probes. 
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These observations suggest that Pol� contributes to the in-
tracellular bypass of UV photoproducts. So far, Pol� has 
been detected in vertebrates and insects but not plants. 

Although Pol� does not replicate through UV lesions, 
it can extend from a nucleotide opposite the 3� base of a TT 
CPD, but not a TT (6-4) photoproduct (Prakash et al. 2005; 
Yagi et al. 2005; Lone et al. 2007). These properties may 
reflect exclusion of part or all of these lesions from the 
Pol� catalytic centre due to encirclement of the DNA tem-
plate by Pol� and its more spatially constrained active site 
which can accommodate only a single Watson-Crick base 
pair (Lone et al. 2007). Accordingly, and because in vitro 
human Pol� extends from paired primer termini 1% to 
10% as often as from mispaired primer termini (Washing-
ton et al. 2002), it has been suggested that during TLS this 
enzyme specifically extends aberrant primer-terminal base 
pairs (Prakash et al. 2005; Carlson et al. 2006). The impor-
tance of such a role in the tolerance of UV-induced DNA 
damage is unknown. Pol�-deficient mouse and chicken 
cells exhibit increased UV sensitivity (Ogi et al. 2002; 
Okada et al. 2002), but this phenotype is probably due to 
the participation of Pol� in the repair synthesis step of nuc-
leotide excision repair rather than to a defect in TLS (Ogi 
and Lehmann 2006). 

Biochemical studies have shown that like Pol�, Pols � 
and � interact with ubiquitylated PCNA through a PIP box 
and UBM or UBZ sequences, respectively (Bienko et al. 
2005; Prakash et al. 2005; Bi et al. 2006; Plosky et al. 
2006). Furthermore, PCNA, RFC and RPA cooperatively 
stimulate DNA synthesis by Pols � and � through increased 
efficiency of nucleotide incorporation and processivity of 
Pol� (in the right sequence context), as well as promoting 
nucleotide insertion opposite the 3� T of a TT (6-4) photo-
product by Pol� (Vidal et al. 2004; Prakash et al. 2005). 

Arabidopsis POLK encodes a predicted Pol� homo-
logue (AtPol�). Like its rice counterpart (ABF97636), 
AtPol� has well-conserved forms of the five amino-ter-
minal Y family polymerase domains and carboxyl-terminal 
PIP box present in human Pol� (García-Ortiz et al. 2004). 
Whereas other Pol� homologues have one or two carbo-
xyl-terminal C2HC UBZs (Bienko et al. 2005; Prakash et 
al. 2005), only a single C2H2 motif is found in Arabidopsis 
and rice Pol�, a difference that may be specific to plants. 
Purified AtPol� has polymerase but not proofreading activ-
ity, exhibits low processivity on its own, and extends mis-
matched primer termini (García-Ortiz et al. 2004). How-
ever, its ability to insert nucleotides opposite DNA damage, 
or extend from a nucleotide incorporated opposite a UV 
photoproduct, remains to be assessed, as does the effect of 
its inactivation on plant UV resistance. 
 
Pol� and Rev1 
 
Human and yeast Pol� is a heterodimeric polymerase com-
posed of the interacting Rev3 catalytic and Rev7 accessory 
subunits (Nelson et al. 1996b; Murakumo et al. 2000). 
Rev7 is critical for Pol� activity in vivo, but its precise 
function is uncertain, although yeast Rev7 enhances DNA 
polymerisation by Rev3 in vitro (Nelson et al. 1996b). 
Pol� is essential for UV mutagenesis in human cells and 
yeast (Lemontt 1971; Lawrence et al. 1985; Gibbs et al. 
1998). It also is required for bypass of TT (6-4) photoprod-
ucts but not TT CPDs on vectors transformed into yeast 
cells that contain Pol�, and probably for TLS past TT 
CPDs when not catalysed by Pol� (Gibbs et al. 2005). 
Inactivation of REV3 or REV7 moderately sensitises yeast 
cells to UV, as does antisense reduction of human REV3 
expression (Lemontt 1971; Lawrence et al. 1985; Gibbs et 
al. 1998) suggesting a modest role for Pol�-mediated TLS 
in UV resistance. 

