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ABSTRACT 
Ferritin, a metalloprotein, is rich in iron, and ubiquitous in all organisms. Plant ferritins play a pivotal role in many important redox 
reactions. Iron is an essential element for all forms of life and its limitation of oxidizing to ferric form has a profound impact on the 
productivity of organisms. The function of ferritin in plants is storage of Fe for short or long periods to protect the cell against the toxic 
effects of free Fe, thus serving as a primary antioxidant. Iron homeostasis in organisms is regulated at the level of iron uptake. If iron 
absorption is not tightly regulated, iron overload and associated toxicity occurs. The bioavailability of non-heme ferritin iron has been 
demonstrated by recent experiments and may provide a model for novel, utilizable, plant-based forms of iron for populations making it a 
potential target for biofortification. Information on the bioavailability of different forms of iron in the diet would foster research to design 
balanced diet and appropriate supplementation of required iron to ameliorate a wide variety of genetic background related to iron 
bioavailability and biosorption. The possible role of ferritin acting against biotic and abiotic stresses, accumulating heavy metals and as a 
protector of the genome is also reported. Plant ferritin genes have been obtained from many different plants, mostly from legumes. 
Fortifying plants with ferritin through a transgenic approach would aid in corroborating the existing iron fortifying programmes. 
Understanding the molecular, biochemical and physiological aspects of the ferritin molecule would be a significant accomplishment to 
construct plants overexpressing ferritin that require reduced applications of fertilizers, that can grow on marginal lands, and accumulate 
bioavailable iron. 
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INTRODUCTION 
 
Iron is an important constituent of many proteins and en-
zymes that take part in vital processes and therefore is fun-
damental for human food supply. However, most diets 
based on cereals are insufficient for an adequate supply of 
iron. Lack of this micronutrient causes a number of severe 
health problems like iron deficiency that globally affects 
about 3 billion people and can result in anemia in women 
and irreversible impairment of children’s learning capabi-
lity (World Health Organization, WHO 2001). Many pro-
grams have aimed at supplementing food with additives. 
These programs have shown that supplementation is a diffi-
cult but feasible task (Trowbrigde and Martorell 2002) and 
they have contributed to a large amount of knowledge 
about the nutritional availability of added compounds, their 
interaction with other food ingredients, and their effects on 
human and animal health (King 2002). Improvement of the 
intrinsic nutritional value of plant foods by biofortification 
would provide a more efficient and sustainable solution to 
the problem and would greatly benefit human nutrition. Ef-
ficacy of biofortified foods for improving human nutrition 

and health has been promising (Haas et al. 2005). Classical 
breeding and genetic engineering could contribute together 
to the required improvement (Grusak and DellaPenna 1999). 
A more detailed understanding of the molecular and cellular 
processes involved in uptake, transport, storage or synthesis 
of iron will offer new possibilities to alter these processes 
by breeding and/or genetic engineering. A number of ap-
proaches to modify the iron content of various plants have 
been pursued world-wide by over-expressing ferritin genes 
(Goto et al. 1999; Drakakaki et al. 2000; Lucca et al. 2001) 
(Table 1). 

