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ABSTRACT 
The identification of mechanisms leading to the restriction of lineage potential and cell fate specification of multipotential progenitor cells 
falls within the purview of the developmental biologist. In specific, neural crest (NC) cell differentiation has long been a favored model 
process to examine how environmental cues cooperate with cell intrinsic factors to specify the birth of multiple cell lineages, including 
sympathetic and adrenal chromaffin (SA) cells. Over the years, a handful of genes (MASH-1, Phox2a/b, Hand2, GATA-2/3) have been 
identified that, when their expression patterns are perturbed, lead to a variable degree of disruption in SA cell development, function and 
tissue-specific gene expression profiles. These genes have historically been thought to act in a monotonous, linear fashion (e.g. gene 
product A regulates gene B, whose product in turn regulates gene C). Recent genetic studies in mice and other model organisms provide 
substantial evidence to indicate that these regulatory effectors may interact in a non-linear, self-sustaining feedback network. This review 
summarizes our current knowledge of the five principal players that partake in the transcriptional regulatory circuitry that is employed 
during SA cell development. 
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SYMPATHETIC AND ADRENAL CHROMAFFIN 
CELL DEVELOPMENT: LINEAGE SPECIFICATION 
 
During early embryogenesis, NC cells delaminate from the 
dorsal surface of the neural tube beginning at about the 6-
somite stage in mice (e8.0~8.5) or around HH stage 9 (e2.0) 
in chick embryos (Gammill et al. 2006). The NC cells 
migrate ventrally or dorsolaterally to arrive at diverse final 
destinations within the embryo where they differentiate into 
cell lineages that include sympathetic neurons, sensory 
neurons, melanocytes, parafollicular cells and adrenal chro-
maffin cells as well as much of the bone, cartilage and con-
nective tissue of the head and neck (le Douarin 1982). To 
date, we have only an incomplete mechanistic under-
standing of how multipotential NC cells are eventually 
induced toward a given lineage commitment decision and 
their choice of migration paths, but it is widely accepted 
that the combinatorial effects of extrinsic environmental 
cues encountered by migrating NC cells, together with their 
cell intrinsic programs, determine their final cell fate deci-
sions (for details, see Harris and Erickson 2007). 

In order to pattern SA cell lineages, trunk-derived NC 
cells migrate ventrally, passing through the anterior somitic 
mesoderm of the developing embryo to arrive in the vicinity 
of the dorsal aorta (DA) at around e10 in the mouse or at 

e2.5 in the chick (Fig. 1; Loring and Erickson 1987; Goridis 
and Rohrer 2002). Bone morphogenetic proteins (BMPs) 
secreted from the wall of the DA have been shown to be 
essential for the specification of SA cell lineages. Definitive 
evidence demonstrating that BMPs can augment sympa-
thetic neuronal differentiation comes from experiments 
showing that administration of exogenous BMP (-2, -4 or -
7), or forcible expression of a constitutively active BMP 
type I receptor, increases the number of tyrosine hydroxy-
lase (TH) -expressing cells within a NC cell population 
(Varley et al. 1995; Reissmann et al. 1996; Shah et al. 
1996; Varley et al. 1996, 1998; Schneider et al. 1999; Bilo-
deau et al. 2001). Furthermore, in ovo forced expression of 
BMP-4 in the vicinity of the developing sympathetic gang-
lia results in the generation of ectopic TH-positive cells 
(Reissmann et al. 1996). Several reports have documented 
that the mRNAs encoding BMP-4/7 and their receptors 
(BMPR-IA and BMPR-IB) accumulate in the DA wall and 
in NC cells that aggregated nearby, respectively (Reiss-
mann et al. 1996; Shah et al. 1996; McPherson et al. 2000). 
Finally, it has been shown that after physically implanting 
beads that release noggin, a potent and specific inhibitor of 
BMP-4/7, adjacent to the DA, the expression of noradrener-
gic and neuronal markers in NC cells that had coalesced 
nearby is abolished (Schneider et al. 1999). 
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However, genetic proof for BMP involvement in vivo in 
SA cell development is lacking since homozygous mutant 
embryos carrying ablative mutations in the genes encoding 
BMP-2 and BMP-4 die early during gestation, between e6.5 
and e10.5 (Winnier et al. 1995; Zhang and Bradley 1996). 
bmp7 homozygous mutants expire perinatally with evidence 
of skeletal, renal and eye defects but with no reported SA 
cell deficiency (Luo et al. 1995; Dudley et al. 1995). The 

