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ABSTRACT 
Research on transgenic soybean ensures the generation of new data for basic and applied research. Successful transformation of soybean 
was achieved by both particle bombardment and Agrobacterium-based methods. The introduction of transgenes is a powerful tool for 
increasing resistance to biotic and abiotic stresses. Thus, resistance to viral and fungal infection, nematodes and insects, tolerance to 
herbicides as well as drought and high temperature can be increased using transformation. In the case of the industrial use of soybean oil, 
the alteration of fatty acid composition widened the range of potential applications. Yield quality was also improved by changing the 
amino acid composition in order to fulfil the requirement necessary for soybean to be used as food or feed. The function-, organ- or 
developmental stage-specific expression changes of several genes were studied in transgenic soybean. Suppressed or increased expression 
of genes allowed the determination of the possible regulatory or functional role of their products. Up to now the desired traits have been 
manipulated in soybean mainly by modification of the expression of structural genes. However, in the case of abiotic stress tolerance, 
determined by several genes, even more success could be achieved in the future if the expression of whole regulons might be changed by 
the genetic manipulation of the corresponding transcription factors. 
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INTRODUCTION 
 
Two plant families of great importance to agriculture world 
wide are the Poaceae and Fabaceae. The Fabaceae con-
tains about 650 genera and 18,000 species. Legumes in-
clude many important crop species that contribute signifi-
cantly to the protein intake of both humans and animals 
around the world especially in the developing countries 
where the available food and feed often is one-sided. Soy-
bean is a member of the tribe Phaseoleae, the most econo-
mically important species of the legume tribes. Other leg-
umes within this tribe include pigeon pea, common, lima 
and mung beans, cowpea, and Bambara groundnut (Hymo-
witz 2004). Soybean belongs to the genus Glycine (Hymo-
witz 1990). This genus is paleopolyploid, with 2n=40 as its 
base chromosome number, as compared to other phaseoloid 
legumes which are largely 2n=20 or 22 (Goldblatt 1981; 
Nielsen et al. 1989). The economic importance of this ge-
nus lies within the sub-genus Soja. Soybean (Glycine max 
(L.) Merr.) is a summer annual herb that has never been 
relocated into the wild (Hymowitz 1999). It is believed to 
be a cultigen from Glycine ussuriensis (Duke 1983). G. 
max has many popular names of which soybean and soya-
bean are the most common. The soybean genome contains 
one billion base pairs on 20 chromosomes and an estimated 
gene total of nearly 25,000 (Sinclair and Wynstra 1995). 
This paleopolyploid genome comprises about 1.1 Mb/C va-
lue, about seven and a half times larger than the genome of 
Arabidopsis, but less than half the size of the maize genome 
(Arumuganathan and Earle 1991), with high genetic and 
inter-genetic sequence conservation (Schlueter et al. 2006). 
According to Singh and Hymowitz (1988), the soybean ge-
nome is a partially diploidised tetraploid, a product of a 
diploid ancestor (n=11) that underwent aneuploid loss 
(n=10), polyploidisation (2n=20) and depolarisation (n=20) 
over time. 

According to Hymowitz (1990), soybean is an ancient 
food crop of China and was domesticated during the Chou 
Dynasty which dated back to between the 7th and 11th C. 
B.C. As the Chou Dynasty expanded and trade increased, 
soybean migrated to South China and Korea (probably by 
the 1st C. A.D.). The movements of soybean were associ-
ated with the development, consolidation of territories and 
degradation of Chinese dynasties (Hymowitz 1990). The 
earliest soybean reference found in Japan was in the classic 
Kojiki (Records of Ancient Matters) which was completed 
in 712 A.D. It was later introduced into several countries 
(Indonesia, the Philippines, Vietnam, Thailand, Malaysia, 
Burma, Nepal and north India) and a number of landraces 
were developed. Soybean reached Europe in the 18th cen-
tury. It was first cultivated in the Netherlands in 1737 and 
in France in 1739 and finally appeared in England in 1790. 
Soybean was introduced into the United States in the early 
1800s and was grown as a minor forage crop for many 
years (Wilcox 1987). The development of the first major 
soybean-processing industry in Decatur, Illinois, USA in 
the early 1920s gave soybean cultivation a great impetus 
(Hymowitz 1990), and today soybean is a leading crop in 
most countries, ranking third behind maize and wheat 
(www.proteinresearch.net). By 1930, soybean-breeding 
programs had been initiated to hybridise plants and to select 
progeny better adapted than their parents (Wilcox et al. 
1979). 

Since soybean is self-pollinating and individuals are 
highly homozygous, the improvement and optimisation of 
soybean characteristics is very desirable. It is the world’s 
main source of edible vegetable oils and high protein live-
stock feed (Wilcox 1987). Legume seeds are richer in pro-
tein than cereal grains. Soybean seeds contain between 35% 
to 55% protein on a dry weight basis (www.proteinresearch. 
net). Soybean is not only important as feed, but it is now 
generally recognized as the most economical source of pro-
tein for human consumption Soybean provides humans 
with a significant amount of their dietary protein require-
ments. In developing countries, increased cultivation of le-

gumes is the best hope for combating projected shortages in 
food supplies, especially vegetable protein. 

In the oilseed industry soybean is the leader with re-
gards to oil production, providing more than half of the 
world’s oil supply. In 2006, it was estimated that the global 
hectares of transgenic soybean represented 64% of global 
soybean production (James 2006). The world wide increase 
in the cultivation of soybean is mainly due to the substitu-
tion of fish meal by soy meal as a source of protein in ani-
mal feeds (www.agrimark.co.za). 

Through the centuries plant species were bred and selec-
tive crossings performed resulting in the transfer of hund-
reds of genes to the offspring. Biotechnology has made it 
possible to transfer only the gene(s) of interest. In the lite-
rature biotechnology has been defined as “The applied use 
of living organisms or their components to make or modify 
products to improve plants or animals or to develop micro-
organisms for specific uses” (Industry Canada 1996). 
 
PLANT REGENERATION FROM IN VITRO 
CULTURES AND DIFFERENT ORGANS 
 
The development of procedures by which plants could be 
regenerated from single cells and organised tissues, with 
specific genes transferred to these plant cells, was the prere-
quisite for practical genetic engineering for soybean im-
provement. The limited genetic base in domestic soybean 
cultivars has restricted the traditional breeding methods for 
value added traits (Hinchee et al. 1996). The process for the 
production of transgenic soybean plants takes much longer 
and is more labour intensive than those of the model plant 
systems such as tobacco. In vitro techniques were thus 
applied with the aim of improving the desired traits of soy-
bean. Two principle methods have been identified for soy-
bean regeneration: somatic embryogenesis and shoot mor-
phogenesis. 
 
Somatic embryogenesis 
 
Somatic embryogenesis is the process whereby embryos 
develop from either microspores or somatic tissue. Somatic 
embryos have both shoot and root axes and produce whole 
plants upon germination. Regeneration via somatic embryo-
genesis offers great potential for use in mass propagation 
and in transformation (Finer and McMullen 1991; Trick et 
al. 1997). Early attempts at soybean transformation focused 
on regeneration of embryogenic suspension cultures. Se-
veral studies with somatic embryos were conducted from 
1973 to 1983, but developmental progress was made only 
as far as the torpedo stage (Kimball and Bingham 1973; 
Gamborg et al. 1983). Christianson et al. (1983) were the 
first to report successful embryogenic regeneration of soy-
bean. They were able to regenerate one immature embryo 
from cultivar ‘Mitchell’. Regeneration of complete plants 
was reported with the use of callus derived from immature 
embryos (Kerns et al. 1986). The somatic embryo metho-
dology that exists for soybean (Parrott and Clemente 2004; 
Schmidt et al. 2005) is among the most advanced embryo-
genic systems available, and can be used to assist in the 
study of seed physiology and development. 

To study seed-specific transgene expression, the ability 
to use transgenic somatic embryos has long been recog-
nized (Liu et al. 1996; Mazur et al. 1999). Furthermore, 
transgenic somatic embryos may be used to efficiently 
study seed genomics, by either over-expressing or suppres-
sing embryo-specific genes, without the need to recover an 
entire plant (Kinney 1998) or for reverse genetics approa-
ches targeted towards seed-specific traits (Schmidt et al. 
2005). 