 
FERRITIN 

 
Ferritin, a ubiquitous class of iron storage nuclear encoded 
protein plays a major role in eukaryotic iron homeostasis 
(Harrison and Arosio 1996). It is composed of 24 sub-units, 
which can store up to 4000 iron atoms in the central cavity 
as a solid oxo mineral in a soluble bio-available form. Ferri-
tin is the only protein capable of solving iron/oxygen che-
mistry with cellular concentration requirements of ~10–4 M 
compared to the 10–18 M solubility of the iron, a gradient of 
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100 trillion fold (Theil 2000; Liu and Theil 2005). Intracel-
lularly most of the metabolic iron is sequestered in ferritin 
(Marentes and Grusak 1998). Besides enzymatic scaven-
ging, ferritin controls the concentration of transition metals, 
which have a prime role in oxygen activation (Rama Kumar 
and Prasad 1999a). It has been demonstrated that ferritin 
plays a key role in alleviating oxidative damage and patho-
gens (Deak et al. 1999; Rama Kumar and Prasad 1999a; 
Mata et al. 2001). Mata et al. (2001) reported a reduction of 
infection and ROS in the Phytophthora infestans-infected 
leaves of Solanum tuberosum, upon addition of the iron 
chelator deferoxamine. Ferritin mRNA accumulated in res-
ponse to pathogen attack in the leaves and upon treatment 
with the elicitor eicosapentaenoic acid in tubers, suggesting 
role of ferritin iron chelation in pathogen attack. Pro-oxi-
dant (H2O2) and ABA treatment resulted in induction of fer-
ritin in Vigna mungo. Pre-treatment of iron deficient de-
rooted seedlings with free radical scavengers and antioxi-
dants followed by co-treatment with ferric citrate inhibited 
ferritin induction indicating the antioxidant role of ferritin 
(Rama Kumar and Prasad 1999a). Iron sequestration in fer-
ritins was found to be a part of an iron-withholding defense 
system induced in response to bacterial invasion, when 
Arabidopsis thaliana was used as a susceptible host for the 
pathogenic bacterium Erwinia chrysanthemi (Dellagi et al. 
2005). Ferritin in legumes is one of the dietary non-heme 
iron sources in human nutrition (Goto et al. 1998, 1999; 
Murray-Kolb 2003). Because ferritin iron is separated from 
chelating components such as phytates by its protein coat, it 
is more stable rendering iron bioavailability (Theil and 
Briat 2004). The role of ferritin as a transient iron buffer 
has been documented in the developmental processes of 
plants (Strozycki et al. 2003). Developmental degradation 
of ferritin has been previously described for different parts 
of germinating pea seeds; degraded fragments were ob-
served in the radicle, but not in other parts of the seed (Lob-
reaux and Briat 1991). Ferritin is accumulated in seed ma-
turation and degraded during germination indicating its role 

as a transient buffer iron supply. Ferritin levels increase in 
developing leaves (Theil and Hase 1993), indicating that 
ferritin synthesis in leaves is developmentally controlled. 
Plant ferritin mRNA has been shown to accumulate during 
the early stages of nodule development (Kimata and Theil 
1994). In senescing nodules of Lupinus luteus, ferritin is re-
synthesized through the expression of two out of the three 
lupine ferritin genes (Strozycki et al. 2003). Deleting ferritin 
genes is detrimental to life in animals (Ferreira 2000) and its 
importance is indicated by the presence even in strictly an-
aerobic bacteria (da Costa et al. 2001). In humans, diseases 
related to ferritin mutations were discovered and are rela-
tively benign or appear late in life (Cazzola et al. 1997). 
 
AMELIORATION OF IRON DEFICIENCIES 
 
Plant products that deliver increased levels of essential mi-
nerals or vitamins are termed “fortified” foods. The intro-
duction of genes that code for trace elements, binding pro-
teins or storage proteins produce fortified foods. Biofortifi-
cation is a sustainable approach to alleviate malnutrition 
(Foyer et al. 2006). A notable example of biofortification 
was the creation of iron-fortified rice and “Golden Rice” 
(vitamin A-fortified) (Goto et al. 1999; Ye et al. 2000). 

About two thirds of the world’s population is at risk of 
iron-deficiency induced anemia (http://www.who.int/nut/ 
ida.htm). Iron deficiency is probably the most wide-spread 
micronutrient deficiency in humans. The bioavailability of 
iron is fairly low in the vegetable foods almost about 10%. 
It has been estimated by the WHO that nearly 3.7 billion 
people are iron-deficient and the problem is severe enough 
to cause anemia in 2 billion people. Among them, 40% are 
non-pregnant women and 50% were pregnant women. It has 
also been estimated that 31% of children fewer than 5 years 
are anemic, with mostly iron-deficiency anemia. 

Various strategies have been used to combat these 
deficiencies including supplementation, food fortification 
and modification of food preparation and processing me-

Table 1 Ferritin genes expressed in transgenic crops. 
Gene Gene 

source 
Plasmid 
used 

Gene introduction 
method 

Promoter used Level of 
expression 

Result of transformation Reference 

Lettuce 
Soybean ferritin cDNA Glycine 

max 
pBG1 Agrobacterium-

mediated 
transformation 

CaMV 
35 S promoter 

1.2 to 1.7 times 
in leaves 

Enhanced growth, high 
photosynthesis rates 

Goto et al. 
2000 

Rice 
Soybean ferritin cDNA Glycine 

max 
pGPTV Agrobacterium-

mediated 
transformation 

GluB-1 Glutelin 
promoter 

3-fold increase
in seeds 

Normal growth and development Goto et al. 
1999 

Soy ferH-1 Glycine 
max 

pGPTV Biolistic method GluB-1 Glutelin 
promoter 

3-fold increase
in seeds 

Iron concentrations increased 
even after polishing; Zinc also 
detected 

Vasconcelos 
et al. 2003 

Soy ferH-1 Glycine 
max 

pGPTV Agrobacterium-
mediated 
transformation 

GluB-1 
Glb-1 
Glutelin,Globulin 
promoters 

3-fold increase
in seeds 

No significant morphological 
changes; increase of iron 
accumulation did not parallel 
ferritin mRNA 

