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ABSTRACT 
All plant organs are derived from meristems. The shoot apical meristem (SAM) produces the aerial part of the plant. It has two main 
functions: the maintenance of a group of stem cells at the center of the meristem and the initiation of organs at its periphery. The organs 
are initiated in a regular spatial pattern, referred to as phyllotaxy, and are separated from the surrounding tissue by a boundary domain. 
The KNOTTED-like homeobox (KNOX) family of transcription factors plays a key role in the control of SAM activity. These proteins 
belong to the three amino acid loop extension (TALE) homeodomain superclass and form heterodimers with other TALE proteins 
belonging to the BEL1-like (BELL) family. The KNOX proteins regulate the different activities of the SAM. They control SAM 
maintenance, boundary establishment, the correct patterning of organ initiation and the development of axillary meristems. They exert 
their effects through the regulation of several hormonal pathways. KNOX proteins repress gibberellin (GA) biosynthesis and activate 
cytokinin (CK) synthesis and signaling. In addition to their role in the SAM, they contribute to leaf form diversity. In plants with simple 
leaves, KNOX genes are expressed in the SAM and downregulated in leaf primordia, whereas in plants with dissected leaves their 
expression is reactivated in leaves. 
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INTRODUCTION 
 
Homeoproteins are a family of transcription factors that 
share a homologous DNA-binding domain, the homeodo-
main (Burglin 1997). They were first discovered in the 
fruitfly Drosophila melanogaster, in which their inactiva-
tion leads to homeotic mutations (McGinnis et al. 1984). 
Homeoproteins were subsequently found in animals, in 
many angiosperms, gymnosperms, ferns, mosses, algae and 
fungi. Some members of this family are key regulators of 
the body plan, as they are required to specify organ identity 
in animals, including nematodes, fruitflies and vertebrates 
(McGinnis and Krumlauf 1992; Burglin 1994). Plant ho-
meobox genes, unlike their counterparts in animals, are 
generally not associated with organ identity. The BEL1 
protein is an exception to this rule: it controls ovule 

integument identity (Reiser et al. 1995). The plant homeotic 
genes belong to another family of transcription factors, the 
MADS-box gene family (Rijpkema et al. 2007). Plant 
homeobox genes have been classified into several families 
and have been shown to control diverse developmental 
processes, including the maintenance of stem cells, ovule 
development, leaf polarity, and trichome elongation (Ito et 
al. 2002). In this review, we focus on the first homeoprotein 
family identified in plants, the KNOX family, and its role in 
meristem activity. 
 
THE SHOOT APICAL MERISTEM 

 
Plant growth results from the activity of groups of cells 
called meristems (for review see Traas and Vernoux 2002). 
The shoot apical meristem, located at the tip of the shoot, 
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produces the aerial parts of the plant. It is established 
during embryogenesis and dictates the architecture of the 
plant, as it is responsible for initiating leaves, internodes, 
axillary meristems and flowers. The plant body consists of 
repeating units called phytomers, each comprising a stem 
fragment (internode) and one or several organs with a meri-
stem in its axil (node). In most dicots, the SAM is orga-
nized into three distinct layers (Fig. 1A). The use of chime-
ric lines demonstrated that the L1 layer forms the epidermis 
whereas the L2 and L3 layers provide cells for the inner 
part of the organs. Intercellular trafficking of signaling mo-
lecules through the plasmodesmata within and between lay-
ers coordinates SAM function. The SAM can also be divi-
ded into distinct zones with specific functions, superim-
posed on the layered organization. It contains a population 
of slowly dividing stem cells located in the central region of 
the meristem. These cells are involved in SAM mainte-
nance and provide cells for the peripheral and rib zones in 
which cell differentiation occurs. The rib zone contributes 
to stem formation, whereas the peripheral zone produces 
lateral organs. The initiation of an organ is accompanied by 
the creation of a boundary domain that separates the organ 
from the surrounding tissue (for review see Aida and Ta-
saka 2006). Organs are initiated successively on the flanks 
of the SAM in a regular pattern, referred to as phyllotaxy. 
In Arabidopsis, the organs are initiated in a spiral pattern, 
with an angle of divergence between successive primordia 
of about 137.5° (Peaucelle et al. 2007). The balance 
between the allocation of cells to the developing primordia 
and the perpetuation of pluripotent cells in the central zone 
maintains the SAM constant in size (Laufs et al. 1998). 
 