Immature cotyledon research experienced a period of 
growth with the discovery of the multi-cellular origin of 
somatic embryos. By using a medium supplemented with 
�-naphthalene acetic acid (NAA) Hartweck et al. (1988) 
were able to induce somatic embryos from the distal per-
imeter of cotyledon explants, but by using 2,4-dichloro-
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phenoxyacetic acid (2,4-D) in the medium they were able 
to induce embryos from most of the epidermal surface of 
the cotyledons. A medium containing 2,4-D resulted in 
proliferated embryogenesis of somatic embryos in the api-
cal region of primary somatic embryos (Finer 1988), and 
proliferated globular embryos were induced in embryo-
genic cell suspension cultures using a media containing 
2,4-D and asparagine (Finer and Nagasawa 1988). The in-
fluence of cultivar genotype on somatic embryo capacity 
was reported by various authors (Parrot et al. 1989; Ko-
matsuda et al. 1990; Bonacin et al. 2000). 

Some factors that influence in vitro growth rates of 
soybean embryos include growth media, explant orienta-
tion, synthesis and accumulation of storage proteins and 
desiccation period. Lippmann and Lippmann (1993) found 
a culture medium containing KNO3, glutamine, plant 
growth regulators and sucrose to be optimal for growth of 
cotyledon stage embryos. A greater amount of embryos 
form when the cotyledons of ‘J103’ and ‘McCall’ were 
placed with the abaxial surface facing down on a medium 
supplemented with 25 mg/l 2,4-D and 3% sucrose (D25) 
(Hartweck et al. 1988). Santarem et al. (1997) observed an 
increase in the efficiency of somatic embryogenesis by ad-
justing the induction medium to pH 7.0 and solidifying it 
with gelrite. The explant of cultivars ‘Jack’, ‘Thorne’, 
‘Resnik’ and ‘Chapman’ were also cultured with the ab-
axial side facing the medium. Stachyose was reported to be 
essential in the acquisition of desiccation tolerance that has 
been linked with synthesis and accumulation of storage 
proteins associated with the ability of the embryos to ger-
minate (Blackman et al. 1992; Kermode 1995). The impor-
tance of abcisic acid (ABA)in water relations during matu-
ration period (Xu et al. 1990) was studied. It was reported 
that ABA promoted embryo development and maturation 
when applied at globular stage of development (Tian and 
Brown 2000). 

Many researchers have attempted to find the “magic” 
medium for optimum embryogenesis by changing compo-
nents such as pH, auxin and hormone concentrations, and 
light intensities. Lazzeri et al. (1987) observed higher num-
bers of normal embryos on a modified MS medium supple-
mented with 10 mg/l NAA compared to a media sup-
plemented with 2,4-D. Xu et al. (1990) found that osmotica 
maintain synthesis of developmental proteins. Sucrose con-
centration, osmotic pressure, nitrogen content, and ammo-
nium to nitrate ratio were found to be some of the major 
factors controlling proliferation of soybean embryogenic 
cultures (Samoylov et al. 1998b). Routine methods for 
somatic embryogenesis are available (Parrott et al. 1995). 

The basic medium and protocols for the histodifferenti-
ation and maturation of soybean somatic embryos are those 
of Finer and Nagasawa (1988), Bailey et al. (1993a, 
1993b), Samoylov et al. (1998a) and Walker and Parrott 
(2001). In the two-step process MSM6 method (Bailey et 
al. 1993a), embryos are firstly placed on a modified Finer 
and Nagasawa (FN) media consisting of solidified MS 
basal salts, 6% maltose and 0.5% activated charcoal, and 
transferred after 30 days to a similar media without the 
charcoal. The FNLS3 media (Samoylov et al. 1998a) con-
sisted of basal Finer and Nagasawa Lite (FNL) salts and 
3% sucrose. This had the advantage of producing large 
numbers of somatic embryos in a short period of time, 
however, few embryos converted into plants. This medium 
was modified by Walker and Parrott (2001) through the ad-
dition of 3% sorbitol to the medium, now called FNLS3S3 
medium. Samoylov et al. (1998b) compared solid with 
liquid media, MS with FSL maltose with sucrose and with 
or without auxins. They found that the liquid medium 
FNLOS3, FNL with 3% sucrose, resulted in the highest 
recovery rate of cotyledon stage embryos. Bailey et al. 
(1993b) observed that no existing protocol is optimal for 
recovery of all soybean cultivars, but that small changes 
will always be needed to yield acceptable frequencies of 
plant regeneration from somatic embryogenesis. They 
found success in some cultivars by changing the relative 

humidity of the germination medium and/or length of the 
desiccation treatment. Bonacin et al. (2000) demonstrated 
genotype influence on somatic embryogenic capability, 
with the most embryogenic cultivars being ‘BR-16’, ‘FT-
Cometa’ and ‘IAS-5’. The optimum auxin concentration 
was found to be 10 mg/l NAA and 7.0 being the optimum 
pH value. Light intensity did not have any affect on somatic 
embryo production. Schmidt et al. (2005) experimented 
with modifications to the FNLS3S3 soybean embryo matu-
ration medium (Walker and Parrot 2001) on cultivars ‘Jack’, 
‘Benning’ and ‘PL417138’, by comparison of sucrose and 
maltose, asparagine and glutamine as well as MS and FNL 
macro salts. They also add ABA, as well Gelrite to the 
media. Their liquid medium, soybean histodifferentiation 
and maturation medium (SHaM), consisted of FNL basal 
salts, 3% sucrose, 3% sorbitol, 30 mM glutamine, 1 mM 
methionine and Gelrite. They observed 61% more plants 
with the use of maltose instead of sucrose, but also found 
that maltose grown embryos took 27% longer to reach phy-
siological maturity. 
 
Organogenesis 
 
Shoots can be formed from a number of different tissues 
and can be excised and rooted to generate new plants (Trick 
et al. 1997). Success stories in organogenesis include the 
regeneration of pre-existing meristems from immature em-
bryo axes and cotyledons (Chyuan and Yeh 1991). Organo-
genesis occurred with cotyledonary nodes from immature 
embryos of cultivar ‘Williams 82’ on a medium containing 
as high a concentration of 13.3 μM 6-benzylaminopurine 
(BAP) (Barwale et al. 1986). Organogenesis was possible 
with the cotyledonary nodes of seedlings that were cultured 
on a reduced inorganic salt MS medium containing 5 μM 
benzyladenine (BA) (Wright et al. 1986). Regardless of ori-
entation, the excised epicotyl of cultivar ‘Wayne’ yielded 
an average of seven sections per explant on a media con-
taining 3-aminopyridine (3AP) (Wright et al. 1987). They 
also found that while 2,4,5-trichlorophenoxyacetic acid was 
demonstrated to be essential for regeneration, addition of 
BA was found to enhance regeneration. Multiple shoot pro-
liferation was obtained from shoot tips derived from im-
mature zygotic embryos of cultivar ‘Williams 82’ (Sato et 
al. 1993) that were grown on a MS media supplemented 
with BAP, NAA and sucrose (McCabe et al. 1988). Organ-
ogenesis from hypocotyl explants of cultivars ‘Ohsuzu’, 
‘Kosuzu’, ‘Suzukari’, ‘Suzuyutaka’, ‘Tachiyutaka’ and 
‘NT-98-236’ was obtained by using B5 medium contain-
ing thidiazuron (TDZ) (Yoshida 2002). A method was dev-
eloped for cotyledonary nodal callus induction in cultivars 
‘Williams 82’, ‘Loda’ and ‘Newton’ on medium containing 
2,4-D and sorbitol, and shoot bud differentiation on media 
supplemented with BAP and maltose (Sairam et al. 2003). 
Adventitious bud and shoot induction (Mante et al. 1989) 
were also reported. Another issue includes the isolation, en-
capsulation and culture of protoplasts (Widholm et al. 
1992) and primary leaf tissue (Kim et al. 1990). The initial 
segmentation patterns of microspores and pollen viability in 
soybean cultured anthers were investigated (Cardoso et al. 
2004), as well as a 2% frequency of anther production was 
observed in two cultivars ‘IAS5’ and ‘RS7’ that were sub-
jected to callus and embryo induction on B5 medium con-
taining 2,4-D and BA (Kaltchuk-Santos et al. 1997). 

Changing of the composition of the media can influ-
ence efficient organogenesis, such as found with the ad-
dition of BAP (Buising et al. 1994). Kaneda et al. (1997) 
observed multiple shoot formation from cotyledonary 
nodes and hypocotyl segments cultured on basal medium 
with a low salt concentration, and supplemented with TDZ. 
Regeneration via organogenesis utilising immature em-
bryos at various stages of development has been reported 
(Yeh 1990). The correlation between the floral bud mor-
phological size index and microspore developmental stages 
was established for Brazilian soybean cultivars ‘Decada’, 
‘IAS5’ and ‘RS7’ (da Silva et al. 2003). They reported that 
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buds of the same size of different cultivars did not have 
microspores at the same stage of development and neither 
were the microspores from different anthers of the same 
flower at the same developmental stage. 