BMPs bind to heterodimeric complexes that consist of type 
I (BMPR-IA, BMPR-IB and ALK2) and type II (BMPR-II, 
ActR-II and ActR-IIB) serine/threonine kinase receptors 
(reviewed in Kawabata et al. 1998). While conventional 
germ line mutagenesis of all six receptors has been per-
formed, only disruption of the BMPR-IA, ALK2 and 
BMPR-II genes results in embryonic lethality between e6.5 
and e9.5 (Mishina et al. 1995; Gu et al. 1999; Mishina et al. 
1999; Beppu et al. 2000). Thus, a definitive test for the role 
of BMPs and their receptors in SA cell commitment and 
differentiation in vivo must await the generation and ana-
lyses of conditional gene-targeted alleles. 

In response to BMP signals emanating from the DA 
wall, NC cells undergo differentiation to form the primary 
sympathetic ganglia and express transcription factors 
MASH-1 (Mammalian Achaete-Scute Homolog 1)/CASH-1 
(the chick homologue of MASH-1), Phox2a/b, Hand2 (heart 
and neural-crest derivatives-expressed 2) and GATA-2/3, 
which are known to impact SA cell differentiation in zebra-
fish, chick and mouse studies (Guillemot et al. 1993a, 
1993b; Pattyn et al. 1997, 1999; Howard et al. 2000; Lim et 
al. 2000; Tsarovina et al. 2004; Lucas et al. 2006; Mori-
guchi et al. 2006; Pattyn et al. 2006). Secondarily, these SA 
cell precursors then adopt neuronal and catecholaminergic 
characteristics, which are typified by the expression of neu-
rofilament, SCG10, neuron-specific tubulin, TH and dopa-
mine �-hydroxylase (DBH) (Fig. 2; Cochard et al. 1978; 
Cochard and Paulin 1984; Groves et al. 1995; Sommer et al. 
1995; Ernsberger et al. 1995; Schneider et al. 1999; 
Ernsberger et al. 2000; Flatmark 2000). These differentiated 
SA cell precursors then embark on a second migratory pas-
sage from the vicinity of the DA to their final destinations 
where they generate sympathetic ganglia, adrenal chro-
maffin cells or extra-sympathoadrenal lineage derivatives 
such as the transient embryonic organ of Zukerkandl (Fig. 
1; Anderson and Axel 1986; Anderson et al. 1991). While 
sympathetic neurons and adrenal chromaffin cells have his-
torically been postulated to share a common SA cell pre-
cursor (Anderson and Axel 1986; Anderson et al. 1991), the 
observation that there exist subtle differences in the effects 
attributed to gene-ablative mutations in the sympathetic 
neurons or the adrenomedullary chromaffin cells has lead 
many in the field to speculate that perhaps there are alter-
nate, distinct NC progenitor cells that are committed exclu-
sively to either one or the other lineage (Unsicker et al. 
2005; Huber 2006). 
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Fig. 1 Sympathetic and adrenal chromaffin cells arise from neural 
crest cells, which emerge from the dorsal surface of the neural tube. 
Once the trunk-derived neural crest cells have arrived in the vicinity of the 
dorsal aorta (DA), they begin to form the primary sympathetic ganglia in 
response to Bone Morphogenetic Protein (BMP) signals derived from the 
wall of the DA. These primary sympathetic progenitors subsequently em-
bark on a second migratory route to their final destination, i.e. the definite 
sympathetic ganglia, the adrenal gland and the extra-adrenal chromaffin 
tissue, where they finally become sympathetic neurons or chromaffin 
cells, respectively. 

Fig. 2 Anabolic pathway of Noradrenaline and 
Adrenaline. L-Tyrosine is converted to L-Dopa 
by the rate-limiting enzyme Tyrosine Hydroxylase 
(TH). L-Dopa is converted to Dopamine by the 
ubiquitous enzyme L-Aromatic Amino Acid De-
carboxylase (L-AADC). Dopamine is converted to 
Noradrenaline by Dopamine �-Hydroxylase 
(DBH). In adrenal chromaffin cells, Noradrenaline 
is N-methylated by tissue-restricted enzyme 
Phenylethanolamine N-Methyltransferase 
(PNMT) (for review, see Flatmark 2000). 
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SYMPATHETIC AND ADRENAL CHROMAFFIN 
CELL DEVELOPMENT: A PARADIGMATIC 
TRANSCRIPTION FACTOR REGULATORY 
NETWORK? 
 
