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ABSTRACT 
This review deals with the factors limiting for the plant regeneration and genetic transformation of Catharanthus roseus (L.) G. Don. Des-
pite its importance in producing pharmaceutically valuable terpenoid indole alkaloids, the lack of a reliable C. roseus regeneration system 
at a high frequency is currently a bottleneck step for the transgenic plant development. The efficiency of Agrobacterium-mediated trans-
formation is dependent on the type of explant, explant age, pre-culture and co-culture period, vir genes and antioxidants supplementation 
and Agrobacterium strains. In addition, the disadvantages of negative selection markers, the utility of GFP as a visual selection marker, 
and the advantages of positive selection markers such as phosphomannose isomerase, tryptophan decarboxylase and feedback-resistant 
anthranilate synthase are discussed along with selection agents to obtain high frequency genetic transformation. To optimize the factors 
that are discussed in this review may successfully lead to transgenic C. roseus for the metabolic engineering of terpenoid indole alkaloids. 
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INTRODUCTION 
 
Madagascar periwinkle (Catharanthus roseus) is an impor-
tant medicinal plant growing in tropical and subtropical 
countries with attractive foliage and different flower colors. 
Most often, plants are grown in pots as well as in gardens 
for ornamental value. The leaves contain pharmaceutically 
important compounds known as terpenoid indole alkaloids 
(TIA). Among more than 130 of them (Mishra and Kumar 
2000; van der Heijden et al. 2004), vinblastine and vincris-
tine are of the greatest clinical value for anti-cancer chemo-
theraphy (van der Heijden et al. 2004). A complex chemi-
cal structure of vinblastine and vincristine makes in vitro 
chemical synthesis of this compound very difficult. Cur-
rently, periwinkle plant is the sole source of vinblastine and 
vincristine, but the yield of the two alkaloids from the plant 
is very low (1 g and 20 mg per 1000 kg of plant material, 
respectively), thus making the cost of these life-saving 
drugs very expensive (Tyler 1988). Current market value of 

vincristine is about 20 million dollars per kilogram (Kumar 
and Kumar 2002). Also ajmalicine and serpentine are used 
to treat hypertension and other circulatory disorders. The 
low yield and high market value of these valuable indole 
alkaloids are the major motivation of the research interest in 
periwinkle plant. Over the past several decades, C. roseus 
has received considerable interest from both academic and 
industrial scientists as a model plant to study TIA (reviewed 
extensively in Teixeira da Silva 2006). Many genes in-
volved in TIA biosynthesis have been cloned and appear to 
be coordinately regulated by the same signal transduction 
pathway as they are up-regulated by methyl jasmonate and 
down-regulated by auxin (Misra et al. 1996; Rischer et al. 
2006). A jasmonate-inducible AP2/ERF class of transcrip-
tion factor ORCA3 was identified that increases metabolic 
fluxes from primary metabolism to TIA secondary metabo-
lism (van der Fits and Memelink 2000). Over-expression of 
ORCA3 enhanced expression of multiple TIA biosynthetic 
genes but did not increase the production of TIA in cell sus- 
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pension culture. Despite many literatures, overall regulation 
of TIA biosynthesis is not well understood yet. 

T-DNA activation tagging or T-DNA insertional lines 
of transgenic C. roseus are not currently available. Absence 
of an efficient transformation and regeneration system is a 
major drawback in studying the gene function at the whole 
plant level. Two bisindole alkaloids, vinblastine and vin-
cristine rarely accumulate on cell suspension or hairy root 
lines because of the absence of specialized cells called lati-
cifers and idioblasts (Vazquez-Flota et al. 2002). Even the 
stably transformed cell culture lines of C. roseus gradually 
lost the ability to accumulate TIA over time (Whitmer et al. 
2003). The TIA pathway is so complex that biosynthesis of 
metabolic intermediates takes place in different tissues and 
subcellular compartments (St-Pierre et al. 1999; Kutchan 
2005; Mahroug et al. 2006). Without transgenic plants, it 
will be difficult to metabolically engineer the TIA pathways 
to increase alkaloid yield (Pasquali et al. 2006). Conventio-
nal breeding may offer a way to increase alkaloid produc-
tion, but it is usually time-consuming and one has to screen 
a large number of genotypes with high alkaloid content. 
Screening mutants with economically competitive high 
yields of alkaloid have not been successful thus far despite 
the considerable efforts made in mutation breeding (Kul-
karni et al. 1999, 2001). Consequently, it is important to 
establish a regeneration system to further our understanding 
for TIA gene expression as well as to metabolically engi-
neer C. roseus alkaloid production. C. roseus is recalcitrant 
to regeneration following Agrobacterium infection. In this 
review, we discuss limiting factors and the ways to over-
come the barrier to regeneration of transformed C. roseus 
explants. 
 