UV resistance and mutagenesis in vertebrate cells and 
yeast also requires Rev1, the fourth eukaryotic member of 
the Y polymerase family (Gibbs et al. 2000; Nelson et al. 
2000), but its role as a TLS polymerase is limited. Rev1 
exhibits a highly specific dCMP transferase activity (Nel-

son et al. 1996a; Lin et al. 1999) templated by the protein 
itself rather than lesion-containing DNA (Nair et al. 2005). 
Although Rev1 is needed to bypass a TT (6-4) photopro-
duct, and probably a TT CPD in the absence of Pol�, its 
dCMP transferase activity is not (Nelson et al. 2000), sug-
gesting Rev1 serves a structural or regulatory role in TLS 
(Murakamo et al. 2001; Prakash et al. 2005). Consistent 
with this possibility, mammalian Rev1 interacts with Pols �, 
� and �, yeast and human Rev1 interacts with Rev7, and 
yeast Rev1 and Rev3 interact (Murakamo et al. 2001; Guo 
et al. 2003; Ohashi et al. 2004; Acharya et al. 2005, 2006). 
However, a stable Rev1-Rev3-Rev7 complex has been de-
tected only in yeast when Rev1 binds to Rev3 as part of 
Pol�, but not when Rev1 binds to Rev7 separate from Rev3 
(Murakamo et al. 2001; Acharya et al. 2006). Furthermore, 
interaction of Rev1 with Rev7 or Pol� does not influence 
the dCMP transferase activity of Rev1 nor does interaction 
of Rev1 with Pol� affect the DNA polymerase activity of 
Pol� (Guo et al. 2003; Masuda et al. 2003; Acharya et al. 
2005). On the other hand, association of yeast Rev1 with 
Pol� does increase the efficiency with which Pol� extends 
from nucleotides opposite the 3� T of a TT CPD or (6-4) 
photoproduct (Acharya et al. 2006). 

Although Rev3 and Rev7 do not interact with PCNA 
(Garg et al. 2005; Haracska et al. 2006), PCNA, RFC and 
RPA together were reported to stimulate TLS by purified 
yeast Pol� on a UV photoproduct-bearing template (Garg et 
al. 2005). In contrast, other investigators detected no stimu-
lation of the synthetic activity of Pol� by PCNA (Haracska 
et al. 2006). However, Rev1 increases the efficiency with 
which Pol� extends from UV photoproducts (Acharya et al. 
2006), mouse Rev1 interacts with PCNA (Guo et al. 2006a, 
2006b), and the Pol� preparation used by Garg et al. (2005) 
was impure. Thus, contamination of that preparation with 
Rev1 might have been responsible for the observed stimu-
latory effect of PCNA on TLS by yeast Pol�, if the stimu-
lation also required interaction of Rev1 with PCNA. If so, 
Pol� might function in vivo, at least transiently, as a hetero-
tetrameric complex of PCNA, Rev1, Rev3 and Rev7. 

Arabidopsis AtREV3, AtREV7 and AtREV1 encode 
Rev3, Rev7 and Rev1 homologues, respectively. AtREV3 
was identified by mapping an Arabidopsis mutation that 
confers slight sensitivity to UV-B exposure (Sakamoto et al. 
2003). Whether this sensitisation reflects defective TLS is 
unknown. The predicted AtRev3 has the six carboxyl-ter-
minal B family DNA polymerase domains characteristic of 
Rev3 homologues, and domains I-III have perfectly con-
served active site motifs pointing to a role in DNA replica-
tion. The conservation of these domains also is significant 
because this is the region through which yeast Rev3 binds 
to Rev1 (Acharya et al. 2006). Surprisingly, the Rev3 se-
quences required for interaction with Rev7 in yeast or 
human cells (Murakumo et al. 2001; Acharya et al. 2006) 
are poorly conserved in AtRev3. However, two C4 zinc-
binding domains at the carboxyl terminus of yeast and 
human Rev3 also are present in AtRev3. The UVB sensitiv-
ity of the Atrev3 mutant plus the strong conservation of 
most functional domains suggests a role for AtRev3 in TLS. 

Full-length cDNAs that can encode Arabidopsis Rev7 
or Rev1 homologues have been isolated (Takahashi et al. 
2005). Positions 21 to 155 of human Rev7 encompass the 
Rev3 and Rev1 interaction domain (Murakumo et al. 2001). 
The corresponding region of AtRev7 exhibits considerable 
similarity suggesting AtRev7 may interact with AtRev3 and 
AtRev1, but this has not been determined. However, ex-
pression of an AtREV7 cDNA partially complemented the 
UV sensitivity conferred by deleting yeast REV7, but failed 
to restore any UV resistance in a rev3 rev7 double mutant 
(LJ McCarthy, NA Mathe, BA Kunz, unpublished data). 
These observations are consistent with AtRev7 interacting 
with yeast Rev3, and link the function of AtRev7 in yeast 
to Pol�, but cannot be taken to indicate that AtRev7 must 
operate similarly in Arabidopsis. In contrast to the pheno-
type of the Atrev3 mutant, a T-DNA insertion that prevents 
detectable AtREV7 transcript production did not increase 
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plant sensitivity to acute UV-B doses (Takahashi et al. 
2005). The difference between the two plant mutants was 
small but unexpected given that Rev3 and Rev7 constitute 
Pol�, and yeast and human rev3 and rev7 mutants exhibit 
common responses. 