Although soybean plants have been seen as recalcitrant 
to regeneration, these citations show that with endurance, 
somatic embryogenesis and organogenesis are possible. 
The development of effective preservation and long-term 
storage techniques is a critical requirement in the ex-situ 
preservation of biodiversity. Cryopreservation is based on 
the reduction and subsequent arrest of metabolic functions 
of biological material stored at ultra-low temperatures. 
Cryogenic preservation of plant cells for extended periods 
without genetic change and the subsequent recovery of 
normal plant cells have important implications in plant 
breeding and genetic engineering. A successful method 
was described by Luo and Widholm (1996) whom utilized 
a pre-culture treatment in a medium containing 3% sucrose 
and 3% sorbitol for soybean suspension culture cells. The 
cells survived if frozen with 10% dimethylsulfoxide and 
8% sucrose. Pollen of annual soybean stored at -20°C 
retained their germination viability for 4 months (Tyagi 
and Hymowitz 2003). 
 
TRANSFORMATION OF SOYBEAN 
 
Successful transformation of plants demands that certain 
criteria be met, such as target tissues that are competent for 
propagation and regeneration, the ability to recover fertile 
transgenic plants at a reasonable frequency as well as a 
simple, efficient, reproducible, genotype-independent and 
cost-effective process (Birch 1997; Hansen and Wright 
1999). The goal of a transformation system is to transfer a 
gene from one organism to another. To evaluate the perfor-
mance of the transgene it is imperative that genetic varia-
tion between the genetically modified organism and its 
parent be minimized. Expression of the transgene can be 
affected by numerous factors, such as the compatibility of 
the construct with the organism or the site of insertion into 
the genome (Gruber and Cosby 1993). Soybean transfor-
mation frequency was very low, possibly due to the small 
number of cells that had been found to be totipotent (Trick 
et al. 1997). 

Transformation methods are classified into two main 
groups: Indirect gene transfer, where exogenous DNA is 
introduced by a biological vector and direct gene transfer, 
where physical and chemical processes are responsible for 
DNA introduction. A number of procedures exist for the 
introduction of foreign DNA into soybean. Particle bom-
bardment (Falco et al. 1995; Hadi et al. 1996) is based on 
the acceleration of DNA-coated particles towards a plant 
cell. Electroporation (Christou et al. 1990; Chowrira et al. 
1995; Hou and Lin 1996) is a technique that uses electrical 
discharges to create reversible pores in the plasma mem-
brane, thus allowing the introduction of foreign DNA into 
cell tissue. Direct Agrobacterium-mediated transformation 
utilises Agrobacterium as the biological vector (Hinchee et 
al. 1988; Chee et al. 1989). The combination of an inte-
grated tungsten particle bombardment and a T-DNA trans-
fer via Agrobacterium transformation system was deve-
loped using proliferative embryogenic tissue (Droste et al. 
2000). Sonication-assisted transformation (SAAT) in-
volves subjecting the plant tissue to periods of ultrasound 
in the presence of Agrobacterium (Trick and Finer 1997). 
A whisker supersonic mediated gene transfer method 
(WST) using whisker of potassium titanate fibers accom-
panied with supersonic treatment was developed for soy-
bean (Khalafalla et al. 2006). Chloroplast transformation 
differs from nuclear transformation in many ways. The 
transgenes represent high level expression, multigene engi-
neering in a single event, maternal inheritance and lack of 
gene silencing (Dhingra and Daniell 2006). 
 
 
 

Particle bombardment 
 
The first stable transformation and recovery of soybean 
callus (Christou et al. 1988) and of meristems from em-
bryonic axes of immature seeds (McCabe et al. 1988) was 
obtained by the physical bombardment of tissue with DNA-
coated gold particles. McCabe et al. (1988) have trans-
formed cultivars ‘Mandarin Ottawa’ and ‘Williams 82’ 
with plasmid pCMC1100 that includes a nptII and gus co-
ding region under control of CaMV 35S promoter. They 
observed more than five copies of the NPTII fragment in 
the genome. Christou et al. (1988) reported the stable trans-
formation of soybean calli with plasmid pCMC1022 con-
taining the NPTII coding region under control of CaMV 
35S promoter in ‘Williams’, ‘Mandarin Ottawa’ and ‘Har-
din’. The gene copy and level of NPTII activity varied 
widely between calli. The invention and optimisation of the 
particle bombardment technique for the genetic engineering 
of soybean became a reality when it was shown that whole 
plants could be derived from a single transformed cell using 
a de novo organogenic pathway (Christou et al. 1989) as 
well as by using meristems or immature zygotic embryos 
(Christou et al. 1992). They transformed embryonic axes of 
cultivar ‘Williams’ with pAcX1100P and pAcX1021P that 
contained the gus and nptII genes. Southern blot analysis 
revealed a copy number higher than two for gus. A com-
mercial process was developed by the combination of a 
genotype-independent regeneration protocol and an electric 
discharge particle acceleration technique (Christou et al. 
1990; McCabe and Christou 1993). Co-transformation was 
analysed by using five plasmids comprising four different 
markers. PCM1021 (NPTII), was used in conjunction with 
pMC1220 (chloramphenicol acetyl transferase (CAT)) and 
pCMC1100 (GUS) to establish a co-transformation fre-
quency of unlinked genes at about 20% (Christou and 
Swain (1990). They observed a co-transformation fre-
quency of linked genes of about 50% by using pCMC1220, 
pTVGUS and pTVBAR. Sato et al. (1993) reported stable 
transformation via particle bombardment using shoot tip 
cultures and somatic embryogenesis. Bombardment of 
shoot tips produced GUS positive sectors in 30% of the 
regenerated shoots. However, none of the regenerants that 
developed into plants produced GUS-positive tissue. The 
bombardment of embryogenic suspension cultures pro-
duced GUS-positive plants. This procedure, however, has 
draw backs such as reduced fertility or sterility, as well as 
high variability of transgenic events (Stewart et al. 1996). 
Particle bombardment for the transformation of chloro-
plasts derived from embryogenic tissue generated fertile 
transplastomic soybean expressing Bacillus thuringiensis 
Cry1Ab protoxin (Dufourmantel et al. 2005) that proved to 
be stable over 6 generations (Dufourmantel et al. 2006). 
Molecular analysis confirmed that the Cry1Ab protoxin is 
highly expressed in leaves, stem and seed tissue. Hazel et al. 
(1998) found that embryogenic tissue undergo a burst of 
mitotic activity shortly after transfer to fresh medium, thus 
any treatment to increase the mitotic index, especially when 
the cell lines are less than 6 months old, may facilitate 
higher micro-projectile bombardment transformation fre-
quency of cell lines. Birch (1997) also report on the deve-
lopment and optimisation of micro-projectile systems for 
plant transformation. 

According to Christou (1997), particle bombardment is 
the best method for commercial engineering of soybean in a 
variety-independent fashion. Various reports on the use of 
particle bombardment as a transformation technique of em-
bryogenic suspension cultures as explants have been filed: 
Stable transformation with cultivar ‘Merril’ encoding for 
hygromycin resistance and GUS, displayed varied copy 
numbers in independent clones (Finer and McMullen 1991). 
They observed an average of three transgenic clones per 
bombardment. Parrott et al. (1994) reported one transgenic 
plant out of 195 regenerated. Transformation using embry-
onic suspension cultures were reported (Bond et al. 1995) 
using FNL media (El-Shemy et al. 2004) and plasmid 
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sGFP(S65T) which encodes for a green fluorescent protein 
(GFP) (Khalafalla et al. 2005). El-Shemy et al. (2004) iso-
lated 44 independent transgenic soybean plants with one of 
two gene constructs, pHV and pHVS, contain the hygro-
mycin phosphotransferase gene (hpt), a modified glycinin 
gene (V3-1) or sGFP(S65T). Multiple gene copies were 
observed in all cases. Embryogenic soybean cultures have 
also been transformed with a Manduca sexta chitinase 
(msc) gene using micro-projectile bombardment (Ornatow-
ski et al. 2004). 
 
Electroporation 
 
Stable transformation of soybean cells has been achieved 
through the direct uptake of DNA into protoplasts that 
were permeabilised by electroporation (Lin et al. 1987; 
Christou et al. 1990). Articles have been published on the 
recovery of transgenic soybean plants using protoplast 
electroporation with plasmid DNA carrying the nptII selec-
table marker under control of the 35S promoter linked with 
a non-selectable mannityl opine synthesis marker (Dhir et 
al. 1992; Widholm et al. 1992). However, these claims 
were later retracted since the transformation could not be 
reproduced. In planta gene transfer by electroporation-
mediated gene transfer using intact meristems has also 
been reported (Chowrira et al. 1995). Transient expression 
of a chimeric gus reporter gene was used to monitor the 
uptake and expression of the introduced DNA by electro-
porated nodal axillary buds in vivo. 
 