Much of our understanding of the role of transcription fac-
tors in SA cell specification and function derives from loss- 
and gain-of-function experiments in cell-based or organis-
mal systems whereby the expression levels of individual 
genes has been altered. The interpretation of the observed 
SA cell developmental deficiencies following these experi-
mental manipulations relies principally on the expression 
analysis of putative downstream target genes using in situ 
hybridization or immunocytochemical localization tech-
niques. There are a number of potential limitations in such 
studies, as the precise expression levels of target genes in 
the regulation of developmental events cannot be easily 
evaluated using either of these qualitative assays. Another 
theoretical shortcoming in the application of these tech-
niques or their interpretation is that reduction of a putative 
downstream gene expression in a given mouse/chick/zebra-
fish mutant does not always indicate that it is directly 
regulated by the upstream regulator, as the gene ablation 
might autonomously or non-autonomously affect the survi-
val and/or organization of cell populations expressing the 
gene under study (Boyle and de Caestecker 2006). To cir-
cumvent some of these issues, we enriched adrenal chro-
maffin cells by flow cytometry to quantitatively examine 
gene expression levels in pure SA cell populations (Mori-
guchi et al. 2006). 

In avian primary sympathetic ganglia, the basic helix-
loop-helix (bHLH) transcription factor CASH-1 (the chick 
homologue of MASH-1) is expressed immediately prior to 
the paired/homeodomain transcription factor Phox2b (at the 
29/32-somite stage), which is then followed by expression 
of the bHLH transcription factor Hand2 and Phox2a (at the 
31/32-somite stage) and the zinc finger protein GATA-2 
(the functional counterpart of mouse GATA-3 in the deve-
loping chick SA system at the 33/34-somite stage). Finally 
at the end of this temporal gene expression cascade, TH and 
DBH, both of which are required for noradrenalin anabolic 
production, can be detected in 35-somite chick embryos 
(Ernsberger et al. 1995, 2000; Howard et al. 2000; Tsaro-
vina et al. 2004). Through the analyses of gene loss- and 
gain-of-function studies in model organisms, our current 
understanding is that SA cell differentiation is governed by 
this handful of key transcription factors that are (directly or 
indirectly) activated by BMPs. Loss-of-function mutations 
in any of these five transcription factors in the mouse leads 
to lethality of homozygous mutant animals, which suffer 
variable deficits in SA and non-SA tissue development 
(Guillemot et al. 1993a; Pattyn et al. 1999; Lim et al. 2000; 
Tsarovina et al. 2004; Moriguchi et al. 2006). For simplicity, 
we will restrict this discussion to deficiencies in SA cell 
lineages. 

MASH-1 is induced by the administration of BMPs to 
primary NC cells in culture (Lo et al. 1998). In murine em-
bryos, the SA progenitor cells begin to express MASH-1 
when they first aggregate near the DA to form the primary 
sympathetic chain (Huber et al. 2002; Morikawa et al. 
2005). MASH-1 expression in the sympathetic ganglia re-
mains high until e13, followed by rapid down-regulation 
from e14.5 (Morikawa et al. 2005). In adrenal chromaffin 
cells, MASH-1 expression seems to be down-regulated two 
days later at e16.5 (Huber et al. 2002). The biological sig-
nificance and mechanisms governing MASH-1 down regu-
lation in these cells is unknown, although our recent data 
are consistent with the possibility that GATA-3 may play a 
role in the silencing of MASH-1 (Moriguchi et al. 2006). 