THE KNAT (FOR KNOTTED-LIKE FROM 
ARABIDOPSIS THALIANA) FAMILY 

 
The KNOX genes play a critical role in controlling meri-
stem activity. These genes encode homeodomain transcrip-
tion factors of the three amino acid loop extension (TALE) 
superclass. These proteins are conserved among eukaryotes 
and are characterized by a three-amino acid extension to 
the loop connecting the first and second helices of the ho-
meodomain (Burglin 1997). KNOX genes can be divided 
into two classes based on sequence similarity within the 
homedomain, the positioning of introns and expression pat-
terns (Hake et al. 2004). Class I contains genes expressed 
mainly in the shoot meristem whereas class II genes are 
more widely expressed. In Arabidopsis, the class II genes 
are KNAT3, KNAT4, KNAT5 and KNAT7. Their function 
remains unclear as loss-of-function and overexpression 
mutants for KNAT3, KNAT4 and KNAT5 have wild-type 
phenotypes (Serikawa and Zambryski 1997; Truernit et al. 
2006). However, the regulated expression of these genes in 
the root suggests that these genes play a role in root deve-
lopment (Truernit et al. 2006). To date, KNAT7 is the only 
class II member for which a function has been proposed: 
phenotypic mutant analysis and transcriptional data have 
indicated that KNAT7 is involved in xylem formation 

(Brown et al. 2005). The Arabidopsis class I genes are 
SHOOT MERISTEMLESS (STM), BREVIPEDICELLUS 
(BP)/KNAT1, KNAT2 and KNAT6. STM is expressed in the 
dome of the meristem, whereas KNAT1 and KNAT2 are ex-
pressed in the peripheral zone, and KNAT6 is expressed in 
the boundary between the meristem and organs (Lincoln et 
al. 1994; Dockx et al. 1995; Long et al. 1996; Belles-Boix 
et al. 2006). None of these genes is expressed in the regions 
giving rise to leaf primordia (Fig. 1B). 
 
MOVEMENT OF KNOX PROTEINS 

 
The pattern of KNOX mRNA accumulation does not al-
ways match protein localization. Some KNOX proteins are 
able to move from cell-to-cell. This was first discovered 
when analyzing a dominant mutation of the maize homeo-
box gene knotted1 (kn1). A signal originating from the 
internal layers was found to induce knots in the epidermis, 
indicating that kn1 acts non-autonomously in maize (Hake 
and Freeling 1986). A comparison of the localization of 
KN1 protein and kn1 RNA confirmed this observation. The 
protein was found in all layers of the SAM, whereas kn1 
mRNA was not detected in L1 (Jackson and Hake 1994). 
Microinjection and graft experiments subsequently showed 
that the KN1 protein could move through the plasmodes-
mata and transport its own mRNA (Lucas et al. 1995). Fur-
ther experiments showed that KN1 trafficking is regulated 
during development. KN1 protein moves in both directions 
in the SAM, whereas it moves only from the mesophyll lay-
ers to the epidermal layer in leaves (Kim et al. 2002). Com-
plementation experiments have shown that KNOX proteins 
differ in their trafficking ability. Movement was observed 
for STM and BP, although BP was less mobile, but not for 
KNAT2 and KNAT6 (Kim et al. 2002, 2005). Finally, the 
homeodomain has been shown to be necessary and suffici-
ent for intercellular protein and mRNA trafficking (Kim et 
al. 2005). The trafficking of KNOX proteins probably es-
tablishes gradients essential to their function in the SAM 
(Jackson 2002). 
 