Agrobacterium-mediated transformation 
 
Agrobacterium-mediated gene transformation is the most 
widely used gene transfer technique in plants. This tech-
nique takes advantage of the pathogenicity of the soil 
dwelling bacteria, Agrobacterium tumefaciens or Agrobac-
terium rhizogenes. A. tumefaciens has the ability to transfer 
a portion of its DNA, called T-DNA, into the genome of 
plant species. This has the effect of inducing those cells to 
produce metabolites fulfilling the bacterium’s nutritional 
requirements (Gelvin 2003). Agrobacterium-mediated 
transformation takes advantage of this concept by re-
placing the T-DNA of the Agrobacterium with a foreign 
set of genes, thus, making the bacterium a vector capable 
of transferring the foreign genes into the genome of the 
plant cell. Soybean was considered a poor host for A. tume-
faciens (Matthysse and Gurlitz 1982). However, it has been 
proved that gall formation takes place on some soybean 
genotypes following inoculation with the octopine type 
tumor-inducing (Ti) plasmid (Owens and Cress 1985). Out 
of the 27 genotypes tested, three G. max cultivars and one 
G. soja line were highly susceptible to pTiA6. A number of 
cultivars, including ‘A5308’, ‘Duiker’, ‘Forrest’, ‘Hutton’ 
and ‘Impala’, produced tumours in response to infection 
with A. tumefaciens strain A281 (McKenzie and Cress 
1992) as was observed in cultivars ‘Merril’, ‘Peking’ and 
‘Brag’ with strains A281 and A208 (Bond et al. 1996). It 
was indicated that the co-infection with a super virulent 
strain, pTiBo542, or the addition of a phenolic compound, 
10 μM acetosyringone, could promote transformation of 
soybean cells (Owens and Smigocki 1988). Byrne et al. 
(1987) tested the response of different Agrobacterium 
strains on various soybean genotypes. They reported a 
large degree of variation between Ti and root-inducing (Ri) 
strains, as well as between the G. max, G. soja and G. 
canescens genotypes. The susceptible genotypes, G. max 
and G. soja, displayed a heightened response to nopaline 
strains of A. tumefaciens (A208) and A. rhizogenes 
(pRi8196). It was, thus, demonstrated that tumours form on 
soybean, especially cultivar ‘Peking’, in response to infec-
tion with A. tumefaciens, but not to the extent observed in 
other dicotyledonous plants such as tobacco. Recovery of 
transgenic plants at 1.7% transformation frequency was ob-
tained when a partially disarmed (oncogenic) Agrobacte-
rium strain pKYRT with a functional TR-DNA sequence in 

order to stimulate embryogenesis, was used on immature 
cotyledons (Ko et al. 2004). Tumorigenesis of soybean is a 
quantitative trait (Bailey et al. 1993a) and the heritability 
estimates are higher than 50% (Mauro et al. 1995). This 
characteristic could easily be transferred to new genotypes. 
However, genotype differences for tumorigenesis are not 
necessarily a reflection of the frequency of integration or T-
DNA expression (Facciotti et al. 1985), and it can later be 
manifested through oncogenic expression (van Wordragen 
et al. 1992). Predictions of gene integration and expression 
are, thus, more accurate using marker genes (van Word-
ragen et al. 1992). 

The development of Agrobacterium-mediated transfor-
mation techniques was slow in the late eighties to early 
nineties, but in a few cases transgenic plants have been ob-
tained. The first experiments describing successful recovery 
of transformed soybean plants using Agrobacterium were 
reported by Hinchee et al. (1988). They produced stable 
transgenics via shoot organogenesis from cotyledon ex-
plants of the cultivar ‘Peking’. Cotyledon explants were 
inoculated with A. tumefaciens harbouring plasmids confer-
ring kanamycin resistance and GUS activity or kanamycin 
resistance and glyphosate tolerance. This protocol, however, 
only yielded a 6% transformation efficiency. Cultivar ‘Pe-
king’ was introduced to the USA in 1906. It has limited 
agronomic value (Mauro et al. 1995) but was selected for 
its susceptibility to Agrobacterium infection. This Agrobac-
terium procedure did not result in the recovery of trans-
formed progeny in varieties other than ‘Peking’. A number 
of other laboratories attempted to reproduce the system, but 
the regenerated plants were chimeric, and the transgenes 
were not transmitted to the progeny (Parrott et al. 1989; 
Christou 1997). Soybean protoplasts have been transformed 
at a low frequency by using Agrobacterium (Baldes et al. 
1987). However, no transgenic plants were regenerated 
from these transformed protoplasts since no regeneration 
systems were available. Infection by needle inoculation of 
the plumule, cotyledonary node and adjacent cotyledon 
tissue of germinated seeds was reported (Chee et al. 1989). 
In vitro grown seedlings of ‘Forrest’ was inoculated with a 
co-integrate vector containing oncogenes of pTiA6 (Facci-
otti et al. 1985). Co-cultivation of immature zygotic coty-
ledons as explants with Agrobacterium were also reported 
(Ko et al. 2006). The somatic embryos were plated on se-
lective media, followed by maturation and regeneration of 
individual somatic embryos into whole plants with an ef-
ficiency of 1.7%. 

Agrobacterium-mediated success stories include a num-
ber of patents filed on the technology. Martinell et al. (2002, 
2006) reported the transformation of individual cells in a 
freshly germinated soybean meristem as well as immature 
embryo axes, which can be induced directly to form shoots 
that give rise to transgenic plants. Their method does not 
involve a callus-phase. Wounded cotyledonary explants 
were transformed in the region of the axillary meristematic 
cells or cotyledonary node explants (Olhoft et al. 2005, 
2006). The cotyledon was prepared for transformation by 
removing the hypocotyl region, splitting and separating the 
hypocotyl segment or by removing the epicotyl. A method 
for producing a stable transformed soybean was discussed 
where Agrobacterium-mediated gene delivery was made 
into the cells at the primary leaf base or in the area of the 
primary leaf break point (Khan et al. 2003). The shoot in-
duction process facilitates the development or regeneration 
of transformed shoots from the targeted primary leaf base 
cells. Agrobacterium mediated transformation was also suc-
cessful when using cotyledonary nodes as explants with 
transformation efficiency in 12 tested cultivars ranging 
from 2-6% if glufosinate was used as selective agent (Paz 
et al. 2004), Paz et al. (2006) described an improved coty-
ledonary node method using a “half-seed” explant for A. 
tumefaciens-mediated soybean transformation. They expe-
rienced a transformation efficiencies of 3.8% based on the 
number of transformed events that have been confirmed in 
the T1 generation by phenotypic assay using the herbicide 

133



Transgenic Plant Journal 1(1), 129-144 ©2007 Global Science Books 

 

Liberty® (active ingredient glufosinate) and by Southern 
blot analysis. 

The development of a method to obtain transformed 
plants, which is independent of the problems inherent to 
tissue culture, has been the dream of many laboratories. A 
non-tissue culture approach to Agrobacterium-mediated 
transformation using germinating seed of Arabidopsis 
thaliana was adapted by Chee et al. (1989), who succeeded 
in transforming soybean meristematic or mesocotyl cell tis-
sues from germinated soybean seed with a needle inocu-
lation Agrobacterium-mediated transformation technique. 
This method depends on the growth of preformed shoots. 
de Ronde et al. (2001) produced transgenic soybean plants 
by using germinated seed and a vacuum infiltration Agro-
bacterium-mediation method. 
 
Other transformation methods 
 
Trick and Finer (1997) developed a new and potentially 
more effective method for the delivery of Agrobacterium 
to plant target tissues that was termed sonication-assisted 
Agrobacterium-mediated transformation (SAAT). This me-
thod mechanically disrupts and wounds cells via brief pe-
riods of ultrasound in the presence of Agrobacterium. Im-
mature cotyledons and embryogenic suspension cultures 
were inoculated and sonicated and co-cultured in a mainte-
nance media containing acetosyringone (Trick and Finer 
1998). This method was later applied with success on coty-
ledonary nodes (Meurer et al. 1998) and on an embryonic 
tip regeneration system (Liu et al. 2004). SAAT resulted in 
efficient transformation of the total tissue surface, unlike 
particle bombardment where DNA-coated particles are 
delivered only to one side of the target tissue and with 
limited penetration (Trick and Finer 1998). 

The WST method was used to deliver the pUHG plas-
mid into soybean embryogenic tissues by using whisker of 
potassium titanate fibers with an average diameter of 0.5 
μm and length ranging in length from 3- 50 μm (Khalafalla 
et al. 2006). Hygromycin resistant transgenic lines were 
developed using this system. 
 