Qu et al. 
2005 

pfe + Phytase (phyA) and 
the cysteine-rich protein 
metallothionein (rgMT) 

Phaseolus 
vulgaris 

pCAMBIA 
1390 

Agrobacterium-
mediated 
transformation 

Gt1 glutelin 
promoter 

2-fold increase 
in seeds 

Normal growth and development Lucca et al. 
2001 

soybean ferritin cDNA Glycine 
max 

pSF1 Particle bombard-
ment 

Constitutive maize 
ubiquitin-1 
promoter 2-10 

2-fold in leaves 
but not in seeds

Chlorotic, reduced fertility Drakakaki et 
al. 2000 

soybean ferritin cDNA Phaseolus 
limensis 

pCAMBIA
1301 

Agrobacterium-
mediated 
transformation 

Glutelin GluB-1 
promoter 

64% increase in 
seeds 

Normal growth and development 
No zinc content traced 

Liu et al. 
2004 

Wheat 
soybean ferritin cDNA Glycine 

max 
pSF1 and 
pACH20 

Particle bombard-
ment 

Constitutive maize 
ubiquitin-1 
promoter 2-10 

50% in leaves 
but not in seeds

Ferritin mRNA and protein levels 
decreased during seed 
maturation, normal growth and 
development 

Drakakaki et 
al. 2000 

soybean ferritin cDNA + 
Aspergillus phytase Phy 
A-encoding phytase 

Glycine 
max 

pSF2 Particle bombard-
ment 

Rice seed-specific 
Gt1 promoter 

20-70% in 
seeds 

Increased level of iron, and 
bioavailability of iron in 
transgenic maize seeds 

Drakakaki et 
al. 2005 
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thods. All of these strategies are of paramount importance, 
but availability of infrastructure and health care expertise 
might be a limitation. Nonetheless, application of all of 
these methods would contribute to iron nutrition. One 
possible strategy is through the introduction of genes that 
code for trace element binding proteins, storage proteins 
already present and/or increased expression of proteins that 
are responsible for trace element uptake into plants (Lucca 
et al. 2002, 2006). However, even very high levels of ex-
pression may not substantially increase the iron content 
unless many atoms of trace elements are bound per protein 
molecule. So introducing a protein that specifically enhan-
ces absorption even in the presence of naturally occurring 
inhibitors, may improve bioavailability. Introducing ferritin 
in plants which can bind as many as 4500 atoms of iron 
may prove beneficial (Murray-Kolb et al. 2003; Lönnerdal 
2003). 
 
CONSERVED PROTEIN 
 
The structure appears to have evolved as a patchwork of 
other proteins such as non-heme di-iron oxygenases that 
share with ferritin the binding of Fe and O2 (Liu and Theil 
2003). Conservation of the ferritin protein sequence, fol-
ding, tertiary and quaternary structure among plants and 
animals is very high, emphasized by the use of an animal 
sequence (frog) to clone the plant (soybean) ferritin gene 
(Ragland 1990; Theil 2003). The structural conservation is 
limited to secondary, tertiary and quaternary structure (four 
helix bundles, assembled in a spherical protein cage with a 
large nanaocavity) (Theil and Briat 2004). Plant ferritin 
subunits share a 40% homology with the mammalian H 
subunit (Goto and Yoshihara 2001). Structures of plant and 
animal ferritin are super-imposable (Lobreaux et al. 1992b). 
Ferritin in contemporary bacteria diverges considerably in 
sequence, but not in secondary, tertiary and quaternary 
structure (Theil 2000), suggesting evolutionary conver-
gence with eukaryotic ferritins. However, except in higher 
plants and animals – where even the amino acid sequence is 
conserved – the amino acid sequence is highly variable, 
suggesting convergent evolution with selection for the 
higher order structure. 
 
