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ABSTRACT 
Mutacins are proteinaceous antibacterial substances produced by Streptococcus mutans, an indigenous bacterial inhabitant of the oral 
cavity. The metabolism of S. mutans is similar to that of lactic acid bacteria (LAB) used in fermented food. Actually, only a few well-
studied mutacins have been described. Mutacins B-Ny266, B-JH1140, I, III, and K8 are linear lantibiotics. Mutacins II and H-29B are 
globular lantibiotics. Mutacins GS-5/Smb and BHT-A�� are dipeptide lantibiotics. Mutacins N and BHT-B are non-lantibiotic peptides 
while mutacin IV is a non-lantibiotic dipeptide. Some of these mutacins are active against most Gram-positive foodborne pathogens. 
Nisin is actually the only lantibiotic bacteriocin used as a food additive and pediocin-like bacteriocins are considered to be next in line if 
more antibacterial proteins are to be approved in the future. However, nisin- and pediocin-resistant mutants appear relatively easily while 
resistant mutants against mutacins B-JH1140 and B-Ny266 could not be obtained. Mutacins thus have potential for controlling foodborne 
pathogens and spoilage bacteria. New methods for producing and purifying these small peptides will contribute towards developing food 
grade antimicrobials for use in food products. More research is needed on the applications of bacteriocins in food systems. 
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INTRODUCTION 
 
The increasing concerns of consumers about the possible 
adverse health effects from the presence of chemical ad-
ditives in food associated with the increasing demand for 
minimally processed food and the need for the industry to 
preserve the shelf life and safety of food products have 
stimulated research interest in finding new natural effective 
food preservatives. 

The history of food preservation is associated with the 

presence of lactic acid bacteria (LAB) in foodstuff. Today 
LABs are recognised as producers of a plethora of meta-
bolites involved in preservation properties of a large variety 
of fermented food products. Among these metabolites are 
bacteriocins (Chen and Hoover 2003; Gálvez et al. 2007). 

Bacteriocins are ribosomally synthesised proteinaceous 
antibacterial substances produced by bacteria (Jack et al. 
1995; Cotter et al. 2005a) with activity directed either 
against related species (narrow spectrum) or across genera 
(broad spectrum). They can thus provide a defence mecha-
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nism for the producing strain as they kill other competitive 
bacteria. Discrepancies persist between theories as to whe-
ther bacteriocins serve as defence mechanisms or attack 
weapons (Dykes and Hasting 1997; Riley and Wertz 2002; 
Gordon et al. 2006). Nevertheless, bacteriocins are able to 
kill sensitive bacteria. Work on bacteriocins has also been 
driven by the need to face the fast and continuous increase 
and widespread bacterial resistance to conventional antibio-
tics (Berger-Bächi 2002; Sharma et al. 2005). This public 
health problem impels the development and rapid use of 
new types of antibacterial substances. Bacteriocins and lan-
tibiotics represent candidates with great potential against 
pathogen infections (Pag and Sahl 2002; Joerger 2003; 
Chatterjee et al. 2005; Cotter et al. 2005b; Gillor et al. 
2005). Similarly in the food industry, the need for more 
natural food biopreservatives has greatly stimulated re-
search on LAB bacteriocins (Ross et al. 1999; O’Sullivan et 
al. 2002; Chen and Hoover 2003; Cotter et al. 2005a; Dee-
gan et al. 2006; Gálvez et al. 2007). Particular cautions 
need to be taken before using new LAB strains in food, and 
genomics can help by providing new insights into LAB ac-
tivities and their safety (Konings et al. 2000). 

The bacteriocins produced by Streptococcus mutans, an 
indigenous oral bacterium, were first studied by Kelstrup 
and Gibbons (1969) and termed mutacins by Hamada and 
Ooshima (1975a). Although there are many reports showing 
that S. mutans produces inhibitory substances, only a few 
such inhibitors have been isolated and characterised as 
mutacins. The diversity of bacteriocin production by S. 
mutans has been recently highlighted, as they produce 40% 
of the listed streptococcal antimicrobial peptides (Nes et al. 
2006). Historically, interest in mutacins was based on their 
usefulness as possible anti-caries agents and the role they 
play in the colonization of the oral cavity (Hamada and Oo-
shima 1975a, 1975b; Weerkamp et al. 1977). They were 
also used as an epidemiological fingerprinting tool and in 
determining the distribution of mutacin-producing S. mutans 
strains (Rogers 1976a; Groonroos et al. 1998). 

Despite the fact that S. mutans is physiologically a LAB 
(Adjic et al. 2002) and is part of the normal human micro-
biota (Hamada and Slade 1980; Caufield et al. 2007), it is 
also considered a pathogen (Mitchell 2003; Banas 2004). In 
fact, S. mutans should be considered as a pathogen whose 
virulence is only linked to diet and environment (van Palen-
stein Helderman et al. 1996). Moreover, S. mutans does not 
seem to be as detrimental or as dangerous as some entero-
cocci found in food products (Franz et al. 2003). 