General comparison of transformation methods 
 
It has been claimed in the past that the DNA integration 
patterns in transformed plant tissue obtained via particle 
bombardment tend to be highly variable with multiple 
insertion events and that fragmented copies of the intro-
duced gene constructs are common (Hadi et al. 1996). 
However, recent detailed structural analysis of transgene 
loci have indicated that particle bombardment does not 
generate more rearranged or broken transgene copies than 
Agrobacterium mediated methods (Altpeter et al. 2005). A 
major advantage of particle bombardment is that the 
delivered DNA can be manipulated to influence the quality 
and structure of the resultant transgene loci and is not 
limited by cell type or genotype (Altpeter et al. 2005). In 
contrast to particle bombardment, Agrobacterium-mediated 
transformation results in lower copy number integration 
(Tinland et al. 1994). Multiple gene co-transformation is 
possible using particle bombardment (Altpeter et al. 2005). 
The ratio of plasmids in co-transformation influenced the 
number of transgenic plants which can be recovered, as 
was observed by Hadi et al. (1996) with the simultaneously 
insert of 12 transgenes into soybean callus. Seventy-three 
percent of the transgenic callus lines had integrated all 12 
plasmids. Particle bombardment is the most efficient 
method to achieve plastid transformation (Dufourmantel et 
al. 2005, 2006). 

Transgenic plants obtained through the SAAT proce-
dure (Trick and Finer 1998) were sterile as a result of the 
use of long-term embryogenic suspension cultures as also 
previously described by Hadi et al. (1996). The sterility is 
a function of the tissue culture process and not of the 
transformation process. The transformation efficiency of 
WST was compared to particle bombardment in two inde-

pendent experiments by using same genotypes, plasmid 
pUHG (SK), containing hpt (hygromycin) and sGFP genes, 
and tissue culture systems (Khalafalla et al. 2006). They 
demonstrated that WST resulted in transgenic plants con-
taining higher copy number for both the genes, but as high 
a transient expression of sGFP (S65T) as that obtained with 
particle bombardment. The WST method is, thus, as ef-
ficient as particle bombardment for soybean transformation. 

Some aberrations observed in bombarded transgenic 
soybean include stunted plant growth, leathery dark green 
leaves, partiality to total sterility, chromosomal deletions, 
duplications, trisomics and tetraploidy (Singh et al. 1998) 
as observed after cytological examination of suspension 
cultured derived lines ‘A2242’ and ‘A2872’. Plants regene-
rated from relatively old suspension cultures also showed a 
range of phenotypic abnormalities. Transgenic plants de-
rived by particle bombardment have a tendency to have 
multiple integration events (Reddy et al. 2003) or rear-
rangement of the transgenes and are, therefore more sus-
ceptible to gene silencing (El-Shemy et al. 2004).The latter 
observed more gene silencing in transgenic plants with 
more complex transgene integration than with plants with 
low copy number. 
 
IMPROVEMENT OF RESISTANCE TO ABIOTIC 
STRESSES AND HERBICIDES 
 
Adverse environmental conditions such as extreme low and 
high temperatures as well as drought and salinity, signifi-
cantly affect growth and development and, thus, crop pro-
ductivity. Subsequently, improvement of tolerance against 
abiotic stresses is very important for agriculture and genetic 
transformation of soybean is a powerful tool for this pur-
pose. 
 
Heat tolerance 
 
In the control of the response of plants to high temperature 
stress heat shock transcription factors, regulating heat 
shock proteins, play an important role. Over-expression of 
the endogenous soybean heat shock transcription factor 
gene, GmHsfA1, having a constitutive expression profile in 
the different tissues examined, led to the activation of the 
heat shock protein GmHsp70 under normal temperature and 
to the higher expression of the corresponding gene, 
GmHsp70, under high temperature in soybean (Zhu et al. 
2006). Besides GmHsp70, over-expression of the GmHsfA1 
gene may influence the expression levels of several other 
proteins, however, this hypothesis has yet to be investigated. 
The transgenic soybean plants exhibited enhanced thermo-
tolerance compared to the wild type. Although the manipu-
lation of the expression of regulatory proteins may have a 
much greater effect on stress tolerance compared to that of 
structural genes, over-expression of a gene involved in 
proline synthesis increased the tolerance of soybean to 
combined heat and drought stress (de Ronde et al. 2000, 
2001). These results are described in more detail later in 
this review. 
 
Drought tolerance 
 
Drought tolerance of soybean was genetically manipulated 
by transformation of germinating seed with the Arabidopsis 
gene coding for L-�(1)-pyrroline-5-carboxylate reductase, 
the last enzyme of proline biosynthesis. This was achieved 
by using an Agrobacterium-mediated vacuum infiltration 
procedure. Proline plays an important role in the osmotic 
adjustment during water shortage (de Ronde et al. 2000, 
2001, 2004a, 2004b). A heat-inducible promoter was used 
in order to ensure the controlled switching on of the gene. 
Under natural conditions drought stress often coincides 
with high temperature, therefore for more accurate simula-
tions of field stress effects and activation of the promoter, 
withholding of water was carried out at supra-optimal tem-
peratures. In the sense orientation the transgene increased 
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proline content and drought tolerance, while in the anti-
sense orientation it resulted in reduced proline content and 
reduced drought tolerance compared to the wild type plants 
(Figs. 1, 3B). Proline degradation was also recorded in 
these experiments with the highest proline dehydrogenase 
activity being measured in antisense transformants and the 
lowest in the sense transformants (de Ronde et al. 2004a). 
In addition, antisense plants had lower seed production 
compared to the wild type (de Ronde et al. 2001). Changes 
in proline synthesis in transgenic plants also affected the 
carbohydrate levels (de Ronde et al. 2004a). In antisense 
plants an increase in sucrose content was observed, while 
in the sense plants a rise in reducing sugars was observed. 
Manipulation of proline levels also influenced the amino 
acid composition of soybean, since the synthesis of the 
different amino acids is interconnected and probably coor-

dinately regulated (Simon-Sarkadi et al. 2005, 2006a). 
Drought stress resulted in a greater increase in the level of 
the proline precursor glutamate (Fig. 2) in sense transfor-
mants compared to the antisense transformants and wild 
type plants (Fig. 3A). Glutamate is also a precursor of poly-
amines (Fig. 2), thus, it is not surprising that the higher pro-
line levels in the transformants compared to the wild type 
plants coincided with a smaller difference in alterations of 
spermine content between these two genotypes, except at 
day 4 of stress (Fig. 3). The greatest increase in glutamate 
was observed at the end of the stress treatment in the anti-
sense plants without a corresponding change in proline or 
spermine content when compared to the other two geno-
types (Fig. 3A, 3C). However, in the antisense transfor-
mants a sharp increase in the concentration of homo-gluta-
thione, synthesized from glutamate, was observed at this 
sampling point (Figs. 2, 3D). In the sense transformants, 
smaller changes in homo-glutathione concentration were 
detected compared to that in the wild type plants. These 
results demonstrate that manipulation of proline affects the 
level of several other metabolites that are interconnected 
with proline synthesis (Kocsy et al. 2005; Simon-Sarkadi et 
al. 2005, 2006a, 2006b). 
 
Use of stress-inducible promoters to increase 
stress tolerance 
 
Stress-inducible promoters, as in the case of drought stress, 
are important for improvement of stress tolerance, since it 
is not advantageous for the plants to waste energy in the 
transcription of defense genes under optimal growth condi-
tions as when a constitutive promoter is used. The stress-
inducible promoter of soybean alcohol dehydrogenase was 
investigated using the glucuronidase reporter gene follow-
ing transformation of soybean cotyledons by an Agrobac-
terium-mediated method (Preiszner et al. 2001). The trans-
cription was only induced by anoxia, but not by cold, 
wounding or ABA, therefore, this promoter can be used to 
control the expression of transgenes for the improvement of 
tolerance to flooding or hypoxia. Using the same reporter 
gene, the inducibility of the soybean small heat shock pro-
tein gene promoter, GmHSP 17.5E, was compared in dif-

Fig. 1 Recovery of wild type and transgenic soybean after drought 
stress at supra-optimal temperature. The soybean plants were 
transformed with a construct containing a heat-inducible promoter and 
the gene coding for L-�(1)-pyrroline-5-carboxylate reductase, the last 
enzyme of proline biosynthesis, in sense and antisense direction. Plants 
were grown without watering for 10 days (35/25°C), rewatered once, 
further cultivated for additional 10 days without watering (35/25°C) and 
finally applied with an optimal amount of water for 10 days (25/15°C, 
recovery). 