PHYTOFERRITINS 
 
Plant ferritins are more likely than animal ferritins to be the 
source of ferritin in natural foods, and their mineral has a 
higher ratio of phosphate to iron (usually 4:1) than does that 
of animal ferritins (usually 1:8; Davila-Hicks et al. 2004). 
Studies of plant ferritins have revealed several important 
differences in the introns/exons organization, structure, lo-
calization and regulation of plant ferritins as compared to 
animal ferritins. Two different ferritin subunits, H and L, 
encoded by different genes have been described in animals. 
The H subunits contain conserved amino acids defining a 
ferroxidase site responsible for rapid Fe (II) oxidation, 
leading to a rapid uptake of iron inside the protein cavity; L 
subunits lack this site but are enriched in E residues facing 
the central cavity of the protein, thus enabling better nucle-
ation of Fe (III) for its long-term storage (Harrison and Aro-
sio 1996; Connolly and Guerinot 2002). One type of plant 
ferritin subunit has been described, sharing the characteris-
tics of both the H and L subunits, namely a ferroxidase 
centre and additional E residues facing the protein cavity 
(Lobreaux et al. 1992b). Animal ferritins are found in the 
cytosol, plant ferritins contain transit peptides for delivery 
to specific organelles, the plastids (Proudhon 1996). N-ter-
minal extension signal was found in all the genes cloned 
from Arabidopsis thaliana that shares characteristics with 
plant-specific transit peptides responsible for the targeting 
of precursor proteins to plastids (Petit et al. 2001a). More 
recently ferritins were reported to occur in mitochondria of 
both animals and plants with a possible role of protection 
against oxidative stress (Levi and Arosio 2004; Zancani et 
al. 2004). Moreover, while iron-regulated expression of 

animal ferritin is controlled mainly at the level of translation 
by a system of iron-responsive elements (IREs) and iron 
regulatory RNA-binding proteins (IRPs) (Eisenstein 2000), 
experiments in soybean and maize have shown that iron 
regulates expression of plant ferritins both transcriptionally 
through iron regulatory element (FRE in soybean) a cis-
acting element identified in soybean ferritin gene and iron-
dependent regulatory sequence (IDRS in maize and Arabi-
dopsis) (Lescure et al. 1991; Lobreaux et al. 1992a; Wei and 
Theil 2000; Petit et al. 2001b; Fig. 1). Post-transcriptional 
regulation was also reported in maize mutant ys1 where fer-
ritin protein and mRNA abundance does not correlate in ys1 
leaves upon iron induction, indicating that iron also controls 
plant ferritin accumulation post transcriptionally (Fobis-
Loisy 1996). The biotechnological advancements and nutri-
tional importance of phytoferritins is depicted in Figs. 2, 3. 
 
FERRITIN GENE FAMILY AND REGULATION 
 
Plant ferritin genes have been obtained from many different 
plants (Table 2). For example, the ferritin gene from Lens 
esculenta (Crichton 1978), Glycine max cell suspensions or 
cotyledons (Sczekan and Joshi 1987; Ragland et al. 1990; 
Lescure et al. 1991), Pisum sativum seed (Lobreaux et al. 
1992b; van Wuytswinkel 1995), Vigna ungiculata (Wicks 
and Entsch 1993), Zea mays (Lobreaux et al. 1992b), Pha-
seolus vulgaris (Spence et al. 1991), maize (Lobreaux et al. 
1992), Medicago truncatula (Gyorgyey et al. 2000), Medi-
cago sativa (Deak et al. 1999), Chlorella protothecoides 
(Hortensteiner et al. 2000). 

Plant ferritins are usually the products of a small gene 
family and all plant ferritin genes reported thus far are sin-
gle-copy genes: Zea mays (Fobis-Loisy et al. 1996); Vigna 
unguiculata (Wardrop et al. 1999); Arabidopsis thaliana 
(Petit et al. 2001b); Glycine max (Masuda et al. 2001). In 
Arabidopsis and V. ungiculata there are four genes be-
longing to the ferritin family, while three were detected in 
Lupinus luteus and two in maize (Fobis-Loisy et al. 1995). 
Expression of individual family members of the known 

Ferritin mRNA

(At fer2, Zm fer2          

ABA-dependent)

Ferritin inducers, other than iron:
ABA, NO, H2O2, photoinhibition, 
developmental process (mechanism 
of induction yet to be understood) 

Plants

Posttranscriptional

DNA

FRE/ IDRS

Ferritin mRNA

cis-FRE/ IDRS

trans-factor yet to be identified

Low iron levels                                High iron levels 

FRE/ IDRS

(At fer 1, At fer 3, Zm fer1)

Iron-mediated derepression of ferritin

Ferritin mRNA

(At fer2, Zm fer2          

ABA-dependent)

Ferritin inducers, other than iron:
ABA, NO, H2O2, photoinhibition, 
developmental process (mechanism 
of induction yet to be understood) 