OPTIMIZATION OF PLANT REGENERATION AND 
SELECTION OF EXPLANTS FOR PLANT 
TRANSFORMATION OF C. ROSEUS 

 
High frequency regeneration from explants is prerequisite 
for standardizing optimum transformation conditions to ge-
nerate transgenic plants in any plant species. To date, there 
are only a few published reports on plant regeneration in C. 
roseus (Table 1). Low frequency of plant regeneration via 
organogenesis of callus induced from leaf segments of C. 
roseus was reported by Constabel et al. (1982). Plant rege-
neration was obtained from anther-derived cell suspension 
cultures via somatic embryogenesis (Kim et al. 1994). 
Although somatic embryo was induced in the same way as 
anther, plant was regenerated at a higher frequency (20%) 
via somatic embryogenesis when immature zygotic embryo 
of C. roseus cv. ‘Little Bright Eye’ was cultured in MS 
media containing 1 mg/l 2,4-D (Kim et al. 2004). Healthy 
plants were regenerated from stem node or shoot tip of C. 
roseus infected with mycoplasma-like organism and mosaic 
virus (Mollers and Sarkar 1989; Kaur et al. 1996). Seg-
ments of seedlings were cultured to obtain calli from which 
cell suspension culture was initiated to induce embryogenic 
calli, and later plantlets were regenerated from somatic em-
bryos upon transfer to solid media (Piovan et al. 2000). The 
efficiency of plant regeneration from leaf petiole and hypo-

cotyl of C. roseus was found to be dependent on the geno-
type and combination of plant growth regulators (Lee et al. 
2003; Choi et al. 2003). Somatic embryos were obtained 
from embryogenic calli induced from hypocotyls of C. 
roseus on MS medium supplemented with 1 mg/l NAA. 
Somatic embryos converted into plantlets when cultured on 
MS medium containing 0.5 mg/l BAP following treatment 
with 1 mg/l gibberellic acid (Junaid et al. 2006). All these 
protocols, however, are not practical in transformation that 
should be accompanied by high frequency plant regene-
ration. Being a low percentage in plant regeneration (below 
20%) or lacking regeneration data, they took a long time to 
regenerate plant by passing suspension culture. The type of 
explants along with various combinations of growth regula-
tors has not been extensively tested for high frequency rege-
neration. 

We used TDZ as it frequently induces plant regeneration 
via somatic embryogenesis and organogenesis in many plant 
species (Li et al. 2000; Mithila et al. 2003; Liu et al. 2003). 
We found the conditions for the high frequency of C. roseus 
cv. ‘Little Bright Eye’ regeneration from mature embryo, 
hypocotyl and cotyledon via somatic embryogenesis and 
organogenesis by varying the TDZ and BA:NAA ratios 
(Dhandapani et al. 2007). Those explants are more easily 
available and prepared than other explants used in the pub-
lished reports. Moreover, they are actively growing tissues 
that can be effectively transformed by Agrobacterium tume-
faciens. Transformation of petioles obtained from two-
month old seedlings was not successful (unpublished 
results). The reason may be a high alkaloid content in green 
tissue which reduces the infection frequency. It applies to 
other explants of C. roseus such as green leaf segment, stem 
node and shoot tip. In contrast, mature embryo, hypocotyl 
and cotyledon showed a better infection rate (unpublished 
results). It would be necessary to screen a large number of 
genotypes with these three explants to identify regeneration 
competent genotype which can be utilized in transformation. 
 