Fig. 2 Interconnection of proline, polyamine and homoglutathione synthesis. ADC, arginine decarboxylase; ODC, ornithine decarboxylase. 
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ferent organs of Arabidopsis using transient assays after 
micro-projectile particle bombardment (Crone et al. 2001). 
Following heat shock, gene expression was uniform in 
vegetative organs, but not in the reproductive organs. This 
was explained by the more complex regulation of the stress 
response in the floral organs compared to that in vegetative 
tissues. Using the same promoter:reporter gene construct in 
soybean, a similar difference in expression between the 

different organs can be anticipated. The observed tissue-
specific gene expression can be used for protection of the 
more stress-sensitive organs. 
 
Adaptation to extreme mineral concentration 
 
Too low or too high concentrations of certain minerals can 
also result in disturbed growth and development of plants. 
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Fig. 3 Effect drought stress at supra-optimal temperature on relative changes in glutamate (A), proline (B), spermine (C) and homoglutatione (D) 
content. Starting values (Glu: 245.4, 167.5, 227.5; Pro: 90.4, 56.5, 91.0; Spm: 36.7, 25.5, 39.6; hGSH: 61.7, 38.6, 58.9 �g (g fresh weight)-1 for wild type 
(W), sense (S) and antisense (A) transgenic soybean) were taken as 100%, and the stress-induced changes as their percentages are shown. Plants were 
grown without watering for 10 days (PS, preliminary stress), rewatered once, further cultivated for additional 10 days without watering (stress) and finally 
applied with an optimal amount of water for 10 days (recovery). 
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Expression of Arabidopsis ferric chelate reductase in soy-
bean enhanced Fe3+ reduction in roots and shoots, led to re-
duced biomass loss, chlorosis and increased chlorophyll 
concentrations under iron deficiency compared to the wild 
type plants (Vasconcelos et al. 2006). However, in this stu-
dy a constitutive promoter was used and the expression of 
the transgene under non-iron stress conditions resulted in 
decreased plant productivity. Phosphorous availability is 
also important for normal metabolism in plants. Improved 
mobilization of phosphorous from phytate (75% of total P 
is stored in this compound) in seed was ensured by over-
expression of a soybean phytase gene (Chiera et al. 2004). 
 
Herbicide resistance 
 
Besides the unfavorable environmental conditions, the her-
bicides used to kill weeds can also reduce the growth and 
development of cultivated plants, therefore the generation 
of herbicide-resistant genotypes by genetic transformation 
is of importance to agriculture (Wenzel 2006). The herbi-
cide glufosinate was successfully used as a selective agent 
following Agrobacterium-mediated transformation of soy-
bean (Zeng et al. 2003). One of the first practical applica-
tions of genetic engineering of soybean was the develop-
ment of tolerance to glyphosate, the active component in 
the herbicide Roundup (Padgette et al. 1995). Glyphosate-
resistant soybean expressing an insensitive 5-enolpyruvyl-
shikimic acid-3-phosphate synthase gene is commercially 
available and is useful for weed control (Pline-Srnic 2005). 
The deployment of glyphosate-tolerant soybean has per-
mitted a switch to a more environmentally friendly herbi-
cide, since it has facilitated the adoption of no-till agricul-
tural practices. Production of glyphosate-resistant crops 
can result in lower soil erosion rates, less water runoff, in-
creased soil moisture, increased carbon sequestration and 
less CO2 emissions due to the reduced use of fossil fuel 
(Fawcett and Towery 2002). The implication of this tech-
nology was monitored over a period of several years in the 
field (Clemente et al. 2000; Duke et al. 2003; Arregui et al. 
2004). The concentration of glyphosate and its metabolite, 
aminomethylphosphonic acid, was monitored in soil and 
water, in which no residues were observed, as well as in 
leaves, stems (1.9-4.4 mg residue kg-1 leaf or stem) and 
seeds (0.1-1.8 mg residue kg-1 seed) of glyphosate-resistant 
soybean sprayed with the herbicide (Arregui et al. 2004). 
Although application of glyphosate can reduce nitrogen 
fixation in early growth stages due to the sensitivity of the 
nitrogen fixing symbiont Bradyrhizobium japonicum to the 
herbicide, a reduction in yield was not observed (Zabloto-
wicz and Reddy 2004). Similarly, in another experiment 
glyphosate formulations reduced nodule development and 
caused injury of the plants. However, the glyphosate-resis-
tant soybean plants recovered from the herbicide stress 
(Reddy and Zablotowicz 2003). No differences were ob-
served in host plant suitability to green cloverworm (Hy-
pena scabra) between glyphosate-resistant and wild type 
soybean (Morjan and Pedigo 2002). Glyphosate field con-
tamination is minimal compared to other herbicides and no 
risks to food or feed safety were observed (reviewed by 
Cerdeira and Duke 2006). The use of glyphosate at legal 
concentrations resulted in the amount of the compound and 
its degradation products to be within the established tol-
erance levels in seed. Its toxicity was tested by oral ap-
plication to rats where no negative effects were found. Re-
sistance to the herbicide phosphinothricin was recently 
reported following the introduction of the resistance genes 
into soybean by inoculation of wounded germinating half-
seeds with Agrobacterium (Xue et al. 2006). Atrazine re-
sistance was also introduced into soybean using the psbA 
gene from Solanum nigrum (Yue et al. 1990). 

It can be seen from the cited studies that genetic trans-
formation of soybean can successfully be used to increase 
tolerance to adverse environmental conditions as well as to 
herbicides which in turn reduces yield loss. 
 

IMPROVEMENT OF RESISTANCE TO BIOTIC 
STRESSES 
 
Different pathogens reduce plant growth or even result in 
the death of the host organism, therefore, the successful 
protection of plants against these pathogens are of extreme 
importance for stabilization of yield quantity and quality. 
Several publications demonstrate increased resistance of 
transgenic soybean against viruses, fungi, insects and ne-
matodes. 
 
Virus resistance 
 
Transgenic soybean plants resistant to soybean dwarf virus 
were generated by the introduction of an inverted repeat 
viral coat protein gene into soybean somatic embryos by 
micro-projectile bombardment (Tougou et al. 2006). Soy-
bean plants conferring high resistance to soybean mosaic 
virus were produced by introduction of the coat protein 
gene from the virus (Wang et al. 2001; Steinlage et al. 
2002; Furutani et al. 2006). Mosaic virus-resistant transge-
nic plants had lower infection rates and significantly higher 
yields in field experiments (Steinlage et al. 2002). Protec-
tion against Bean pod mottle como virus was achieved by 
Agrobacterium-mediated transformation of cotyledonary 
nodes with the coat protein precursor gene of the virus (Di 
et al. 1996) or by particle bombardment of somatic em-
bryos with the capsid polyprotein gene (Reddy et al. 2001). 
Homozygous progeny exhibited a resistant phenotype in 
both methods. In addition, Reddy et al. (2001) observed 
systemic resistance of the transgenic lines (obtained by the 
insertion of 1-3 copies of the transgene by particle bom-
bardment of somatic embryos), since after incubation of 
leaves with the virus, the non-inoculated leaves were symp-
tom-less and accumulated little or no virus. These lines 
could potentially be useful in generating commercial culti-
vars resistant to Bean pod mottle como virus. 
 
Resistance against fungi 
 
The resistance of soybean against fungi was also success-
fully increased by genetic transformation. Introduction of 
the gene coding for an oxalate-degrading enzyme, oxalate 
oxidase, has resulted in the reduced growth of white mold 
(Sclerotinia sclerotinium (Lib.) de Bary) in laboratory ex-
periments, since oxalate is an important pathogenic factor 
for the fungus (Donaldson et al. 2001; Cober et al. 2003). 
Oxalate oxidase expressing plants were produced by Agro-
bacterium-mediated cotyledonary node transformation. One 
to two copies of the gene of the enzyme were inserted into 
the plant genome, with partial or complete gene silencing 
occurring in some of the T2 population (Donaldson et al. 
2001). Increased resistance of transgenic lines against white 
mold was confirmed in field trials that were conducted at 3 
different sites (Cober et al. 2003). In non-infected trials, no 
significant differences were observed between the parental 
and transgenic lines for seed yield, seed maturity, seed 
weight as well as seed protein and oil content. Agrobacte-
rium-mediated transformation of cotyledon explants of two 
soybean cultivars with a chitinase gene from bean, exhibit-
ted increased resistance against Rhizoctonia solani as indi-
cated by the comparison of mycelial growth in wild type 
and transgenic plants (Salehi et al. 2005). In another ap-
proach, a chitinase gene and a ribosome-inactivating pro-
tein gene were stacked in order to increase insect resistance 
of transgenic plants (Li et al. 2004). Transformation of soy-
bean by particle bombardment of somatic embryos with the 
fungal elicitor-induced ELI12 gene from parsley, resulted 
in the accumulation of crepenynic and dehydrocrepenynic 
acids in the seed (Cahoon et al. 2003). Natural products 
synthesised from these acids display not only antifungal, 
but also insecticidal and nematicidal properties. 
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Insect resistance 
 