Plants

Posttranscriptional

DNA

FRE/ IDRS

Ferritin mRNA

cis-FRE/ IDRS

trans-factor yet to be identified

Low iron levels                                High iron levels 

FRE/ IDRS

(At fer 1, At fer 3, Zm fer1)

Iron-mediated derepression of ferritin

Fig. 1 Ferritin induction in plants. Iron regulates expression of plant fer-
ritins transcriptionally through iron regulatory element (FRE in soybean) a 
cis-acting element identified in soybean ferritin gene and iron-dependent 
regulatory sequence (IDRS in maize and Arabidopsis). This IDRS is res-
ponsible for transcriptional repression under low iron supply conditions 
(indicated by lock symbol) and derepresses under high iron supply. 
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Fig. 2 Biotechnological and molecular advance-
ments of ferritins. 
 

Fig. 3 Phytoferritins have gained con-
siderable significance through biofor-
tified foods and nutraceuticals. Ad-
vancing biotechnology of this most im-
portant metal-biomolecule would be 
beneficial to human health. 
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plant ferritin genes is always under differential regulation 
(Strozycki et al. 2003; Jiang 2005). The differential expres-
sion of ferritin genes was detected by the induction of iron 
and abscisic acid (ABA) in Lupinus (Strozycki et al. 2003), 
and by that of iron, ABA and H2O2 in A. thaliana (Fobis-
Loisy et al. 1996; Harrison and Arosio 1996; Petit et al. 
2001). Paraquat-induced expression of the ferritin 2 gene 

was also reported in A. thaliana (Camp et al. 2003; Soos et 
al. 2005). Nitric oxide (NO)-mediated ferritin regulation has 
been shown in Arabidopsis (Murgia et al. 2002; Arnaud et 
al. 2006). NO was shown to act downstream of iron through 
the iron-dependent regulatory sequence (Petit et al. 2001b) 
of the AtFer1 promoter, suggesting that NO plays an impor-
tant role in the regulation of iron homeostasis in plants 

Table 2 Ferritin genes isolated from various sources. 
Gene Source of gene Ferritin induction Gene size  

(base pairs)
Distinct features Gen bank 

accession 
Reference 

Sof 35 Glycine max cell 
cultures 

Iron-regulated ferritin mRNA and 
protein synthesis 

986 Transit peptide and the extension peptide 
are conserved in the iron-induced mRNA 

M72894 Lescure et al. 
1991 

pfe Phaseolus vulgaris 
young leaves and 
shoot meristematic 
tissue 

Ferritin was purified from seedlings 
that had been treated with 0.8 mM 
ferric sodium EDTA 

1246 Substantial similarity with other ferritin 
sequences 5' untranslated region contains 
two out-of-frame AUG codons, a region 
of extreme pyrimidine composition bias 
and potentially stable secondary structure 

X58274 Spence et al. 1991

PeSd 1 Pisum sativum 
seeds 

Iron induction; Fe EDTA 100 �M 1023 Lacks 5' UTR X64417 Lobreaux et al. 
1991 

FM1 and 
FM2 

Zea mays roots 
and seeds 

Iron treatment (500 �M Fe-
EDTA/75 �M) Fe-citrate induced 
ferritin protein accumulation in 
roots and leaves 

1292 Both were identical, except in their 3' 
UTRs 

X61391 Lobreaux et al. 
1992 

Pe Sd2 Pisum sativum 
seeds 

Recombinant protein was expressed 
in E.coli 

1023 � TP/� EP 
� TP (Transit peptide, Extension peptide) 
6base differences compared to PeSd 1 
(Consensus Ferrooxidase site) 

X73369 van Wuytswinkel  
et al. 1995 

Zm fer 1 Zea mays 
seedlings 

Accumulation of Zm fer 1 
transcripts in response to iron 

3294 Eight exons and seven introns X83076 Fobis-Loisy et al. 
1995 

Zm fer 2 Zea mays 
seedlings 

Accumulation of Zm fer 2 and 
transcripts in response to ABA 

2902 Eight exons and seven introns X83077 Fobis-Loisy et al. 
1995 

At fer 1 Arabidopsis 
thaliana cell 
suspension 

AtFer1 transcript abundance in 
response to iron and not to ABA 

1413 Localized on chromosome 5 X94248 Gaymard 
et al. 1996 

LSC30 Brassica napus 
leaves 

Enhanced expression during leaf 
senescence 

977 Identified from cDNA subtractive 
hybridisation study in Brassica 

U68217 Buchanan-
Wollaston and 
Ainsworth 1997

Cp2 
Cp3 

Vigna unguiculata 
leaves 

mRNA was detected from 
developing leaves 

958 Significantly divergent from other 
ferritins (only 77% identical to soybean 
ferritin. No similarity of transit peptide in 
Cp2. Cp 1 Transit peptide shares 
similarity 