Initial studies indicated that MASH-1 was essential in 
vivo for the development of the autonomic nervous system 
lineages, including SA cells. MASH-1-deficient NC cells 
arrived normally at the DA of e10.5 embryos to form the 
primary sympathetic ganglia and could express some (e.g. 
neurofilament 68 and 160, neuron-specific tubulin, Phox2b 

and c-Ret), but not other (e.g. Phox2a, TH and DBH) SA 
cell markers before ensuing atrophy (Guillemot et al. 
1993a; Sommer et al. 1995; Hirsch et al. 1998; Huber et al. 
2002). However, a more recent study indicated that in 
MASH-1 homozygous mutant embryos, a complete SA cell 
differentiation program lagged behind that of wild-type ani-
mals by 1-2 days (Pattyn et al. 2006). From these observa-
tions, one can only conclude that MASH-1 is not essential 
for migrating NC cells to acquire a SA cell fate, and that 
perhaps together with other partner regulatory molecules, it 
co-operatively promotes the differentiation and survival of 
SA cell precursors. 

SA cells also express Phox2a, a homeodomain trans-
cription factor closely related to Phox2b (Valarche et al. 
1993; Morin et al. 1997; Pattyn et al. 1997). Gain-of-func-
tion experiments have indicated that Phox2a is sufficient to 
promote autonomic neurogenesis by supporting the expres-
sion of MASH-1, Phox2b, TH and DBH in chick and zebra-
fish embryos, although Phox2a expression largely depends 
on both Phox2b and MASH-1 (Guo et al. 1999; Stanke et al. 
1999). Nevertheless, loss of Phox2a function did not signi-
ficantly impair SA cell development (Morin et al. 1997). 

The homeodomain transcription factor Phox2b is ex-
pressed in all noradrenergic neurons of the central and the 
peripheral nervous systems (Pattyn et al. 1997, 1999, 2000; 
Dauger et al. 2003). In the sympathetic primordium, 
Phox2b expression is followed by Phox2a and is induced by 
BMPs independently of MASH-1 (Hirsch et al. 1998; 
Huber et al. 2002). Interestingly, recent reciprocal gene re-
placement experiments between the Phox2 genes have 
clearly revealed that the Phox2a and Phox2b proteins act in 
a functionally distinct, non-reciprocal manner. During the 
development of SA cells, Phox2a, which acts downstream 
of Phox2b, could not fully complement Phox2b function 
even if it was expressed from within the endogenous 
Phox2b locus (Coppola et al. 2005), definitively demons-
trating that, regardless of possible differences in their trans-
criptional regulation, the Phox2a and -2b proteins are func-
tionally distinct. 

Although it has been shown that gain-of-Phox2a or -2b 
function confers the capacity to induce sympathetic neuron-
like traits in chick embryos, only Phox2b is required for 
sympathetic development in the mouse. Phox2b-deficient 
mice die at midgestational stages, but they can be rescued to 
birth by the administration of noradrenaline intermediates in 
the drinking water of heterozygous intercrossed Phox2b 
dams (Pattyn et al. 2000). In the absence of Phox2b, murine 
NC cells that assemble at the DA at e10.5 and colonize the 
adrenal gland at e13.5 lack noradrenergic markers (such as 
TH and DBH; Pattyn et al. 1999; Huber et al. 2005). 
Homozygous Phox2b mutants preserve initial MASH-1 ex-
pression at e10.5, but the expression is prematurely down-
regulated at e11.5 in sympathetic ganglion cells, indicating 
that Phox2b is required for the maintenance of MASH-1 
expression. The expression of neuron-specific tubulin, neu-
rofilament 68, c-Ret and Hand2 are significantly suppressed 
in the absence of Phox2b (Pattyn et al. 1999; Howard et al. 
2000; Pattyn et al. 2000; Huber et al. 2005). These data are 
consistent with the interpretation that Phox2b plays a proxi-
mal and vital role in SA cell differentiation. 

The Dbh promoter has been shown to be directly regu-
lated by Phox2. Both Phox2a and Phox2b bind to regula-
tory elements in, and stimulate transcription from, the Dbh 
promoter in conjunction with cyclic-AMP pathway active-
tion (Yang et al. 1998; Kim et al. 1998; Swanson et al. 
2000; Adachi et al. 2002). Phox2a can also trans-activate 
the Th promoter (at -175 to -158 bp) via direct DNA bin-
ding (Zellmer et al. 1995). 