Transgenic soybean lines maintaining increased resistance 
to insects under field conditions are grown on a commer-
cial scale (Babu et al. 2003). Use of endotoxin genes, such 
as the one from Bacillus thuringiensis (Bt) and plant-
derived genes coding for proteinase inhibitors at the de-
sired expression levels, to control insect pests still require 
considerable resources. Transgenic soybean (with 1-2 co-
pies of the transgene) generated from somatic embryos by 
micro-projectile bombardment using a synthetic B. thurin-
giensis insecticidal crystal protein gene (Bt Cry1Ac) were 
protected from corn earworm (Helicoverpa zea), soybean 
looper (Pseudoplusia includens) tobacco budworm (Helio-
this virescens) and velvet bean caterpillar (Anticarsia gem-
matalis) damage (Stewart et al. 1996; Walker et al. 2000; 
Parrott and Clement 2004). Less than 3% defoliation was 
observed on transgenic plants, compared to 20% on a lepi-
depteran-resistant breeding line and 40% on a susceptible 
cultivar, due to corn earworm infection. Soybean plastid 
transformants, obtained by particle bombardment of em-
bryogenic tissue, expressing the B. thuringiensis insectici-
dal protoxin Cry1Ab demonstrated increased resistance 
against the velvet bean caterpillar (Dufourmantel et al. 
2005). High levels of protoxin were detected in leaves, 
stems and seed, but not in the roots. Transgenic lines of 
soybean expressing a synthetic Cry1Ac gene (tic107) from 
B. thuringiensis were completely protected against Anti-
carsia gemmatalis (Hubner), Pseudoplusia includens (Wal-
ker), Epinotia aporema (Walsingham), Rachiplusia nu 
(Guenee), and Spilosoma virginica (F.) in greenhouse tests 
(Macrae et al. 2005). These results were also confirmed in 
field trials against native populations of A. gemmatalis and 
P. includens. 
 
Resistance against nematodes 
 
The resistance of soybean against nematodes was also suc-
cessfully increased by genetic engineering. The soybean 
cyst nematode (Heterodera glycines) results in a great re-
duction in soybean production. In root tissue of transgenic 
soybean transformed with an RNAi expression vector con-
taining inverted repeats of a gene coding for the sperm pro-
tein of soybean cyst nematode, a 68% reduction in egg de-
posits was observed in T0 plants and a 75% reduction in 
their progeny (Steeves et al. 2006). This study demons-
trates the efficiency of the RNAi-based strategy for control 
of soybean cyst nematode infection. In another study an 
effective suppression of the population densities of the 
nematode Hoplolaimus columbus was demonstrated using 
transgenic soybean cultivars resistant to glyphosate after 
treatment with the herbicide in field experiments (Koen-
ning 2002). Fumigation increased soybean yield, but there 
was a variation among cultivars in the response to H. co-
lumbus. This study indicated a cross tolerance to the dif-
ferent environmental stresses. 

As was the case with abiotic stress, resistance to biotic 
stress can also be successfully increased by genetic trans-
formation of soybean. 
 
MANIPULATION OF METABOLITE COMPOSITION 
 
The over- or under-production of certain metabolites could 
be useful for production of food or feed, or industrial raw 
materials fulfilling specific requirements. 
 
Manipulation of fatty acid composition 
 
Soybean oil is an important raw material for several indus-
trial products. The modification of its fatty acid composi-
tion by genetic manipulation expands its application possi-
bilities (reviewed by Cahoon 2003). Down-regulation of 
FAD2 (the enzyme that converts the monounsaturated oleic 
acid to the polyunsaturated linoleic acid) expression in-
creased the oleic acid content to 80% of total oil (Kinney 

1997). High oleic acid content improves the oxidative sta-
bility of the oil which is important for lubricants. In con-
trast to high oleic acid content, an increase in the polyun-
saturated linoleic acid content by over-expression of the 
FAD3 gene (the enzyme converts linoleic acid to linolenic 
acid) resulted in a low oxidative stability which is desirable 
for drying oils used in coating applications (Cahoon 2003). 
By genetic manipulation, not only can the ratio of fatty 
acids existing in soybean be manipulated, but the produc-
tion of new fatty acids originally not present in soybean can 
be achieved. Expression of a �(12)-oleic acid desaturase-
related fatty acid conjugase gene from Calendula officinalis, 
coding for an enzyme catalyzing the formation of conju-
gated double bonds in polyunsaturated fatty acids, led to 
the accumulation of calendic acid in soybean (Cahoon et al. 
2001, 2006). Oils with high calendic acid content can also 
be used as drying oils. The transgenic production of indus-
trially valuable epoxy and hydroxylated fatty acids in soy-
bean seed by expression of the gene coding for the cyto-
chrome P450 enzyme from Euphorbia lagascae seed, was 
also investigated (Cahoon et al. 2002). Transformation of 
soybean with a bifunctional �12/�3 desaturase from Fusa-
rium species increased the amount �-linolenic acid, as well 
as the ratio of �-linolenic acid to linoleic acid, in the seed 
many-fold compared to the wild type (Damude et al. 2006). 
Introduction of the �5 desaturase and fatty acid elongase 
meadowfoam (Limnanthes spp.) genes into somatic soy-
bean embryos resulted in the production of long chain fatty 
acids (�5 eicosenoic acid and a diene) which could be used 
in the synthesis of cosmetics and lubricants (Marilia et al. 
2002). The fatty acid composition could also be modified in 
order to enhance the nutritional quality of soybean seed 
(Murphy 2006). Arachidonic acid, which is important for 
infant brain development, inflammatory responses, blood 
pressure regulation and cell signalling, was produced in 
transgenic soybean (generated by particle bombardment) 
following seed-specific expression of the genes coding �6 
desaturase, fatty acid elongase and �5 desaturase from a 
filamentous fungus, Mortiella alpine, and down-regulation 
of the endogenous �15 desaturase gene (Chen et al. 2006). 
Stearidonic acid, having pharmaceutical potential, was pro-
duced in seed of soybean transformed with the borage �6 
desaturase and Arabidopsis �15 desaturase genes (Eckert et 
al. 2006). Marker-free transgenic soybean producing steari-
donic acid and �-linolenic acid in the seed were also gene-
rated with an Agrobacterium-mediated transformation me-
thod (Sato et al. 2004). Besides the fatty acids existing in 
nature, foreign fatty acids could also be produced in soy-
bean by the introduction of genes of rationally designed 
fatty acid modifying enzymes (Cahoon and Shanklin 2000). 
The aims of these studies were to induce the accumulation 
of foreign fatty acids without reduction of the agronomic 
quality of the transgenic seed. Such traits can more readily 
be increased by genetic engineering than by traditional 
breeding. 
 
Manipulation of the concentration of certain amino 
acids 
 
The concentrations of certain amino acids were also altered 
in transgenic soybean. The lysine content in seed of soy-
bean was increased by circumventing the feedback regula-
tion of its synthesis by transformation with the bacterial 
genes of aspartokinase and dihydrodipicolinic acid synthase 
(Falco et al. 1995). The nutritional quality of soybean seed 
could be improved by increasing the ratio of sulfur contain-
ing amino acids, methionine and cysteine. This was achie-
ved by insertion of the zein gene from maize under control 
of the seed-specific �-phaseolin promoter (Dinkins et al. 
2001). Following transformation of soybean with the zein 
gene, Kim and Krishnan (2004) found increased methio-
nine content only in the alcohol-soluble protein fraction, 
but not in the seed flour. The increase in methionine and 
cysteine was achieved without changes in the protein com-
position (Dinkins et al. 2001). Contrary to this observation, 

138



Transgenic soybean in basic and applied research. Kocsy et al. 

 

genetic manipulation of proline content (de Ronde et al. 
200, 2001, 2004a, 2004b) affected the concentration of 
several other amino acids (Simon-Sarkadi et al. 2005). 
 