Rev1 homologues feature the five polymerase domains 
found in Y family polymerases, and several regions invol-
ved in protein interactions. An amino-terminal BRCA1 ter-
minus domain is required for interaction with PCNA and 
TLS past T-T (6-4) photoproducts (Nelson et al. 2000; Guo 
et al. 2006a). Monoubiquitylation of PCNA enhances bin-
ding by Rev1 through two carboxyl-terminal UBMs neces-
sary for TLS and damage-induced mutagenesis (Guo et al. 
2006b). The polymerase-associated domain of yeast Rev1 
binds to Rev7 (Acharya et al. 2005), whereas mouse and 
human Rev1 interacts with Rev7 as well as Pols �, � and �, 
via its final 100 amino acids (Murakamo et al. 2001; Guo 
et al. 2003; Ohashi et al. 2004). All of these domains are 
conserved in the predicted AtRev1, suggesting commonal-
ity of function. Consistent with a role in Pol�-mediated 
TLS, T-DNA insertions that prevent detectable AtREV1 
transcript production modestly increase plant sensitivity to 
UVB, and the effect is epistatic with inactivation of 
AtREV3 (Takahashi et al. 2005). However, the genetic rel-
ationships of AtREV7 to AtREV1 or AtREV3 have not been 
investigated, nor has the ability of AtRev1 to interact with 
AtRev3, AtRev7 or AtPol�. 
 
RECRUITMENT OF TLS POLYMERASES TO 
BLOCKED REPLICATION FORKS 
 
In order to catalyse lesion bypass, TLS polymerases must 
gain access to the replication machinery arrested at a dam-
age site, and they may do so in several ways. Following 
UV treatment of human cells, Pols � and � localise to 
replication foci thought to represent sites where replication 
forks are stalled at UV photoproducts (Kannouche et al. 
2003, 2004; Watanabe et al. 2004). Pol� may be directed 
to blocked forks via interaction with the Rad18 protein 
which accumulates at DNA damage sites (Watanabe et al. 
2004; Chiu et al. 2006; Nakajima et al. 2006). However, 
since an Arabidopsis Rad18 homologue has not been det-
ected, either AtPol� can interact directly with the replic-
ation complex at a blocked fork, or a functional homologue 
of Rad18 may guide plant Pol� to sites of damage. Local-
isation of Pol� to replication foci depends on the presence 
of Pol� with which it interacts (Kannouche et al. 2003). 
Alternatively, since Rev1 has a high affinity for sin-
gle-stranded DNA (Masuda and Kamiya 2006), interaction 
with Rev1 may target Pols �, �, � and � to replication gaps 
extending downstream from DNA lesions (Murakumo et al. 
2001; Guo et al. 2003; Ohashi et al. 2004; Acharya et al. 
2006; Waters and Walker 2006). Another way in which 
Pols �, �, �, and Rev1 might be directed to replication foci, 
and gain access to primer termini, is via interaction with 
PCNA, which would be expected to be present at stalled 
replication forks and is recruited to sites of UV-induced 
DNA damage (Kannouche et al. 2004; Vidal et al. 2004; 
Essers et al. 2005; Prakash et al. 2005; Guo et al. 2006a). 
Whether only one, or all of these mechanisms serve to dir-
ect TLS polymerases to replication foci remains to be det-
ermined. Several findings suggest, however, that similar 
interactions may occur in plants. AtPol� physically associ-
ates with AtPCNA (W Xiao, BA Kunz, unpublished data), 
Atrev1 and Atrev3 mutations interact epistatically with res-
pect to UV sensitivity (Takahashi et al. 2005), and AtREV7 
complements the UV sensitivity conferred by a yeast rev7 
deletion in a REV3-dependent manner (LJ McCarthy, NA 
Mathe, BA Kunz, unpublished data). 
 
CONTROL OF DAMAGE TOLERANCE 
 
TLS permits cell survival in the face of unrepaired DNA 
damage but often may be accompanied by mutagenesis due 
to the poor fidelity of TLS polymerases. This reduction in 

genetic stability can pose a potential threat to the cell, and 
so the activity of TLS polymerases must be tightly control-
led. This line of reasoning also suggests that the error-free 
damage avoidance pathway normally might be the pre-
ferred means of lesion tolerance. Details of the molecular 
mechanisms that control the choice of pathway used to 
tolerate UV photoproducts in yeast and human cells have 
begun to emerge over the past few years. Although many 
aspects remain unknown, it has become clear that modifi-
cation of PCNA, the stability of Pol� and DNA damage 
surveillance proteins are key factors. 
 