AF052058 
AF052057 

Wardrop et al.   
1999 

MsFer Medicago sativa 
Somatic embryo 
library 

Transgenic tobacco plants 
accumulating ferritin in their leaves 
exhibited tolerance to necrotic 
damage 

1036 89% identity with pea ferritin X97059 Deak et al. 1999

At fer 2 
At fer 3 
At fer 4 

Arabidopsis 
thaliana 
Analysis of the A. 
thaliana EST 
database with 
BLASTN 

AtFer1 and AtFer3 transcript 
abundance in response to iron and 
not to ABA. At fer 2 transcript 
abundance in response to ABA and 
not to iron, found mainly in seeds 

1006 
1042 
985 

AtFer2 and AtFer3 are on chromosome 3 
and AtFer4 is on chromosome 2. All 4 
genes have 7 introns located at same 
place. cis-IDRS shares similarity in the 
four genes 

AC009991 
AL163763 
AF085279 

Petit et al. 2001b

SFerH-2 Glycine max 
seedlings 

 1135 Corresponding region in the 28-kDa 
soybean ferritin subunit identified in this 
study was not susceptible to cleavage 

AB062754 Masuda et al. 
2001 

StF1 Solanum 
tuberosum leaves 

Ferritin mRNA accumulated in 
response to pathogen attack 

826 No presence 5'UTR.25 amino acids of 
the plastid transit peptide are missing 

AF133814 Mata et al. 2001

Apf1 Malus xiaojinensis --- 771  --- AF315505 Zhou et al. 2001
LlFer1, 
LlFer2, 
LlFer3 

Lupinus luteus LlFer2 class) was transcribed in 
response to ABA LIFer3 gene was 
repressed by ABA, but up-regulated 
by light. LlFer2 and LlFer3induced 
on symbiotic interaction 

1032 , 1118  
1039 

Amino acid sequence identity of mature 
polypeptides (86-90%) 

--- Strozycki et al. 
2003 

Ferritin 2 Conyza canadensis 
seedlings 

Upregulated by paraquat 765 Exhibit similarity and possess all the 
structural characteristics of known plant 
ferritin genes 

AJ786262 Soos et al. 2006 

NtFer1 
NtFer2 

Nicotiana tabacum 
seedlings 

Iron loading of tobacco plantlets 
increased the ferritin mRNA 
abundance in both. NtFer1 was 
expressed in both leaves and roots

1214 and 
1125 

Share the same characteristics as the 
other plant ferritins 

AY083924 
AY141105 

Jiang 2005 
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(Murgia et al. 2002). An increase of ferritin mRNA has also 
been observed in A. thaliana leaves photoinhibited with 
high light or fumigated with ozone (Murgia et al. 2001). 
Transcriptional control was achieved through transcriptio-
nal repression for the ZmFer1 and AtFer1 ferritin genes 
from maize and A. thaliana, respectively (Petit et al. 2001a). 
 
ROLE OF FERRITIN 
 
The role of ferritin is to concentrate iron in the cells to an 
effective level that matches the cellular need (Goto and Yo-
shihara 2001). Concentration of iron leads to an iron sto-
rage function. When iron concentrations are very high, fer-
ritin also has a protective function by sequestering the iron 
inside the protein (Rama Kumar and Prasad 2000; Fourcroy 
et al. 2004) thus performing a detoxification function. The 
possible role of ferritin acting against biotic stresses is also 
reported (Deak et al. 1999; Hegedus 2002; Dellagi et al. 
2005). Recent reports indicate the potential role of ferritin 
as a protector of the genome (Surguladze et al. 2005). 