 The bHLH transcription factor Hand2 (aka dHand) is 
expressed in the sympathetic ganglion primordium, and 
promotes noradrenergic differentiation of NC cells in vitro 
and in ovo. Hand2 cooperates with Phox2a in activating 
transcription of Dbh promoter constructs in cell-based co-
transfection assays (McFadden et al. 2002; Firulli et al, 
2003; Rychlik et al. 2003; Xu et al. 2003). Hand2 transcrip-
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tion, which can be induced by BMPs, is initiated after 
CASH-1 and Phox2b, but before Phox2a, GATA-2, TH and 
DBH in chick embryos (Howard et al. 2000; Tsarovina et al. 
2004). In several independent studies, Hand2 expression in 
sympathetic ganglia has consistently been shown to depend 
on Phox2b activation, but is independent of MASH-1 
(Howard et al. 2000; Huber et al. 2002, 2005; Morikawa et 
al. 2005), suggesting an epistatic regulatory relationship 
between Phox2b and Hand2 for SA cell differentiation. 
Thus, it was probably surprising and unexpected that forced 
expression of Hand2 would lead to reciprocal induction of 
Phox2b expression, as well as to the expression of noradre-
nergic and pan-neuronal markers, in NC and P19 embryonal 
carcinoma cells (Howard et al. 2000; Morikawa et al. 2005). 

Constitutive Hand2 germ line mutation leads to early 
embryonic lethality (Srivastava et al. 1997). A recent analy-
sis of Hand2 conditional deletion mutation specifically in 
neural crest descendents, achieved by the use of a Wnt1/ 
Cre-expressing transgene, indicated that, except for TH and 
DBH, Hand2 is dispensable for the expression of the usual 
protein repertoire characteristic of SA cells (Morikawa et al. 
2007). Similar gene expression effects were also detected in 
the zebrafish Hand2 deletion mutant, hands off, in which 
sympathetic precursor cells aggregated to form sympathetic 
ganglia expressing Phox2a/b and Zash1 (the zebrafish coun-
terpart of Mash1), while GATA-2, TH and DBH levels were 
strongly reduced (Lucas et al. 2006). Given the plethora of 
in vitro and in vivo data that implicate Hand2 as a key 
player in SA cell differentiation, these recent observations 
are indeed surprising and perhaps hint at broader than anti-
cipated genetic redundancy amongst bHLH proneural genes 
in sympathetic neuronal development (Howard et al. 2000; 
Morikawa et al. 2005, 2007). 

The zinc finger transcription factors GATA-2 and 
GATA-3 are both expressed in SA cell lineage of mouse 
embryos, while only GATA-2 is expressed in the chick 
(George et al. 1994; Groves et al. 1995; Lim et al. 2000; 
Tsarovina et al. 2004). GATA-2 expression in chick em-
bryos may also be modulated by BMPs since it was 
strongly suppressed by the BMP antagonist, noggin (Tsaro-
vina et al. 2004). Gain-of-function studies in chick embryos 
revealed that, unlike Phox2a/b and Hand2, forced expres-
sion of GATA-2 induced ectopic neurons lacking noradre-
nergic traits in chick peripheral nerve precursors (Gordis 
and Rohrer 2002; Tsarovina et al. 2004). However, trans-
genic GATA-3 complementation of Gata3-deficient SA 
cells significantly restored a population of highly TH-posi-
tive sympathetic neurons, suggesting that the effect on nor-
adrenergic cell induction by GATA-2/3 depends on the cel-
lular context (Moriguchi et al. 2006). Interestingly, GATA-3 
deficiency results in loss of GATA-2 expression in e10.5 
primary sympathetic ganglion cells (Tsarovina et al. 2004) 
and in chromaffin cells (Moriguchi, unpublished data), sug-
gesting that GATA-2 expression in SA tissues depends on 
GATA-3. 

Gata3 constitutively mutant mice expire of noradrener-
gic deficiency by e10.5, and can be rescued either pharma-
cologically or by complementation with a SA cell lineage-
specific GATA-3 transgene (Lim et al. 2000; Moriguchi et 
al. 2006). Inactivation of Gata3 in mice leads to a signifi-
cant loss of TH and DBH expression, as well as to a general 
deficiency in SA cell development, both in sympathetic 
neurons and adrenal chromaffin cells (Lim et al. 2000; Tsa-
rovina et al. 2004; Moriguchi et al. 2006). Although the pri-
mary sympathetic ganglia form normally in e10.5 Gata3 
mutant embryos, at later embryonic stages, enhanced apop-
tosis is evident such that by e18.5, Gata3 null mutants de-
velop abnormally small thoracic paravertebral sympathetic 
ganglia (35% smaller in size compared to wild-type litter-
mates) with reduced number of neurons (Tsarovina et al. 
2004; Moriguchi et al. 2006). Similarly, adrenomedullary 
chromaffin cells in e18.5 mice lacking GATA-3 also 
amounted to only 30% of controls, and these cells lack TH 
and DBH expression (Moriguchi et al. 2006). Furthermore, 
Phox2b (which hitherto had been thought to act upstream of 