Enzymatic Cascade For PCNA Modification 
 
UV-induced modification of PCNA is an important reg-
ulatory switch that rescues lesion-blocked replication forks 
by directing them into damage tolerance pathways (Hoege 
et al. 2002). The modifiers are small globular proteins that 
alter the properties of protein targets by attaching cova-
lently to them. For PCNA, the modifiers are ubiquitin and 
small ubiquitin-related modifier (SUMO) protein. Attach-
ment occurs via an enzymatic cascade involving an 
ATP-dependent activating enzyme (E1) that catalyses for-
mation of a thioester bond between the carboxyl-terminal 
carboxyl group of the modifier and an internal cysteine 
residue of the E1 (Bachmair et al. 2001; Hay 2005; Kraft et 
al. 2005). The modifier is then transesterified from the E1 
to the active site cysteine of a conjugating enzyme (E2). 
Although there are a number of E2s for ubiquitin, there 
seems to be one universal E2, Ubc9, for SUMO. The final 
step links the carboxyl-terminal residue of the modifier to a 
surface �-amino group of a lysine residue on the substrate 
protein. For ubiquitin, substrate recognition is usually med-
iated by a protein ligase (E3) that belongs to one of two 
functional groups. One group contains an “homology to the 
E6-AP C terminus” (HECT) domain and transfers ubiquitin 
to the substrate via an internal thioester bond. E3s in the 
second group contain a “really interesting new gene” 
(RING) domain and function as scaffolds to juxtapose the 
substrate and E2 with thioester-linked ubiquitin. The RING 
domain may be part of a single large protein with substrate 
recognition capability or be in a small protein that is part of 
a multi-protein E3 complex, often a Skp1-Cul1-F-box type 
ubiquitin ligase. Ubc9 is able to transfer SUMO directly to 
substrate proteins, but SUMO E3 ligases increase the effici-
ency of SUMO conjugation in a substrate-specific manner. 
 
SUMOylation of PCNA 
 
In yeast, a complex of Ubc9, the E2 that conjugates SUMO 
protein, and Siz1, a SUMO ligase, SUMOylates PCNA at 
lysine (K) 164 (Fig. 2) in S phase and in response to severe 
DNA damage (Hoege et al. 2002). Interaction of SUMOy-
lated PCNA with the Srs2 helicase recruits Srs2 to stalled 
replication forks in yeast (Papouli et al. 2005; Pfander et al. 
2005). Since Srs2 suppresses inter- and intra-chromosomal 
recombination, SUMOylation of PCNA has been suggested 
to help control the choice of the pathway used to rescue a 
blocked replication fork (Papouli et al. 2005; Pfander et al. 
2005). Deconjugation of SUMOylated PCNA by the 
SUMO-specific proteases Ulp1 and Ulp2 also may be in-
volved in pathway selection as inactivation of Ulp1 and 
Ulp2 sensitises yeast cells to DNA damaging agents inclu-
ding UV (Li and Hochstrasser 2000; Soustelle et al. 2004). 
Importantly, SUMOylation of proteins often seems to be 
temporary and to provoke an alteration in the target protein 
that persists after removal of SUMO (Hay 2005). Thus, one 
can envisage a scenario in which PCNA SUMOylation 
might reduce recombination-mediated damage avoidance in 
favour of TLS whereas rapid SUMO deconjugation might 
leave PCNA altered in a manner that favours damage avoi-
dance over TLS. However, because only a small fraction of 
the available PCNA appears to be SUMOylated at any one 
time (Papouli et al. 2005), the same pathway choice may 
not be made at all blocked replication forks. 
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Arabidopsis SCE1A and SIZ1 encode Ubc9 and Siz1 
homologues (Kurepa et al. 2003; Lois et al. 2003; Miura et 
al. 2005). The catalytic domain and all residues identified 
as important for transesterification of SUMO to human 
Ubc9 are conserved in AtUbc9 which interacts with the 
SUMO isoforms AtSUMO1 and AtSUMO2, and has 
SUMO-conjugating activity in vitro (Kurepa et al. 2003; 
Lois et al. 2003). Domains in yeast Siz1 that are necessary 
for SUMO binding and ligase activity are conserved in 
AtSiz1 which functions as a SUMO ligase in vitro and in 
vivo but unlike yeast Siz1 does not allow SUMOylation of 
yeast PCNA at K164 in vitro (Miura et al. 2005; Colby et 
al. 2006). Arabidopsis also encodes two Ulp1 homologues 
(AtUlp1c, AtUlp1d) that are able to deconjugate SUMOyl-
ated yeast PCNA in vitro (Colby et al. 2006), and two pot-
ential Ulp2 homologues have been identified but their abi-
lity to deconjugate SUMOylated proteins has not been tes-
ted (Kurepa et al. 2003). 