Ferritin is, however, an abundant form of non-heme 
iron in many plant foods, such as legumes, that has been 
little considered as a nutritional iron source until recently 
(Davila-Hicks et al 2004). The iron in pure ferritin, the 
major form of iron in soybeans (Ambe et al. 1987), can be 
absorbed by iron-deficient rats to correct anemia (Beard et 
al. 1996). In humans with varied iron status, iron from fer-
ritin was well absorbed and did not differ significantly from 
that of iron from ferrous sulfate (a form of iron with high 
bioavailability) (Hallberg 1981) when given in meals with a 
low content of inhibitors. Ferrous sulfate, however, cannot 

be used for iron fortification in most foods because it causes 
rancidity (oxidation) and discoloration (Hurrell 2002), 
which make the product unedible. Thus, ferritin iron repre-
sents a form of iron that is highly bioavailable to humans 
and that is not likely to affect the food in which it is con-
sumed. Further studies are needed to evaluate the effects of 
inhibitors and enhancers of non-heme iron absorption on the 
absorption of iron from ferritin. Ferritin is very stable at a 
low pH and resists denaturation by heat (temperatures up to 
85°C), urea, and many proteolytic enzymes (Theil 2000; Liu 
and Theil 2003). Ferritin also appears resistant to in vitro 
digestion (Lönnerdal 2003; Davila-Hicks et al. 2004). The 
studies on bioavailability on ferritin indicate that it might 
have potential impact in alleviating global iron deficiency. 
 
OVER-EXPRESSION OF FERRITIN 
 
Knowledge of molecular genetics obtained from one orga-
nism can be readily utilized for the improvement of another. 
Moreover, a large variety of techniques are available which 
enhance the power and speed of genetic manipulation. The 
mechanisms underlying iron transport and deposition in the 
different tissues are of particular importance since the regu-
latory mechanisms of iron homeostasis can be manipulated 
to increase the iron content of plants (Ghandilyan et al. 
2006). Classical breeding and biotechnology could contri-
bute together to the required improvement (Foyer et al. 
2006). 

Constitutive expression of ferritin has been done in vari-
ous crops like wheat, rice and lettuce and maize (van 
Wuytswinkel et al. 1998; Deak et al. 1999; Goto et al. 1999; 

Table 3 Examples of transgenic plants over expressing ferritin. 
Origin of the gene 
(gene name) 

Promoter expression Target plant Expressed function Reference 

Soybean ferritin cDNA CaMV 35S Nicotiana tabacum Iron accumulation Goto et al. 1998 
SoF 35 CaMV 35S; P6 (chloroplast-

tic); C5 (cytoplasmic) 
Nicotiana tabacum Iron accumulation van Wuytswinkel et

al. 1998 
Soybean ferritin cDNA Seed-specific Glu B Oryza sativa Iron accumulation Goto et al. 1999 
Alfalfa ferritin cDNA Constitutive CaMV 35S Nicotiana tabacum Iron accumulation; tolerance to oxidative damage 

and biotic stress 
Deak et al. 1999 

Soybean ferritin cDNA Constitutive CaMV 35S Triticum estivum  
and Oryza sativa 

Increased iron levels in vegetative tissues but not in 
seeds 

Drakakaki et al. 
2000 

Soybean ferritin cDNA Constitutive CaMV 35S Lactuca sativa Iron accumulation and improved growth rate Goto et al. 2000 
Soyabean ferritin cDNA Plastid and cytoplasm 

expressors using CaMV 35S 
Nicotiana tabacum Soil dependent variability in iron accumulation Vansuyt et al. 2000

Phaseolus vulgaris ferritin, 
Phytase gene (Phy A) from 
Aspergillus and metallothio-
nein-like protein (rgMT) 

Seed specific Oryza sativa Iron accumulation Lucca et al. 2001

Soyabean ferritin cDNA CaMV 35S 
P6 (chloroplastic) 
C5 (cytoplasmic) 

Nicotiana tabacum No protection against photoinhibition and ozone 
stress 

Murgia et al. 2001

Alfalfa ferritin cDNA Constitutive CaMV 35S Nicotiana tabacum Abiotic stress tolerance Hegedûs et al. 
2002 

Soyabean ferritin cDNA Plastid and cytoplasm 
expressors using CaMV 35S 

Nicotiana tabacum Increased root ferric reductase and H+-ATPase 
activities and iron content, Phosphate regulated iron 
accumulation 

Vansuyt et al. 2003

Soybean ferritin cDNA Endosperm specific Oryza sativa Iron and zinc accumulation Vasconcelos et al. 
2003 

Soybean ferritin cDNA Constitutive CaMV 35S Nicotiana tabacum Iron and other metals accumulation Yoshihara et al. 
2003 

Soybean ferritin cDNA Overexpression in plastids or 
in cytoplasm CaMV 35S 

Nicotiana tabacum Heavy metal (Cd) accummulation Sappin-Didier et al.
2004 

Soybean ferritin cDNA 
Aspergillus phytase (Phy A) 