AGROBACTERIUM-MEDIATED 
TRANSFORMATION: SUITABLE STRAINS, vir 
GENES SUPPLEMENTATION AND CULTURE 
CONDITIONS 

 
Gene transfer through A. tumefaciens continues to be a pop-
ular technique. Agrobacterium-mediated transformation is 
simple and cost-effective, with the less chance of transgene 
recombination after integration. Co-transformation offers a 
way to introduce multiple genes to engineer the metabolic 
pathway (Gelvin 2003). In addition, T-DNA activation tag-
ging or T-DNA insertional mutagenesis has been exten-
sively utilized in functional genomic analysis (van der Fits 
et al. 2001). 

Several reports showing Agrobacterium-mediated 
transformation of C. roseus are made using hairy root and 
cell suspension culture (Table 2). C. roseus hairy root was 
reported to be regenerated into whole plant, though pheno-
typic alterations were noted in leaves and roots without data 
on regeneration frequency (Brillanceau et al. 1989). TIA 
content was examined in transgenic hairy root lines, but no 

Table 1 Plant regeneration in Catharanthus roseus. 
Explant typeRef. Mode of regeneration Medium PGR 
Anthers1 Somatic embryogenesis MS, semi solid and suspension 2,4-D, KT 
Immature zygotic embryo2 Somatic embryogenesis MS, semi solid and suspension 2,4-D 
Cut seedling3 Somatic embryogenesis B5, semi-solid and suspension 2,4-D, KT, NAA
Mature embryo4 Somatic embryogenesis MS, semi-solid TDZ 
Hypocotyl5 Somatic embryogenesis MS, semi-solid BA, NAA, GA3

Leaf segment6 Organogenesis MS, semi-solid IAA, BA, ZT 
Stem node7 Organogenesis MS, semi-solid BA, NAA 
Shoot tip8 Organogenesis MS, semi-solid 2,4-D, Kinetin 
Hypocotyl9 Organogenesis MS, semi-solid BA, NAA, IBA
Petiole10 Organogenesis MS, semi-solid BA, NAA 
(Mature embryo, cotyledon, hypocotyl, petiole, stem node, shoot tip)11 Organogenesis MS, semi-solid BA, NAA, TDZ

Ref. = References: 1, Kim et al. 1994; 2, Kim et al. 2004; 3, Piovan et al. 2000; 4, Dhandapani et al. 2007; 5, Junaid et al. 2006; 6, Constabel et al. 1982; 5, Junaid et al. ; 6, 
Constabel et al. 1982; 7, Mollers and Sarkar 1989; 8, Kaur et al. 1996; 9, Choi et al. 2003; 10, Lee et al. 2003; 11, Dhandapani et al. 2007. 
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bisindole alkaloids were found (Bhadra et al. 1993; 
O’Keefe et al. 1997; Shanks et al. 1998; Rodriguez et al. 
2003; Hughes et al. 2004). Recently a whole plant was re-
generated from C. roseus hairy root line derived from hy-
pocotyl infected by A. rhizogenes (Choi et al. 2004). Hairy 
roots were also generated by infecting intact seedlings with 
A. tumefaciens GV3101 containing rol ABC genes (Hong 
et al. 2006). To use hairy root system to regenerate into 
whole plant has certain disadvantages. Regeneration fre-
quency is low, and phenotypes of plants generated from 
hairy roots are often abnormal (Choi et al. 2004). A. tume-
faciens-mediated transformation of C. roseus cell suspen-
sion culture was reported to study the effects of overex-
pression of strictosidine synthase and tryptophan decarbo-
xylase, but the transformation frequency was low (Canel et 
al. 1998). When A. tumefaciens strain LBA4404 was sup-
plemented with a plasmid construct containing a constitu-
tive virG mutant gene (virGN54D), transformation fre-
quency of C. roseus suspension-cultured cells increased 
significantly, as judged by GUS assay and visual counting 
of blue spots (van der Fits et al. 2000). EHA101, EHA105 
or GV3101 strains were successfully used for C. roseus 
transformation. Supplementation of extra vir genes through 
VirGN54D (independent of AS), or supervirulent vir genes 
derived from pTiBO542 may increase transformation ef-
ficiency (Hiei et al. 1994; van der Fits et al. 2000; Subha 
and Veluthambi 2003). Despite the success in transforma-
tion, whole plant has not been regenerated from cell sus-
pension culture yet. 