Whether plant PCNA is a target for SUMOlyation by 
AtUbc9 and AtSiz1 in vitro or in vivo is unknown. Further-
more, SUMOylated PCNA has not been detected in mam-
malian cells (Kannouche et al. 2004; Watanabe et al. 2004) 
which, like Arabidopsis, do not appear to encode a Srs2 
homologue. Thus, higher eukaryotes may use an alternate 
mechanism(s) for minimising unwanted recombination at 
stalled replication forks or may have a functional homo-
logue of Srs2. 
 

Monoubiquitylation of PCNA and TLS 
 
In response to DNA damage, PCNA is monoubiquitylated 
at K164 by a complex of the Rad6 E2 ubiquitin-conjugating 
enzyme and Rad18, an E3 DNA-binding ubiquitin ligase 
belonging to the RING group (Bailly et al. 1997; Hoege et 
al. 2002; Kannouche et al. 2004). An increase in monoubi-
quitylated PCNA is required for UV mutagenesis in yeast 
and likely involves the UV-inducibility of RAD6 and 
RAD18 (Stelter and Ulrich 2003; Friedberg et al. 2006). In 
human cells, accumulation of monoubiquitylated PCNA 
and UV mutagenesis also depend on the state of Usp1, a 
cysteine protease that deubiquitylates PCNA. Usp1 coun-
terbalances the ubiquitylation machinery to maintain low 
levels of monoubiquitylated PCNA, presumably to limit 
replication-associated mutagenesis by TLS polymerases in 
non-damaged cells. DNA damage induces autocatalytic 
cleavage of Usp1 thereby precipitating the build-up of mo-
noubiquitylated PCNA (Huang et al. 2006). Monoubiqui-
tylation can occur on each monomer in the PCNA clamp 
(Haracska et al. 2006) and may restore fork progression via 
the TLS pathway (Hoege et al. 2002). Selection of the TLS 
pathway might involve enhanced binding of TLS polymer-
ases to PCNA, their activation by interaction with modified 
PCNA, or dissociation from monoubiquitylated PCNA of a 
protein that prevents interaction of PCNA with TLS poly-
merases (Kannouche et al. 2004; Bienko et al. 2005; Garg 
and Burgers 2005; Bi et al. 2006; Guo et al. 2006b; Harac-
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ska et al. 2006). 
Arabidopsis AtUbc1, AtUbc2 and AtUbc3 are Rad6 

homologues and have the conserved cysteine at position 88 
that is essential for ubiquitin-conjugating activity (Bach-
mair et al. 2001; Kraft et al. 2005). Indeed AtUbc1-
AtUbc3 are able to conjugate ubiquitin to target proteins in 
vitro, but it is not known whether they ubiquitylate PCNA 
or contribute to UV resistance in planta (Kraft et al. 2005). 
However, expression of AtUBC2 in yeast partially comple-
mented the UV sensitivity conferred by deletion of RAD6, 
although the participation of AtUbc2 in UV mutagenesis 
was not assessed (Zwirn et al. 1997). Nonetheless, given 
that there is no evidence for interaction of AtUbc2 with 
yeast Rad18 or resumption of PCNA ubiqutylation, restor-
ation of UV resistance cannot be attributed to AtUbc2 
functioning in damage tolerance in yeast. Interestingly, 
Arabidopsis lacks a Rad18 homologue, but an Arabidopsis 
Rad6 homologue may operate with a multi-protein E3 
complex rather than a single Rad18-like ubiquitin ligase. 
Indeed, a rice Rad6 homologue interacts with Sgt1, a sub-
unit of a Skp1-Cul1-F-box ubiquitin ligase (Azevodo et al. 
2002; Yamamoto et al. 2004). Thus, in plants a 
multi-protein ubiquitin ligase might substitute for Rad18 in 
damage tolerance. Alternatively, because AtUbc1-AtUbc3 
have E3-independent ubiquitin-conjugating activity in vitro, 
PCNA monoubiquitylation in Arabidopsis might not re-
quire a separate ubiquitin ligase. If so, the presence of mul-
tiple Rad6 homologues in Arabidopsis might reflect the 
need for different substrate specificities among the homo-
logues. Although Arabidopsis contains at least 27 genes 
specifying ubiquitin-specific proteases, none has overall 
homology to human Usp1 (Yan et al. 2000). Therefore, if 
PCNA is monoubiquitylated in plants, it is likely to be deu-
biquitylated by a protein other than a Usp1 homologue. 