KNAT GENE FUNCTION 

 
SHOOT MERISTEMLESS is essential for meristem initi-
ation during embryogenesis and meristem maintenance 
during post-embryonic development (Clark et al. 1996; 
Endrizzi et al. 1996; Long et al. 1996). Strong alleles of 
stm mutants fail to form a meristem and to produce lateral 
organs. In addition to its role in the SAM, STM contributes 
to organ separation, as stm strong alleles show a fusion of 
the cotyledon petioles (Endrizzi et al. 1996). Phyllotaxy de-
fects were described in weak alleles of stm. Stm-2 seedlings 
have a single leaf primordium and no shoot meristem, indi-
cating that the meristematic cells have been consumed by 
the formation of the sole primordium. After embryogenesis, 
stm-2 mutants form axillary meristems that give rise to pri-
mordia with an aberrant spatial organization. However, 
these defects may result from the abnormal structure of the 
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Fig. 1 Organization of the shoot apical meristem and 
expression of KNOX genes in Arabidopsis. (A) The SAM can 
be divided into a central zone (CZ), a rib zone (RZ) and a peri-
pheral zone (PZ). These zones are superimposed on an organi-
zation of layers (L1 to L3). (B) Domains of expression (shown 
in black) of the KNAT class I genes STM, BP/KNAT1, KNAT6, 
and KNAT2 in the SAM. 
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SAM and are probably indirect. The stm-2 inflorescence 
terminates prematurely in fused organs (Endrizzi et al. 
1996). Thus, STM is primarily involved in SAM and boun-
dary maintenance. 

BREVIPEDICELLUS (BP)/KNAT1 primarily plays a 
role in internode development, as bp mutants have short 
internodes and pedicels, bends at nodes and downward-
oriented flowers and siliques (Douglas et al. 2002; Venglat 
et al. 2002). The reduced length of internodes and pedicels 
results from defects in both cell division and cell expansion 
(Douglas et al. 2002). In addition to their smaller size, bp 
inflorescences have stripes of achlorophyllous tissue in in-
ternodes, and abnormal vascular differentiation in inter-
nodes and pedicels. BP was subsequently shown to regu-
late the lignin biosynthesis pathway during internode deve-
lopment, preventing the premature accumulation of lignin 
(Mele et al. 2003). A role for BP in the promotion of stem 
growth is consistent with its expression in the stem cortex. 
In addition to its role in inflorescence differentiation, BP is 
redundant with STM in the SAM, as it reduces the meriste-
matic potential of the weak stm-2 allele (Byrne et al. 2002). 

KNAT2 and KNAT6 are the most closely related mem-
bers of the KNAT family. Knat2 and knat6 single and dou-
ble mutants show no abnormal phenotype (Belles-Boix et 
al. 2006). Genetic analysis has shown that KNAT6 plays a 
redundant role with STM in meristem maintenance and or-
gan separation (Belles-Boix et al. 2006). KNAT6 inacti-
vation abolishes the residual meristematic activity of stm-2. 
KNAT6 makes a more substantial contribution to meristem 
maintenance than BP. The knat6 stm double mutant exhi-
bits a fusion of the cotyledons that extends to the blade, in-
dicating a specific role for KNAT6 in organ separation. 
This role is consistent with KNAT6 expression in the boun-
dary domain (Belles-Boix et al. 2006). The role of KNAT2 
in the SAM remains unclear. KNAT2 inactivation does not 
aggravate the phenotype of stm mutants or knat6 stm dou-
ble mutants (Belles-Boix et al. 2006). 

Loss-of-function mutants of KNAT class I genes show 
defects in meristem maintenance or meristem activity. 
Conversely, the ectopic expression of KNAT class I genes 
leads to the maintenance of an indeterminate state in vari-
ous tissues. KNOX overexpression inhibits leaf differenti-
ation, leads to the formation of lobes and, in the most se-
vere cases, to the production of ectopic meristems (Sinha et 
al. 1993; Chuck et al. 1996). In addition, the ectopic ex-
pression of KNAT2 and KNAT6 genes in ovules leads to 
the homeotic conversion of the nucellus into carpeloid 
structures (Pautot et al. 2001 and our unpublished data). 
Thus, KNOX genes confer indeterminacy on a normally 
determinate organ. 
 