In plant transformation, culture conditions such as pre- 
and co-culture time are known to be important for increa-
sing the transformation and regeneration efficiency. Pre-
culturing explants activates virE gene which favors Agro-
bacterium to infect more effectively in tobacco (Sunilku-
mar et al. 1999). In monocots such as rice, wheat and 
maize, pre-culturing embryogenic calli prior to infection 
was found to increase the transformation efficiency (Hiei et 
al. 1994; Ishida et al. 1996). Pre-culturing for 24 hours 
with 24-h co-cultivation at 25±1�C under light (10-h dark/ 
14-h light photoperiod with cool-white fluorescent irradi-
ance at an intensity of 60 mol m-2 per second) gave higher 
stable transformation efficiency in C. roseus hypocotyl 
(unpublished results). 
 
ADDITION OF ANTIOXIDANT SUPPLEMENTS TO 
FACILITATE T-DNA DELIVERY AND SURVIVAL OF 
TRANSFORMED CELLS 

 
Agrobacterium infection at the wound sites of recalcitrant 
plant cells often induces necrotic hypersensitive response 
(HR) (Kuta and Tripathi 2005). HR response is due to the 
elicitation of cascades of reactions initiated by releasing 
oxygen free radicals such as superoxides and hydrogen 
peroxide. These molecules lead to a rapid, localized cell 

death around the infection site followed by the induction of 
pathogenesis-related proteins and the accumulation of 
antimicrobial compounds, thereby reducing the efficiency 
of plant transformation and regeneration. To quench the 
Agrobacterium-induced oxidative burst, antioxidants such 
as L-cysteine, polyvinylpyrrolidone, dithiothreitol, and 
sodium thiosulphate are applied to the target plant tissues. 
Addition of thiol compounds during co-cultivation dras-
tically increased the transformation efficiency of soybean 
cotyledonary-node explant by inhibiting the activities of 
wound response enzymes, such as peroxidases (PODs) and 
polyphenol oxidases (PPOs) (Olhoft et al. 2001, 2003). Ad-
dition of L-cysteine to the co-cultivation media also in-
creased the transformation efficiency of immature maize 
embryos (Frame et al. 2002). Necrotic spots and tissue 
browning during and after co-cultivation were observed in 
all the explants we infected viz., mature embryo, hypocotyl 
and cotyledon. As HR response may cause poor T-DNA 
delivery as well as poor survival and regeneration of trans-
formed cells imbedded in necrotic tissue, addition of thiol 
compounds could alleviate the problems of HR response 
during C. roseus transformation. 
 
EFFECTIVE SELECTION MARKER FOR C. 
ROSEUS TRANSFORMATION: EFFEICIENCY OF 
NEGATIVE SELECTION AND POSITIVE 
SELECTION 

 
Gene transfer to plants is a rare process. Usually Agrobac-
terium transfers its T-DNA to a single cell out of cell mass. 
Selection requires faster proliferation of transformed cells 
than that of non-transformed cells. This process is carried 
out by applying chemicals called selective agents. Antibi-
otics such as kanamycin, hygromycin, and geneticin or her-
bicides like basta are often applied to select transformed 
cells. These agents selectively kill untransformed cells, 
whereas resistance marker gene products will detoxify 
these agents, making transformed cells grow. These nega-
tive selection markers are certainly helpful in transforma-
tion of most plant species. However, presence of such nega-
tive selection markers may be undesirable by forming deto-
xified substances in some recalcitrant species. Though they 
are not toxic, the byproducts may not be metabolized by 
transformed cells, leading to interference with the morpho-
genetic potential of the recalcitrant species such as C. ro-
seus (Flavell et al. 1992). Release of toxic metabolites from 
adjacent cells inhibited regeneration of transgenic sugar 
beet (Lindsey and Gallois 1990). We have consistently 
failed to regenerate stably transformed calli of C. roseus 
expressing GFP in presence of kanamycin in spite of fol-
lowing different selection schemes (unpublished results). 
Apart from regeneration point of view, negative selection is 
being questioned for controversial bacterial resistance 
genes in GMO plants which are concerned for environment 