Ubiquitin is likely redirected by yeast Doa1 from the 
proteosomal degradation pathway to the ubiquitin-conju-
gating assemblies that target PCNA (Lis and Romesberg 
2006). Doa1, which is essential for damage-induced ubi-
quitylation of PCNA, and its human homologue Plaa are 
predicted to contain seven WD-40 repeats, amino-termini 
with homology to phospholipase A2-activating protein, 
and a Plaa family ubiquitin binding domain (Lis and 
Romesberg 2006; Mullally et al. 2006). Arabidopsis has a 
Doa1 homologue in which all of these features are con-
served, but the activity and role of the protein remain to be 
determined. 
 
Polyubiquitylation of PCNA and error-free damage 
avoidance 
 
Damage avoidance is error-free and so may be favoured 
over TLS by mutation-prone polymerases. Selection of the 
damage avoidance pathway requires the assembly of K63- 
linked polyubiquitin chains onto monoubiquitin at K164 of 
PCNA in yeast and human cells. This modification is catal-
ysed in UV-irradiated cells by a heterodimeric ubiqui-
tin-conjugating enzyme composed of Ubc13 and the ubi-
quitin E2 variant (UEV) protein Mms2 (Hoffmann and Pic-
kart 1999; Hoege et al. 2002; Chiu et al. 2006; Motegi et 
al. 2006; Unk et al. 2006). Ubc13-Mms2 interacts via 
Ubc13 with the DNA-binding ubiquitin ligase Rad5 (Shprh 
in human cells), a RING protein that targets PCNA (Ulrich 
and Jentsch 2000; Unk et al. 2006). Polyubiquitylation of 
PCNA may involve cooperation of the Rad6-Rad18 and 
Ubc13-Mms2-Rad5/Shprh complexes mediated by inter-
action between Rad5/Shprh and Rad18 (Ulrich and Jentsch 
2000; Motegi et al. 2006; Unk et al. 2006). The greater UV 
sensitivity of a rad5 deletion mutant compared to the UV 
sensitivities of mms2 and ubc13 deletions mutants, coupled 
with a requirement for Rad5, but not Mms2 or Ubc13 for 
UV-induced reversion at the ARG4 locus, has led to the 
suggestion that Rad5 also may function independently of 
Ubc13-Mms2 to enhance TLS efficiency (�ejka et al. 
2001; Gangavarapu et al. 2006). Despite its importance, 
how the choice is made between the TLS and damage avoi-

dance pathways when a replication fork encounters a DNA 
lesion, and the factors that influence this choice, are not 
clear. However, since Rad18 and Rad5 also interact phy-
sically with Ubc9 (Hoege et al. 2002), SUMOylation and 
ubiquitylation of PCNA may be regulated in part by com-
munication between the modifying complexes. 

Arabidopsis AtUbc13A and AtUbc13B encode Ubc13 
counterparts and appear to be due to a recent duplication 
event (Wen et al. 2006). The four AtUev1A-D loci encode 
Mms2 homologues, and likely resulted from two sequential 
duplications. Several observations are consistent with the 
AtUbc13 and AtUev1 proteins forming at least one 
AtUbc13-AtUev1 polyubiquitylating complex that partici-
pates in damage tolerance (Wen et al. 2006; R Wen, L. 
Newton, H Wang, W Xiao, unpublished data). First, spe-
cific residues in human or yeast Ubc13 or Mms2 have been 
shown to be essential for the interaction of the two proteins, 
binding of ubiquitin to the Ubc3-Mms2 ubiquitin acceptor 
site, unanchored polyubiquitin chain assembly by the 
Ubc13-Mms2 complex in vitro or cellular UV resistance 
conferred by UBC13 or MMS2 (Pastushok et al. 2005; Tsui 
et al. 2005; Eddins et al. 2006). The critical Ubc13 or 
Mms2 residues are conserved in AtUbc13A and AtUbc13B 
or AtUev1A-D, respectively. Second, AtUbc13A and 
AtUbc13B interact with each of AtUev1A-D, and each 
Arabidopsis Ubc13 or Mms2 homologue also interacts with 
yeast and human Mms2 or Ubc13, as appropriate. Third, 
AtUbc13A with AtUev1A or AtUev1C generates unan-
chored di-ubiquitin chains in vitro. Fourth, interference 
RNA suppression of AtUBC13 in planta moderately sensiti-
ses root growth to UV, and inactivation of AtUEV1D red-
uces seed germination and seedling growth in response to 
DNA damage. Finally, expression of AtUBC13A and 
AtUBC13B or AtUEV1A-D in yeast can fully complement 
yeast ubc13 or mms2 deletions, respectively. However, 
these results, especially those of the heterologous comple-
mentation assays, should not be interpreted to indicate that 
AtUbc13A, AtUbc13B and AtUev1A-D necessarily func-
tion in damage tolerance in Arabidopsis. The difficulty in 
doing so is illustrated by the observation that although 
human Uve1A, a homologue of yeast Mms2, functions in 
place of Mms2 in yeast, in human cells it is required for 
nuclear factor �B activation rather than damage tolerance 
(Anderson et al. 2005). 