STRUCTURE OF KNOX PROTEINS AND THEIR 
INTERACTION PARTNERS 

 
KNOX proteins have several conserved domains (Fig. 2A). 
The homeodomain (HD), consisting of three �-helices with 
a helix-turn-helix structure, is located near the C-terminus. 
The third helix is responsible for DNA binding (Gehring et 
al. 1994). KNOX HDs have three extra amino acids (PYP) 
between the first and the second helices, and therefore they 
belong to the TALE superclass (Bertolino et al. 1995; 
Burglin 1997). The PYP domain is also involved in DNA 
binding (Nagasaki et al. 2001). The ELK domain is located 
upstream from the HD. It has an amphipathic helix struc-
ture, which may serve as a nuclear sorting signal (Meisel 

and Lam 1996). In addition to the conserved ELK and HD 
motifs, KNOX proteins contain the MEINOX domain 
(from MEIS “Myeloid ecotropic viral integration site” and 
KNOX). This domain contains two subdomains, KNOX1 
and KNOX2, separated by a flexible linker (Burglin 1997). 
The MEINOX domain mediates interactions with other 
KNOX and TALE proteins (Bellaoui et al. 2001; Müller et 
al. 2001; Smith et al. 2002). The formation of KNOX/ 
KNOX homo- and heterodimers requires both the HD and 
MEINOX domains (Nagasaki et al. 2001). KNOX proteins 
interact specifically with members of another TALE class, 
the BELL family. The MEINOX domain binds to the N-
terminal domain of the BELL protein, named the MEINOX 
interacting domain (MID) (Fig. 2B). The MID domain is a 
bipartite domain composed of the SKY and BELL regions. 
The interaction of KNOX and BELL proteins results in 
high DNA binding affinity and may also play an important 
role in localizing the KNOX-BELL complex to the nucleus 
(Bellaoui et al. 2001; Müller et al. 2001; Smith et al. 2002; 
Smith and Hake 2003; Byrne et al. 2003; Bhatt et al. 2004). 
The GSE domain, located between the ELK and MEINOX 
domains, is thought to be involved in protein stability 
(Nagasaki et al. 2001). 
 
KNOX-BELL HETERODIMERS REGULATE SAM 
ACTIVITY 

 
In Arabidopsis, the BELL family comprises 13 members 
(Smith et al. 2004). The first to be identified was desig-
nated BEL1, as the bel1 mutant had bell-shaped ovules 
(Robinson-Beers et al. 1992; Modrusan et al. 1994; Ray et 
al. 1994). In addition to its role in ovule integument deve-
lopment, a function for BEL1 in maintaining the inflores-
cence meristem has been proposed (Bellaoui et al. 2001). 
The inflorescence of bel1 mutants terminates in a floral 
structure similar to the inflorescence of terminal flower 1 
(tfl1) mutants. The patterns of BEL1 and STM expression 
overlap in the inflorescence apex, and the BEL1 protein 
interacts with the STM protein in yeast two-hybrid studies 
(Bellaoui et al. 2001). PENNYWISE (PNY), another mem-
ber of the BELL family also known as BELLRINGER (BRL), 
REPLUMLESS (RPL), or VAAMANA (VAN), has also re-
cently been shown to control inflorescence architecture 
(Byrne et al. 2003; Smith and Hake 2003; Bhatt et al. 2004). 
Loss-of-function pny mutants are smaller than wild-type 
plants and show a loss of apical dominance and aberrant 
organ positions. The regular spiral pattern of organs is dis-
rupted in pny mutants and internode size is irregular. Late-
ral organ initiation is more frequent in the absence of PNY 
(Byrne et al. 2003). Like BP and KNAT6, PNY contributes 
to SAM maintenance in the absence of STM (Byrne et al. 
2003; Bhatt et al. 2004). It makes a more substantial con-
tribution than BP but a lesser contribution than KNAT6. 
Further genetic and expression analyses have shown that 
BP and PNY control inflorescence stem growth (Smith and 
Hake 2003). The pny bp double mutant has an additive phe-
notype, with extremely short internodes, downward orien-
ted organ clusters and increased branching (Byrne et al. 
2003; Smith and Hake 2003). Pny bp double mutant inflo-
rescence stems also display higher levels of cellular disor-
ganization than observed in single mutants. These two 
genes are expressed in overlapping domains in the inflores-
cence meristem and their proteins interact physically 
(Smith and Hake 2003; Bhatt et al. 2004). In addition to 
their phyllotaxy defects, pny mutants display abnormal fruit 
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A Fig. 2 Schematic representation of KNOX and 
BELL protein structures. (A) KNOX proteins 
contain a MEINOX domain, a GSE domain, an 
ELK domain and a TALE homedomain. (B) 
BELL proteins contain a MID domain and a 
TALE homeodomain. 
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development. Their siliques have defects in replum dif-
ferentiation and in the fusion of the septum (Roeder et al. 
2003). Moreover, pny flowers from old terminating shoots 
may display homeotic conversions of sepals to carpels 
(Bao et al. 2004). 