Table 2 Transformation of C. roseus. 
Explant typeRef. Mode of transformation Medium Selection marker Light 

condition 
Pre-culture 
period 

Co-culture 
period 

Reporter Regeneration

Intact seedlings A. rhizogenes (pRi15834) B5, semi-solid Hairy root Light No No No Yes 
Hypocotyl2 A. rhizogenes (pRI000) MS, semi-solid Hairy root Light No No No Yes 
Intact seedlings3 A. tumefaciens 

GV3101(pPZProlABC) 
B5, semi-solid Hairy root Light No No No No 

Nodular callus4 A. tumefaciens  
LBA1119(pMOG) 

MS, semi-solid hygromycin Dark No 72 hours GUS No 

Nodular callus5 A. tumefaciens 
LBA4404(pMOG22BG:: 
virGN54D) 

B5, semi-solid Hygromycin, 
kanamycin 

Dark No 72 hours GUS No 

Mature embryo6, 
hypocotyl6, 
cotyledon6 

A. tumefaciens  
EHA105(pBIN-mGFP5ER), 
GV3101(pBI121 & pBIHT) 

MS, semi-solid Hygromycin, 
kanamycin, 
G-415, mannose 

Dark/light 24 hours 24 hours GUS, GFP No 

Node with two 
auxillary buds7 

Particle bombardment MS, semi-solid No Light No No GUS, GFP Yes 

Ref. = References: 1, Brillanceau et al. 1989; 2, Choi et al. 2004; 3, Hong et al. 2006; 4, Canel et al. 1998; 5, van der Fits et al. 2000; 6, unpublished results; 7, Zarate et al. 
1999. 
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due to the transgene flow (Flavell et al. 1992; Nap et al. 
1992). As an alternative, positive selection is effectively 
used to select transformed cells with high regeneration ef-
ficiency. Positive selection offers a metabolic advantage to 
the transformed cells thereby surpassing the non-transfor-
mants in growth. For example, �-glucuronidase hydrolyzes 
BA-3-glucuronide, a derivative of benzyladenine (BA) and 
releases BA which leads to regeneration of transformed 
cells (Joersbo and Okkels 1996; Okkels et al. 1997). Plant 
regeneration of C. roseus via organogenesis can be stan-
dardized using BA as plant growth regulator. Such im-
proved plant regeneration protocol would be utilized to 
generate transgenic C. roseus using �-glucuronidase and 
cytokinin glucuronide as selection agent. Another example 
of a positive selection marker is a phosphomannose iso-
merase (PMI). When mannose is added to the media as 
sole carbon source, it is converted into mannose 6-phos-
phate by hexokinase. This leads to depletion of the inor-
ganic phosphate reserve resulting in cell death. In trans-
genic cells, PMI from E. coli converts mannose 6-phos-
phate into fructose 6-phosphate which is an intermediate in 
glycolytic pathway. Mannose selection was found to be 
superior to kanamycin selection in many recalcitrant plant 
species such as sugar beet and tapioca (Joersbo et al. 1998; 
Negrotto et al. 2000; Wang et al. 2000; Zhang et al. 2000; 
Zhang and Puonti-Kaerlas 2000; Lucca et al. 2001). As 
compared to other negative selection agents, mannose is 
cheaper and more amenable to use in the field. Since C. 
roseus is a recalcitrant species, mannose selection may 
ease the regeneration following transformation. In addition 
to mannose, xylose was also used as a selection marker. 
Xylose isomerase converts xylose into xylulose which can 
be used as carbon source by plants (Haldrup et al. 1998). 

The plant enzyme tryptophan decarboxylase (TDC) 
converts tryptophan into tryptamine. Since tryptophan ana-
logues, 4- and 5-methyl tryptophan (4- or 5-mT) are toxic 
to plants and TDC is able to convert them into nontoxic 4- 
or 5-methyl tryptamine, it was successfully used as a selec-
tion marker in transgenic tobacco (Goddjin et al. 1993). A 
transcription factor (ORCA3), which regulates TIA biosyn-
thetic pathway in C. roseus, was isolated from 4-mT resis-
tant cell suspension lines by T-DNA activation approach 
(van der Fits and Memlink 2000; van der Fits et al. 2001). 
Endogenous activity of TDC can be overcome with an 
effective inhibitory concentration of 4- or 5-mT. A trypto-
phan feedback-resistant anthranilate synthase was also 
found to detoxify 5-mT and effectively used for rice and 
potato transformation with selection efficiency being simi-
lar to that of conventional selection markers (Yamada et al. 
2004). Expression of a feedback-resistant anthranilate syn-
thase of Arabidopsis thaliana in C. roseus hairy roots was 
reported (Hughes et al. 2004; Hong et al. 2006). So it is 
possible to use 5-mT as a selection agent and feedback-in-
sensitive anthranilate synthase as a selection marker for C. 
roseus transformation. 