Yeast Rad5 and human Shprh contain a C3HC4 RING 
motif characteristic of ubiquitin ligases and located 
between the third and fourth of seven SWI/SNF helicase 
domains (Sood et al. 2003). These features are strongly 
conserved in two predicted Arabidopsis Rad5 homologues 
and a predicted protein with some similarities to human 
Shprh. However, human Shprh differs from yeast Rad5 in 
also having a “plant homeodomain” (PHD) domain and a 
“linker histone domain typical of the H1 and H5 families” 
(H1,5) domain (Sood et al. 2003). Neither domain is pre-
sent in either Arabidopsis Rad5 homologue, but a disrupted 
form of the PHD domain is in the Arabidopsis Shprh-like 
protein which is missing the H1,5 domain. Thus, it seems 
unlikely that Arabidopsis has a bona fide Shprh sequence 
homologue. Whether either Rad5 homologue contributes to 
UV resistance, interacts with AtUbc13A or AtUbc13B, or 
can function in polyubiquitylation is unknown. 
 
Pol� expression and stability 
 
Under normal conditions yeast Pol� has a half-life of 20 
minutes (Skoneczna et al. 2007), presumably to limit its 
activity in the absence of DNA damage. Defects in the �1 
(pup-T30A), �2 (pre3-T20A), or �5 (pre2-K108R) compo-
nents of the yeast proteasome, the Ump1 proteasome matu-
rase or the Skp1-cullin-Ufo1 ubiquitin ligase confer a 
Pol�-dependent increase in spontaneous and UV-induced 
mutations, increase the steady-state level and half-life of 
Pol�, and lead to detection of ubiquitylated Pol� species 
(Podlaska et al. 2003; Skoneczna et al. 2007). Thus, post- 
translational polyubiquitylation of the polymerase may reg-
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ulate its stability by targeting it for controlled proteolysis. 
When yeast cells are UV-irradiated, however, transcription 
of RAD30 is induced, and Pol� is temporarily stabilised 
(half-life: two hours) so that it accumulates transiently 
(McDonald et al. 1997; Skoneczna et al. 2007). An in-
crease in the concentration of Pol� at the replication fork 
may facilitate its entry to the replication complex and so 
promote TLS past UV photoproducts. Expression of POLH 
is not UV-inducible in human fibroblasts (Liu and Chen 
2006), and so far only monoubiquitylated Pol�, Pol� and 
Rev1 have been detected in mammalian cells (Bienko et al. 
2005; Guo et al. 2006b). Furthermore, it is not known if 
putative TLS polymerases are ubquitylated in plants. Thus, 
whether regulation of the stability of TLS polymerases 
plays a role in the control of TLS in higher eukaryotes is 
uncertain. 
 
Roles for damage response proteins 
 
Coordination of DNA damage tolerance pathways in yeast 
also requires DNA damage checkpoint proteins, most of 
which have human homologues. In particular, Srs2, which 
interacts with SUMOlyated PCNA, also has a checkpoint 
role (Liberi et al. 2000; Vaze et al. 2002), and the Ddc1, 
Mec3, Rad9, Rad17 and Rad24 checkpoint proteins func-
tion in damage tolerance (Paulovich et al. 1998; Barbour et 
al. 2006). Although the part played by Rad9 is unclear, 
Rad17, Ddc1 and Mec3, and their human homologues 
Rad9, Rad1, and Hus1, form a PCNA-related heterotri-
meric clamp (human 9-1-1 complex) loaded onto DNA in 
vitro by the Rad24-RFC (human Rad17-RFC) clamp loa-
der (Bermudez et al. 2003; Majka and Burgers 2003). Se-
veral findings link this checkpoint clamp to Pol�-mediated 
TLS in yeast. Proteins that form the clamp or its loader are 
required for UV mutagenesis (Paulovich et al. 1998), 
clamp components interact with Rev7, and the clamp in-
creases the efficiency of Rev7 binding to UV-irradiated 
chromosomes (Sabbioneda et al. 2005). However, the 
Rad17-Ddc1-Mec3 clamp does not stimulate TLS by Pol� 
(Garg et al. 2005) suggesting that the checkpoint clamp- 
loader system may contribute to regulation of tolerance 
pathways via recruitment of TLS polymerases rather than 
being directly involved in TLS. Arabidopsis appears to 
lack a counterpart of S. cerevisiae Rad9, but homologues 
of Rad17, Ddc1, Mec3 and Rad24 have been identified, 
and corresponding cDNAs isolated (Heitzeberg et al. 2004). 
Arabidopsis also has loci encoding counterparts of Rfc2, 
Rfc3, Rfc4 and Rfc5, the remaining clamp loader compo-
nents. Mutations in the Rad17 and Rad24 homologues 
epistatically sensitise Arabidopsis to strand-breaking 
agents (Heitzeberg et al. 2004), but neither the influence of 
the clamp or clamp loader homologues on UV resistance 
has been assessed. 
 