Studies of the interaction between PNY and its closest 
relative in the BELL family, POUNDFOOLISH (PNF) 
revealed a role for PNY in the response to floral induction 
signals (Smith et al. 2004). The pnf mutant has a wild-type 
phenotype, suggesting that PNY can compensate for the 
loss of PNF activity. In contrast, PNF cannot compensate 
for the loss of PNY function, probably because it is expres-
sed too weakly (Kanrar et al. 2006). Double mutants in 
which both PNY and PNF activities are compromised do 
not flower. Genetic analysis has indicated that PNY and 
PNF may regulate floral meristem identity genes in res-
ponse to floral induction and may control the morpholo-
gical changes required for flowering. In particular, PNY 
and PNF control expansion of the peripheral and rib zones 
of the meristem. These zones are narrower in the pny pnf 
double mutant. These genes also control the correct alloca-
tion of cells to organs, as pny pnf SAMs often terminate. 
They are also required for the correct pattern and rate of 
leaf initiation, as spiral phyllotaxy is transformed into a de-
cussate-like pattern in double mutants (Smith et al. 2004). 
Inflorescence development is sensitive to gene dosage 
effects, as a single functional copy of the PNF allele res-
tores flowering capacity. Pny/pny pnf/+ inflorescences 
have more severe defects than those of pny single mutants. 
In particular, pedicels are often fused to the main stem or 
to each other, indicating a lack of maintenance of the boun-
daries between organs in pny/pny pnf/+ mutants. In con-
trast, genetic analysis has indicated that PNF is not re-
quired for the early stages of meristem development. It 
does not aggravate the deficiencies in meristematic activity 
of the weak stm-10 allele and cannot substitute for the loss 
of PNY activity in pny stm-10 double mutants. These fin-
dings are consistent with the absence of PNF expression in 
the embryonic SAM (Kanrar et al. 2006). Genetic analysis 
has suggested that PNY/BP and PNF/BP heterodimers con-
trol internode patterning, whereas PNY/STM and PNF/ 
STM heterodimers regulate floral specification, internode 
patterning, and boundary maintenance (Kanrar et al. 2006). 
Preliminary evidence also suggests a role for other BELL 
members in the regulation of flowering time. ATH1, a 
BELL gene whose expression is light regulated, interacts 
with STM and PNY to control SAM activity and floral 
competency (Quaedvlieg et al. 1995; B. Rutjens and M. 
Proveniers pers. comm). An effect of TALE proteins on 
flowering time was also mentioned in Cole et al. (2006). 
While overexpression of ATH1 delayed the transition to 
flowering, the overexpression of BLH3 and PNY (BLH9) 
caused an early flowering phenotype (Cole et al. 2006). 
 
TALE PROTEINS INTERACT WITH OVATE 
PROTEINS 

 
New partners of TALE proteins, the OVATE proteins, 
were recently identified during a large-scale yeast two-
hybrid analysis (Hackbusch et al. 2005). This plant-speci-
fic class of proteins was first characterized in tomato, in 
which an OVATE protein was found to control fruit shape 
(Liu et al. 2002). Nine members of the Arabidopsis 
OVATE family interact with TALE proteins. The function 
of OVATE proteins in SAM development has not yet been 
studied. However, there is evidence to suggest that 
OVATE proteins may interact with TALE proteins to regu-
late GA content in the SAM. Coexpression studies have 
also shown that these proteins may regulate the intracel-
lular localization of homeodomain proteins. Further studies 
are required to investigate this complex network and to 
determine the role of OVATE-TALE protein interactions 
in SAM development. 
 