GATA-3) and Hand2 expression were both found to be sig-
nificantly reduced, implicating GATA-3 as a positive regu-
lator for the maintenance of Phox2b and Hand2 transcrip-
tion at least in the remaining GATA-3-deficient chromaffin 
cells (Moriguchi et al. 2006). Curiously, MASH-1 was not 
appropriately down-regulated during differentiation of the 
remaining GATA-3-deficient chromaffin cells in e18.5 
Gata3 mutants. Thus, it appears that GATA-3 may be a ne-
gative regulator of MASH-1 expression during late embryo-
genesis (Moriguchi et al. 2006). Insofar as terminally dif-
ferentiated target gene regulation is concerned, GATA-3 has 
been reported to activate the Th promoter, but remarkably 
without any requirement for its DNA binding activity as it 
apparently acts by tethering to the CREB protein bound to a 
CRE site in the Th promoter (Hong et al. 2006). 
 
SYMPATHETIC AND ADRENAL CHROMAFFIN 
CELL DEVELOPMENT: ENIGMATIC CROSS-
REGULATORY GENE INTERACTIONS 
 
Taken together, although some of the transcription factors 
discussed here seem to function sequentially in what could 
be considered to be a classical linear developmental hier-
archy, the data are actually more consistent with the pos-
sibility that SA cell differentiation is controlled by mutually 
reinforcing feedback transcriptional interactions between 
GATA-3, MASH-1, Hand2, Phox2a and Phox2b (Fig. 3). 
Unfortunately, the current literature sheds little additional 
light on whether any of these transcription factors are mutu-
ally (directly or indirectly) regulated by one another. The 
Phox2a and Phox2b promoters have been characterized, but 
without specific reference to any SA cell lineage-restricted 
activity (Flora et al. 2001; Hong et al. 2001; Samad et al. 
2004). Thus, the data published to date characterizing 
Phox2a and Phox2b expression provide an inadequate foun-
dation on which to base further regulatory analysis. Our 
Gata3 cis-regulation studies have revealed that even a 662 
kbp Gata3 YAC, containing approximately 451 kbp and 
211 kbp of 5� and 3� flanking sequence information, respec-
tively, is missing the regulatory element(s) that confers ex-
pression in SA system organs (Lakshmanan et al. 1999; 
Hasegawa et al. 2007). Hence, (at least to date) any formal 
proof supporting a hierarchy proposed based upon gene ex-

Phox2bMASH-1

Phox2a

TH, DBH

GATA-2/3Hand2

Fig. 3 Crosstalk in regulatory gene networks in SA cell development. 
MASH-1-deficient SA cells fail to express Phox2a and Hand2 at e10.5, 
although their expression is only temporally delayed (stippled arrows; see 
text). Phox2a and Hand2 expression largely depend on Phox2b. Dbh is 
directly regulated by Phox2a and 2b. Phox2a trans-activates the Th 
promotor via direct binding. Phox2b is required for the maintenance of 
MASH-1 expression from e10.5 onwards. Hand2 and GATA-3 expression 
are suppressed in the absence of Phox2b, whereas Phox2b and Hand2 are 
suppressed in GATA-3-deficient chromaffin cells at e18.5. MASH-1 
expression is de-repressed in GATA-3-deficient chromaffin cells. Hand2 is 
dispensable for other SA-specific transcription factor expression, although 
it is essential for TH and DBH expression. Hand2 cooperates with Phox2a 
in activating the Dbh promoter. Thick arrows indicate direct regulation, 
whereas thin arrows indicate direct or indirect regulation. 
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pression analyses in Mash1, Phox2, dHand or Gata3-abla-
tive mutant animals remains absent (Fig. 3). Until the regu-
latory elements governing the SA tissue specificity of each 
of these transcription factors are identified, how and which 
transcription factors directly regulate which of the multiple 
regulatory genes discussed here is a major question that re-
mains outstanding. 
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