Endosperm-specific Zea mays Increased bioavaialable iron Drakakaki et al. 
2005 

Soybean ferritin cDNA Seed-specific globulin and 
glutelin promoter 

Oryza sativa Imbalance of ferritin expression and iron 
accumulation 

Qu et al. 2005 

Soybean ferritin cDNA Plastid expressor CaMV 35S Nicotiana tabacum Rhizosphere bacteria of transgenics less susceptible  
to iron stress than wild type inspite of increased  
iron content in overexpressors 

Robin et al. 2006a

Soybean ferritin cDNA Plastid expressor CaMV 35S Nicotiana tabacum Study of structure of bacterial and pseudomonads  
in soil and roots in ferritin overexpressors 

Robin et al. 2006b
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Drakkaki et al. 2000; Goto et al. 2000; Drakkaki et al. 
2005) where there was increase of iron content in the vege-
tative parts but not in the seed when expressed under con-
stitutive promoter. The endosperm-specific expression of a 
Glycine max (Goto et al. 1999) or Phaseolus vulgaris (Luc-
ca et al. 2001) ferritin gene in rice resulted in a three-fold 
increase or doubling, respectively, of the iron content in the 
seed (Table 1). 
 
METAL SEQUESTRATION BY FERRITIN – 
HEALTH IMPLICATIONS 
 
Knowledge of plant-metal interactions is important for so-
cioeconomic reasons and also for reducing the risks asso-
ciated with the introduction of trace metals into the food 
chain (Benavides et al. 2005). Transitional elements, like 
iron, copper react with reduced forms of oxygen and 
through Haber-Weiss and Fenton's reaction to generate free 
radicals and lead to oxidative stress. The transfer of one 
electron from the electron transport chain to oxygen (univa-
lent reaction) generates superoxide anion (O2

-.), which then 
dismutates, spontaneously or enzymatically, to hydrogen 
peroxide (H2O2). The latter can react with iron (II) ion 
(Fenton reaction) generating the highly reactive hydroxyl 
radical (OH-). This metal-dependent conversion to the high-
ly toxic -OH via the Haber-Weiss reaction is thought to be 
responsible for the majority of the biological damage asso-
ciated with these molecules. Heavy metals such as mercury, 
lead and cadmium have no known beneficial effect on orga-
nisms, and their accumulation over time can cause serious 
problems. These elements do not break down or change 
into other forms and therefore persist in the environment 
and can accumulate to toxic levels in people or plants. In 
order to cope with these toxic effects and to maintain the 
essential metals within the physiological range, plants have 
evolved complex mechanisms that serve to control the 
uptake, accumulation and detoxification of metals (Prasad 
2004). Besides enzymatic scavenging, control of the con-
centrations of metals (known for their prime role in oxygen 
activation and enzyme inactivation) by sequestering them 
could form an important complementary way in the preven-
tion of toxic effects. Ferritin is also capable of binding cat-
ions such as aluminum, beryllium, cadmium and zinc apart 
from iron in the mineral core (Sczekan and Joshi 1989; 
Rama Kumar and Prasad 1999b; Polanams et al. 2005). It is 
suggested that the phosphate anion in the iron core of 
ferritin is necessary to bind with such non-ferrous metals. 
Wade et al. (1993) showed that pea ferritin contains about 
one third phosphate atoms. 

Genetic engineering has already been used successfully 
to enhance plant metal tolerance and accumulation (Lupino 
and Prasad 2005). This was achieved either by overprodu-
cing metal-chelating molecules such as ferritin (Goto et al. 
1999), or by overexpression of metal transporter proteins 
(Hirschi et al. 2000). Didier et al. (2005) have reported in-
creased accumulation of cadmium in the ferritin overex-
pressors grown in the soil containing iron and other metals 
along with cadmium (Table 3). 

A comprehensive perspective of the chemistry and bio-
logy of ferritin would aid in creating new dimensions in en-
gineering plants with desired characters that have potential 
synergies in the field of human and plant nutrition. The im-
provement of iron uptake efficiency will also improve the 
performance of plants on soils with poor iron availability 
(e.g., alkaline soils) and thus contribute to increased yields. 
Breeding for mineral content may improve disease resis-
tance in plants; contribute to better developed root systems 
and boost seedling vigour, thus resulting in a beneficial si-
tuation for both farmers and consumers (Welch 2002). As 
promising information on bioavailability of iron from fer-
ritin is available, the next logical step is to capitalize on this 
information using the ferritin as a model system to develop 
strategies for iron fortification determining their potential 
role in improving food security and nutritional value. The 
increasing demand for nutraceuticals and fortified foods 

makes ferritin an ideal model to a beneficial effect on hu-
man health. 
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