 

KNOX FUNCTION IS INTEGRATED INTO A 
HORMONAL NETWORK 

 
The link between KNOX genes and hormonal pathways be-
came evident from studies of KNOX overexpressors. KNOX 
overexpressors display some of the features of cytokinin 
overproducers: alteration of leaf shape, production of 
ectopic meristems, higher regeneration rate and delayed 
leaf senescence (for review see Hay et al. 2004; Ori et al. 
2006). Consistent with this, KNOX overproducers have 
been shown to have high cytokinin levels (Kusaba et al. 
1998). Conversely, plants overproducing cytokinins have 
higher levels of KNAT1 and STM mRNA (Rupp et al. 1999). 
Further studies investigated the molecular link between 
KNOX proteins and CK. The activation of KNOX proteins 
leads to an increase of cytokinin biosynthesis by up regula-
ting the accumulation of isopentenyl transferase 7 (AtIPT7) 
mRNA levels, and to the activation of ARR5, a cytokinin 
response factor. The expression of a cytokinin biosynthesis 
gene under control of the STM promoter partially rescued 
the stm mutant. Thus, the maintenance of the SAM by 
KNOX proteins involves the regulation of CK biosynthesis 
(Jasinski et al. 2005; Yanai et al. 2005). However, no direct 
molecular link between KNOX genes and CK has yet been 
demonstrated. In addition to changes in cytokinin levels, 
decreased levels of GA have been detected in KNOX over-
expressors of several species. KNOX proteins have also 
been shown to act as GA biosynthesis repressors: the tobac-
co KNOX protein NTH15 binds to Ntc12, a gene encoding 
a GA-20-oxidase required for GA biosynthesis. Consistent 
with these data, exogenous GA partially rescues the lobed 
leaf phenotype of KN1 and KNAT1 overexpressors (Hay et 
al. 2002). Conversely, the stm-2 phenotype was enhanced 
in the constitutive GA signaling mutant spindly (spy) (Hay 
et al. 2002). In addition, both KNOX proteins and CK acti-
vate a GA-2 oxidase gene triggering GA catabolism, there-
by excluding GA from the SAM (Jasinski et al. 2005). The 
detrimental effects of constitutive GA signaling and low 
CK levels on meristem activity have been further demons-
trated in Arabidopsis. A gene encoding a cytokinin oxidase 
that deactivates CK was introduced into the spindly (spy) 
mutant background leading to plants with no meristem and 
organ fusion defects (Jasinski et al. 2005). Thus, mainte-
nance of the SAM by KNOX proteins involves the repres-
sion of GA and the activation of CK biosynthesis. 

The link between KNAT2 and GA was less clear than 
those for STM, KN1 and BP/KNAT1. KNAT2 activation 
leads to the repression of GA biosynthesis, but this effect is 
less rapid than that of STM. Furthermore, GA application 
does not rescue the lobed leaf phenotype associated with 
KNAT2 overexpression (our unpublished data). However, 
an antagonistic interaction between KNAT2 and ethylene 
has been reported (Hamant et al. 2002). The KNAT2 over-
expressor phenotype is partially rescued by the application 
of an exogenous ethylene precursor and in the constitutive 
ethylene response ctr-1-10 mutant. In addition, the domain 
of KNAT2 expression was restricted in the presence of 
ethylene and in the ctr1 mutant, but enlarged in the etr1-1 
ethylene-resistant mutant (Hamant et al. 2002). Indeed, the 
number of cells in the KNAT2 expression domain was 
smaller in the ctr-1-10 mutant. This defect was corrected by 
KNAT2 activation (Hamant et al. 2002). These findings 
suggest that ethylene may be involved in regulating meri-
stem activity. Fig. 3 summarizes the integration of each 
KNAT gene into the hormonal regulation of SAM develop-
ment. 
 
REGULATORS OF KNOX GENES 

 
The CUC (CUP-shaped cotyledon) genes, encoding the 
NAC (NAM ATAF1 CUC2) transcription factors, are posi-
tive regulators of KNOX genes. During embryogenesis, the 
CUC1, CUC2 and CUC3 genes play a crucial role in estab-
lishing the SAM and organ separation (Aida et al. 1999; 
Takada et al. 2001; Vroemen et al. 2003; Hibara et al. 
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2006). The CUC1 and CUC2 genes play redundant roles in 
cotyledon separation and SAM formation via activation of 
the STM gene. In turn, during the later stages of embryo-
genesis, STM is required for correct CUC2 expression and, 
to a lesser extent, CUC1 expression. The role of KNAT6 
and STM in SAM maintenance and boundary establish-
ment has recently been shown to involve the regulation of 
CUC gene activity (Belles-Boix et al. 2006). 