 
 

 

EXPLOITING GFP IN C. ROSEUS 
TRANSFORMATION: EFFECTIVE REPORTER, 
VISUAL SELECTION MARKER AND DUAL 
SELECTION MARKER 

 
As Agrobacterium-mediated transformation involves vari-
ous steps, optimum conditions for each step have to be 
standardized in order to increase the transformation effici-
ency. Monitoring of transformation event in each step is 
also necessary for effective selection of transformed cells. 
Visual inspection of such processes is aided by reporter 
genes and is helpful in standardizing optimum conditions 
and screening of transformation. Various reporter genes are 
available for plant transformation. Conventional reporter 
genes such as GUS (Jefferson et al. 1987), LUC (Ow et al. 
1986) and LacZ (Helmer et al. 1984) have been routinely 
used in transformation experiments. Such reporter systems 
require addition of substrate for their functioning. In ad-
dition, they are destructive as they lose a stably transformed 
callus which has a potential to regenerate into whole plant. 
On the other hand, green fluorescent protein (GFP) is a 
non-destructive, in vivo reporter system that is widely used 
in transformation (Stewart Jr. 2001). GFP expression does 
not require any exogenous substrate for its activity, and real 
time observation is possible from the very early stage of 
transformation event. Using GFP as reporter system, vari-
ous steps involved in Agrobacterium-mediated transforma-
tion can be monitored to explore suitable Agrobacterium 
strains, acetosyringone concentration, pre- and co-culture 
period (Zhou et al. 2004; Tang and Newton 2005; Wang 
and Ge 2005). We were successful in transformation of C. 
roseus hypocotyl explant by monitoring GFP expression in 
calli (Fig. 1B). We also made numerous attempts to rege-
nerate the callus that stably expressed GUS or GFP along 
with antibiotics kanamycin, G-418 and hygromycin but 
consistently failed (unpublished results). Visual selection 
marker alone was not enough to get transgenic C. roseus in 
our case. Dual selection combining a positive selection 
marker with GFP would be more effective to select and 
regenerate the transformed C. roseus callus. GFP is a useful 
tool to evaluate parameters determining the high efficiency 
of transformation in C. roseus. Positive selection may allow 
the transformed cells to grow, while GFP expression is 
monitored to determine the efficiency. Such a dual selec-
tion marker was successfully used in producing transgenic 
bentgrass and sorghum (Fu et al. 2005; Gao et al. 2005). 
The same strategy could be applied for generating transge-
nic C. roseus. 
 
CONCLUDING REMARKS 
 
Transgenic C. roseus plant development is still an ongoing 
process. Systematic selection of suitable explants with high 
regeneration capacity viz., mature embryo, hypocotyl and 
cotyledon, suitable Agrobacterium strains, optimum culture 
conditions viz., pre- and co-culture period, addition of vir 
gene inducer and antioxidant supplements, exploitation of 
GFP visual and positive selection marker should be taken 
into consideration for the experiments to standardize Agro-

Fig. 1 In vitro regeneration and transformation 
of C. roseus (A) Plant regeneration from cotyledon 
of C. roseus cv. “Little Bright Eye” on MS medium 
supplemented with 1 mg/l NAA and 0.5 mg/l BA; 
(B) Stable GFP expression in 2 month-old C. 
roseus callus selected on kanamycin containing 
medium derived from hypocotyls infected with 
Agrobacterium tumefaciens strain EHA105 (pBIN-
mGFP-5-ER). 
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bacterium-mediated transformation of C. roseus. Although 
the high quality protocol is yet to be established, critical 
conditions to be examined are available based on the cur-
rent success of several plant species that were previously 
presumed to be recalcitrant. Optimization of all the factors 
considered in this review will eventually lead to the deve-
lopment of C. roseus transgenic plant. 
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