CONCLUDING REMARKS 
 
Owing to their prolonged exposure to sunlight, plants have 
developed mechanisms for reducing tissue penetration by 
harmful solar UV wavelengths, and reversing or removing 
UV-induced DNA damage. Recent findings suggest that 
plants also have the requisite machinery for tolerating UV 
photoproducts, but there are reasons to think the mecha-
nisms involved may not precisely mirror those in human 
cells or yeast. Certainly, there appear to be differences 
among the gene profiles of the three species. For example, 
Arabidopsis potentially has more TLS polymerases than 
yeast but fewer than human cells. In addition, multiple ho-
mologues of single copy human or yeast genes, including 
MMS2, PCNA and UBC13 are present in the plant, which 
may reflect functional redundancy or a division of labour. 
Furthermore, Arabidopsis seems to be missing counterparts 
of Rad9, Rad18, Srs2 and Usp1, and this may point to 
differences in the regulation of damage tolerance in plants, 
or the presence of functional rather than sequence homo-
logues of certain yeast or human damage tolerance proteins. 

The way in which plants develop is an aspect of plant 
life that may influence tissue-specific needs for and reg-
ulation of damage tolerance. For example, cell proliferation 
occurs in meristematic tissues and not normally in mature 
tissues. Thus, damage tolerance genes might be expressed 
exclusively in actively growing tissues. Consistent with this 
possibility, rice PCNA was found to be expressed in tissues 
where cells would be actively proliferating, including young 
leaves, the shoot apical meristem and the root apical meri-
stem, but not in mature leaves where cells do not proliferate 
(Kimura et al. 2004). However, this difference in tissue- 
specific expression could be related mainly to the role of 
PCNA in chromosomal DNA replication rather than damage 
tolerance. AtREV3 or AtPOLH transcripts were detected in 
leaf, root, and flower tissues of two-week-old or four- 
week-old plants, respectively, and in stems and siliques for 
AtPOLH (Sakamoto et al. 2003; Santiago et al. 2006). Simi-
larly, AtUBC13 transcripts were identified in five-week-old 
leaf, stem or flower tissues (Wen et al. 2006) Furthermore, 
the AtPOLK promoter was active in a variety of tissues in-
cluding non-proliferating organs such as mature leaves, sep-
als and stamen filaments (García-Ortez et al. 2004). Col-
lectively, these observations indicate damage tolerance pro-
teins are expressed in proliferating and non-proliferating tis-
sues throughout the plant, although what purpose they might 
have in the latter tissues is unclear. It is interesting, however, 
that AtREV3, AtPOLH and AtUBC13 transcripts, as well as 
AtPOLK promoter activity, were observed in one or more 
tissues (leaves, cotyledons, hypocotyl) (Sakamoto et al. 
2003; García-Ortez et al. 2004; Santiago et al. 2006; Wen et 
al. 2006) whose development is associated with endoredup-
lication (one to several rounds of genome replication in the 
absence of mitosis) (Galbraith et al. 1991; Melaragno et al. 
1993; Trass et al. 1998; Lomontey et al. 2000). Conceivably, 
damage tolerance proteins might also function during cycles 
of endoreduplication in growing plants. 

Whether in plants damage tolerance makes an important 
contribution to UV resistance, protects against blockage of 
replication fork progression by endogenous damage, or adds 
to genetic instability through error-prone TLS is not known. 
The influence of defects in damage tolerance genes on mut-
agenesis or other indicators of genetic stability in plants has 
not been assessed. A better understanding of the biological 
roles of putative plant damage tolerance genes will require 
their continued genetic analysis as well as isolation and cha-
racterisation of the proteins they encode. 
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