Only a few positive regulators of KNOX gene activity 
are known, but many negative regulators have been identi-
fied through analyses of mutants with abnormal leaf shapes 
resembling KNOX overexpressors. Indeed, many of these 
mutants display ectopic KNOX gene expression. One of 
these regulators, the myb AS1 (asymmetric leaves 1) trans-
cription factor, which promotes adaxial leaf fate, plays a 
key role in downregulating KNAT class I genes in leaves. 
Genetic and expression analyses have demonstrated that 
STM represses AS1 expression in the SAM and that AS1 
downregulates BP/KNAT1, KNAT2 and KNAT6 expression 
in leaves (Byrne et al. 2000). AS2, from the lateral organ 
boundaries-domain (LOB) gene family (Semiarti et al. 
2001), is another regulator. AS2 specifies adaxial fate by 
repressing BP/KNAT1, KNAT2 and KNAT6, but not STM 
expression. Genes involved in abaxial organ identity, such 
as the YABBY genes, repress KNAT class I genes, including 
STM, on the abaxial sides of leaves (Kumaran et al. 2002). 
The BLADE ON PETIOLE1 (BOP1) and BOP2 genes are 
members of a family of genes encoding proteins with an-
kyrin repeats and a BTB/POZ domain. They are expressed 
in the proximal domain of lateral organs, where they re-
press the BP/KNAT1, KNAT2 and KNAT6 genes (Ha et al. 
2003, 2004; Norberg et al. 2005). SERRATE, a zinc finger 
protein that regulates expression of the HD-Zip III gene 
PHABULOSA (PHB) via a microRNA (miRNA) gene-si-
lencing pathway, and PICKLE, a chromatin-remodeling 
enzyme, seem to limit the ability to respond to KNOX acti-
vity in leaves (Ori et al. 2000; Grigg et al. 2005). Further-
more, HIRA, a histone chaperone, has been shown to inter-
act with AS1 to maintain KNOX gene silencing (Phelps-
Durr et al. 2005). However, the initial down-regulation of 
KNOX genes in the incipient leaf primordia is maintained 
in all of these mutants. Regulation via micro RNA 
(miRNA) gene silencing pathways would be an efficient 
way of downregulating KNOX gene activity in the P0 pri-
mordia. However, no miRNAs targeting KNOX genes have 
yet been identified, and the initial downregulation of 
KNOX genes in mutants impaired in miRNA pathways 
such as hyl1-1, dcl1-9 and argonaute was maintained (P. 
Laufs, pers. comm). Recent evidence suggests that auxin 
may play a major role in downregulating KNOX genes 
during the first steps of leaf primordium formation. In 
maize, a direct link between auxin and KNOX has been 

reported in studies of plants treated with auxin transport in-
hibitors. KNOX accumulation extended into the leaf prim-
ordia in NPA-treated plants (Scanlon 2003). Genetic anal-
ysis in Arabidopsis of the pin1 pinoid double mutant, in 
which auxin flux is disrupted, showed that auxin was re-
quired for STM downregulation to promote cotyledon for-
mation (Furutani et al. 2004). The finding of a correlation 
between auxin maxima and the initial downregulation of 
KNOX genes in the incipent leaf primordium extends this 
conclusion to leaf primordia formation (Heisler et al. 2005; 
de Reuille et al. 2006). However, further genetic analyses 
are required to demonstrate this conclusively. Recent gen-
etic analyses of mutants impaired in auxin signaling (axr1) 
or auxin transport (pin1) have shown that the auxin and 
AS1 pathways converge to repress BP and to promote leaf 
development. Pin1, as1 and axr1 mutants were found to 
have defects in leaf number and leaf development. The def-
ects were enhanced in axr1 as1 or pin as1 double mutants 
and were associated with the ectopic expression of BP. The 
reduction in leaf number of the pin mutant was partially 
rescued by BP inactivation, suggesting that the auxin-de-
pendent repression of KNOX genes is required for primor-
dium formation (Hay et al. 2006). However, the expression 
of KNOX genes in primordia anlagen of these mutants was 
not investigated (Hay et al. 2006). The initial downreg-
ulation of KNOX expression in Arabidopsis probably re-
quires the convergence of several redundant pathways. 
 