Production of proteins 
 
Transgenic soybean can also be used efficiently for the 
production of different proteins important for food or feed 
quality, or of importance to the pharmaceutical industry 
(Kinney 2003). Before using a gene construct for transfor-
mation, the ability of the recombinant proteins to assemble 
into functioning three dimensional structures should be 
checked using in vitro translation systems as described in 
the case of molecularly manipulated glycine subunits with 
increased methionine content (Sammour 2006). Down-
regulation of genes coding for vegetative storage proteins 
using an antisense construct had no negative effect on yield, 
protein, oil and amino acid composition in field trials. 
Therefore, these storage proteins could be replaced by ge-
netic engineering for other agronomically important pro-
teins (Staswick et al. 2001). By testing the purification 
efficiency of recombinant proteins from soybean seed 
accumulating �-glucuronidase, a 100% recovery rate was 
achieved which demonstrates the suitability of this system 
for the production of proteins (Robic et al. 2006). Suppres-
sion of the �-conglycinin subunits by gene silencing in the 
seed resulted in the accumulation of another storage pro-
tein, glycinine, which accumulated in the endoplasmic reti-
culum-derived vesicles instead of Golgi-derived vesicles 
(Kinney et al. 2001). By transformation with the soybean 
seed lectin promoter fused to a gene of bovine milk protein, 
�-casein, accumulation of �-casein in the seed was 
achieved (Philip et al. 2001). 
 
Production of pharmaceutically useful 
compounds 
 
Pharmaceutically useful compounds can also be produced 
using transgenic soybean. The promoter of the glycinin 
gene coding for a soybean seed storage protein was suc-
cessfully used to ensure the seed-specific production of 
human basic fibroblast growth factor (Ding et al. 2006). 
The accumulation of the growth factor reached 2.3% of 
total soluble protein and it was biologically active. Soy-
bean could also be used for the production of secretary IgA 
antibodies, the production of which is significantly cheaper 
in plants compared to steel tank bioreactors using mam-
malian cells or micro-organisms (Larrick et al. 2001). An-
other example of a pharmaceutical application of trans-
genic soybean is the increased production of isoflavones by 
the combination of transcription factor-driven (maize C1 
and R transcription factors) gene activation and suppres-
sion of the competing (flavonone 3-hydroxylase) pathway 
(Yu et al. 2003). Isoflavones are plant estrogens which can 
slow or reverse the symptoms of osteoporosis. 
 
Manipulation of carbohydrate metabolism 
 
Carbohydrates play an important role in stress tolerance 
and in metabolism, therefore, genetic manipulation for 
controlling of their concentration is of importance in plant 
breeding. Cyclitol production was manipulated in pinitol-
producing glycophytic soybean by introduction of the Imt 
(inositol methyl transferase, converts myo-inositol to ono-
nitol) gene from the halophytic ice plant (Mesembryan-
themum crystallinum) into embryogenic tissue by particle 
bombardment (Chiera et al. 2006). In transgenic soybean 
embryos, ononitol and pinitol (produced from ononitol) 
concentrations were higher compared to the wild type. 
However, in the leaves of mature plants no differences 
were observed. 
 
Manipulation of antioxidant levels 
 
The manipulation of antioxidant levels in soybean could 

improve stress tolerance and in the case of a seed-specific 
expression of the transgene, could have significant health 
benefits. �-Tocopherol efficiently prevents the peroxidation 
of membrane lipids, however, in soybean seed its main pre-
cursor, the less bioactive �-tocopherol, is present. Seed-spe-
cific expression of �-tocopherol methyltransferase from Pe-
rilla frutescens in soybean resulted in a significant increase 
in �-tocopherol content and reduced lipid peroxidation 
during germination compared to the wild type (Tavva et al. 
2007). Transformation of soybean with two Arabidopsis 
genes involved in �-tocopherol synthesis (seed-specific ex-
pression) resulted in a more than eight-fold increase in �-
tocopherol and a five-fold increase in vitamin E content of 
seed which is of importance to nutritional value and food 
quality (van Eenennaam et al. 2003). 

The cited examples demonstrate that genetic manipula-
tion of soybean can be used to alter the concentrations of 
certain metabolites in order to fulfil the requirements of 
food and feed production, as well as in the industrial appli-
cations of soybean. 
 
STUDY OF DEVELOPMENT 
 
Over- or under-production of various metabolites in trans-
genic soybean can assist in the understanding of their roles 
during different developmental stages. The role of a suc-
rose-binding protein was studied in plants containing the 
corresponding gene in the antisense orientation (Waclawos-
ky et al. 2006). Significant reductions in photosynthesis 
and stomatal conductance were observed in these lines, but 
this was restricted to the reproductive phase. Sucrose con-
tent decreased both in source and sink leaves, while a re-
duction in starch concentration was observed only in the 
sink leaves. In another study the role of a soybean receptor-
like kinase (GmSARK) in the regulation of leaf senescence 
was demonstrated (Li et al. 2006). RNAi-mediated knoc-
king out of the GmSARK gene retarded leaf senescence and 
the disintegration of chloroplast structure, while over-ex-
pression of this gene accelerated senescence. The RNAi-
method was also successfully used to silence the myo-ino-
sitol-1-phosphate gene and to demonstrate the involvement 
of the corresponding protein in seed development, since in 
transgenic plants the formation of seed was absent (Nunes 
et al. 2006). Organogenesis of legume root nodules could 
also be investigated using transgenic soybean (Kouchi et al. 
1999). The promoter of the early nodulin gene from rice 
was fused to the gus-reporter gene and the expression of the 
gene was demonstrated in peripheral cells of soybean no-
dules (developed on hairy roots). Another example for the 
use of transgenic soybean for developmental studies is the 
demonstration of the transposition of the maize controlling 
element Ac in transgenic soybean (Agrobacterium-media-
ted transformation) calli, leaves, stems and roots (Zhou and 
Atherly 1990). 

Transgenic soybean plants provide the opportunity to 
elucidate new insight in physiological and genetic proces-
ses during plant development. 
 
CONTROL OF POSSIBLE DISADVANTAGEOUS 
AFFECTS OF GENETIC TRANSFORMATION 
 
Before using transformed plants for food, feed or industrial 
raw material production, it is important to check the possi-
ble side-effects of transgenes on metabolism. A feeding stu-
dy on salmon that receiving a diet prepared from glypho-
sate-resistant and wild type soybean, demonstrated that 
there were no differences between the groups of fish as far 
as growth, body composition, relative organ weights, plas-
ma nutrient concentrations and enzyme activities (Sanden 
et al. 2006) were concerned. Allergenicity of glyphosate-
resistant soybean was tested in two sensitive human groups, 
children with food and inhalant allergies and individuals 
with asthma-rhinitis. No difference in the reaction to trans-
genic and wild type soybean was observed (Batista et al. 
2005). Transgene-induced gene silencing suppressed the 
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accumulation of Gly m Bd 30 K protein, an immuno-domi-
nant allergen in soybean (Herman et al. 2003). The unfavo-
rable consequences of genetic engineering was demonstra-
ted after introduction of the 2S albumin gene from Brazil 
nut into soybean, since the allergenic effect of the nut (ob-
served only in an extremely low percentage of the popu-
lation) was also observed in soybean (Nordlee et al. 1996). 

The studies cited show that in most cases, there are no 
adverse effects of transgene expression, but that unfavo-
rable consequences of genetic transformation can also be 
observed in certain instances. 
 
SCREENING FOR THE PRESENCE OF 
TRANSGENES 
 
For safety and economic reasons it is necessary to clearly 
distinguish transgenic from non-transgenic plant material. 
A multiplex-PCR method coupled with oligonucleotide 
microarrays proved to be appropriate for a rapid and cost-
saving screening of transgenic soybean with a 0.5% detec-
tion limit (Xu et al. 2006). A quantitative-competitive PCR 
test was successfully used for detection of the transgene 
providing glyphosate resistance in soybean (Dinelli et al. 
2006). The peptide nucleic acid microarray approach was 
also successfully applied for the detection of the transgene 
in glyphosate-resistant soybean (Germini et al. 2004). An-
other methodology for the rapid determination of trans-
genes is the bio-specific interaction analysis with surface 
plasmon resonance (SPR) and biosensor technology which 
allows for real-time monitoring of the hybridization 
between oligonucleotide or PCR-generated probes and tar-
get single-stranded PCR-products derived from DNA of 
transgenic soybean (Gambari and Feriotto 2006). 

These methodologies provide sensitive protocols for 
detection of transgenes in transgenic soybean-derived pro-
ducts. This is of extreme importance for food and feed pro-
duction, and in industrial applications of the transgenic 
plants. 
 
CONCLUSIONS 
 
Efficient plant regeneration and transformation (biolistic 
and Agrobacterium-mediated) methodologies have been es-
tablished for soybean which allow for organ-specific or 
stress-inducible expression of transgenes. Genetically mo-
dified soybean with increased stress and herbicide tolerance 
as well as modified seed protein, fatty acid and other meta-
bolite content, is available for agricultural and industrial 
purposes. It could be expected that in future entire regulons 
will be modified by the introduction of transcription factor 
genes as described in the case of isoflavones (Yu et al. 
2003) and heat shock proteins (Zhu et al. 2006). However, 
the extensive control of possible unfavourable side effects 
is necessary, since the expression of a number of genes 
could be altered. 
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