KNOX GENES CONTRIBUTE TO LEAF DIVERSITY 
IN SPECIES WITH DISSECTED LEAVES 

 
In species with simple leaves, correct leaf differentiation 
requires the downregulation of KNOX genes at sites of leaf 
primordium initiation. The overexpression of KNOX genes 
in simple-leaved species leads to the production of lobes 
and the inhibition of leaf differentiation (for review see 
Hake et al. 2004). In contrast, this overexpression increases 
leaf complexity in species with dissected leaves (Hareven 
et al. 1996). A study of KNOX expression in various vascu-
lar plants revealed a correlation between KNOX expression 
and leaf form (Bharathan et al. 2002). KNOX class I genes 
are downregulated at the sites of leaf primordium initiation 
in all species, but are subsequently reactivated in the leaves 
of species with complex leaves. This reactivation of KNOX 
expression in leaves promotes the formation of leaflets. 
However, final leaf shape cannot necessarily be inferred 
from KNOX expression patterns. Leaves from some eudicot 
species, such as Lepidium oleraceum, form complex leaf 
primordia with the corresponding pattern of KNOX gene 
expression, but subsequently undergo secondary morphoge-
nesis to form simple leaves (Bharathan et al. 2002). An-
other exception is found in legumes: pea has complex 

Fig. 3 KNAT interactions in the SAM. Summary 
of the known interactions of each KNAT member 
with hormones: STM (A), BP/KNAT1 (B), 
KNAT2 (C) and KNAT6 (D). GA, gibberellin;  
CK, cytokinins. 
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leaves, but does not accumulate KNOX proteins in leaf pri-
mordia, suggesting that other mechanisms may control or 
regulate leaf shape in this species (Gourlay et al. 2000; Ho-
fer et al. 2001). The molecular basis of differences in leaf 
shape was recently investigated in more detail in Carda-
mine hirsuta, a wild relative of Arabidopsis (Hay and Tsi-
antis 2006). This species has dissected leaves and displays 
KNOX expression in leaves. The downregulation of STM 
expression by RNA interference (RNAi) in C. hirsuta 
reduces leaflet initiation. Conversely, the overexpression of 
KNOX genes leads to the formation of additional leaflets. 
Thus, KNOX proteins are both necessary and sufficient for 
leaflet production in C. hirsuta. AS1 regulation contributes 
to leaf shape in many species with compound leaves (Kim 
et al. 2003). The production and function of the C. hirsuta 
AS1 protein were therefore investigated to determine whe-
ther AS1 regulation in C. hirsuta differed from that in Ara-
bidopsis. C. hirsuta AS1 was found to be functionally equi-
valent to Arabidopsis AS1, as it complemented the Arabi-
dopsis as1 mutant and repressed KNOX gene expression in 
Arabidopsis. Moreover, the regulation of C. hirsuta AS1 
expression was conserved: C. hirsuta AS1 was excluded 
from the SAM and accumulated in leaves. Promoter-swap 
experiments indicated that the differences in BP and STM 
expression between Arabidopsis and C. hirsuta were asso-
ciated with differences in promoter cis regulatory sequen-
ces. Finally, the isolation of a C. hirsuta as1 mutant, 
chas1-1, with additional orders of leaflets showed that C. 
hirsuta AS1 controls leaflet number and arrangement along 
the proximo-distal axis of the leaf. Thus, whereas the me-
chanism of KNOX gene regulation by AS is conserved be-
tween the two species, differences in leaf form result from 
differences in KNOX promoter sequences. 
 
CONCLUDING REMARKS 
 
In recent years, progress has been made towards elucidating 
the role of KNOX genes in plant development. It has 
become increasingly evident that KNOX proteins interact 
with different protein partners, resulting in flexibility in the 
regulation of distinct aspects of development. There also 
seems to be functional redundancy within the complex 
KNOX protein interaction network. This redundancy may 
ensure developmental robustness, by facilitating compensa-
tory interactions. Further genetic analyses for each member 
of the KNAT, BELL, and OVATE gene families is required 
to determine the specific roles of these genes both within 
and outside the SAM. 
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