In their diversity, bacteriocins produced by S. mutans 
present potential for use as food biopreservatives. Even 
though S. mutans is considered as a pathogen by the majo-
rity of the research community, potentially safe biotechnical 
application of mutacins may be envisioned with heterolo-
gous production by generally recognised as safe hosts or by 
the addition of cell-free partially purified preparations in 
foodstuffs. 

STREPTOCOCCUS MUTANS 
 
S. mutans was first described by J. K. Clarke in 1924 after 
he isolated it from a carious lesion. Later, serological, pro-
tein profiles, cell wall structures and gross DNA composi-
tion studies confirmed that there was considerable variation 
amongst the large number of isolates identified as S. mutans. 
Based on these studies, S. mutans isolates were sub-divided 
into a number of distinct species some of which were of 
animal and some of human origin (Coykendall 1989). Thus 
the “mutans streptococci” were born and the name S. 
mutans was retained to describe the more common of the 
two main human strains, the other being Streptococcus sob-
rinus. The retention of the name S. mutans has lead to some 
confusion but was necessary to comply with the rules gov-
erning scientific nomenclature. S. mutans inhabit the oral 
cavity of virtually everybody (Hamada and Slade 1980). S. 
mutans is considered the main microbial aetiological agent 
of dental caries. However, the high genotypic and pheno-
typic variation existing within the species influences its 
cariogenic potential (Balakrishnan et al. 2002; Napimoga et 
al. 2004; Saxena et al. 2005; Guo et al. 2006; Waterhouse 
and Rusell 2006; Waterhouse et al. 2007). Sucrose is con-
verted by glucosyltransferase enzymes to produce a sticky, 
extracellular, dextran-based polysaccharide that allows S. 
mutans to adhere to each other and to the teeth, forming 
dental plaque. Other primary virulence mechanisms include 
glucan binding proteins and its combined acidogenicity and 
acid resistance (Mitchell 2003; Ferretti and McShan 2006). 
 
CLASSIFICATION OF MUTACINS 
 
Many classifications, essentially based on their molecular 
structure and mechanism of action, have been proposed for 
bacteriocins (Klaenhammer 1993; Nes et al. 1996). With 
the advancement in bacteriocin studies, a recent classifica-
tion was proposed by Cotter et al. (2005a), which groups 
bacteriocins into two main classes. Heng and Tagg (2006) 
proposed a modification to group bacteriocins into four dis-
tinct classes in accordance with Cotter et al. (2006) that we 
will adopt here (Table 1). 

Mutacins were grouped in the past mainly by physical, 
biochemical, genetic, and phenotypic characteristics such as 
the inhibitory spectra, resistance to solvents, heat, proteoly-
tic enzymes, and molecular mass (Kelstrup and Gibbons 
1969; Bondi et al. 1991; Caufield et al. 1985; Tagg and 
Banister 1979; Morency et al. 1995, 2001; Bekal-Si Ali et 
al. 2002; Waterhouse and Russell 2006). These classifica-
tions were preliminary and only the purification and se-
quencing of the peptides will reveal the real nature of these 
mutacins. 

Chikindas et al. (1997) have reviewed some of the mu-
tacins that were well characterised before 1997. Since then, 
more biochemical and genetic information has been ac-
quired on mutacins and four types have been described: lan-

Table 1 Classification of bacteriocins produced by Gram-positive bacteria (adapted from Cotter et al. 2005a, 2006; Heng and Tagg 2006)
 Class I-lantibiotics Class II Class III Class IV 

Definition Post-translationally 
modified peptides containing lanthionines 
and/or unsaturated amino acids 

Non-lanthionine containing, heat-
stable peptides 

Large heat-labile proteins. 
Mostly the “colicin-like” 
bacteriocins 

Cyclic peptides whose 
N and C termini are 
covalently linked 

Specific 
Molecular 
Weight 

< 5 kDa < 10 kDa > 10 kDa No specification 

Subgroups Type Ia: Elongated peptides with a net 
positive charge 

Subtype AI: Nisin-like 
Subtype AII: SA-FF22-like 

Type Ib: Globular peptides with a net 
negative charge or no charge 
Type Ic: Multi-component bacteriocins 

Type IIa: Pediocin-like bacteriocins 
that show antilisterial activity with a 
N-terminal sequence: YGNGVXC 
Type IIb: Miscellaneous bacteriocins
Type IIc: Multi-component 
bacteriocins 

Type IIIa: Bacteriolytic 
Type IIIb: Non-lytic 
Not much is known about 
this group 

None 

Examples Nisin, lacticin 481, mersacidin, lacticin 
3147, mutacins B-Ny266, B-JH1140, H-
29B, J-T8 (II), I, III, Smb and BHT-A 

Pediocin PA1, thermophilin 13, 
aureocin A53, mutacins F-59.1, IV, V, 
N and BHT-B 

Lysostaphin, helveticin J Enterocin AS-48 
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tibiotic monopeptides (bacteriocin class I type A or type B), 
lantibiotic dipeptides (bacteriocin Class I type C), non-lanti-
biotic monopeptides (bacteriocin Class IIc), and non-lanti-
biotic dipeptides (bacteriocin Class IIb). The major charac-
teristics of the new mutacins are summarised in Table 2. 
 
ACTIVITY SPECTRA OF MUTACINS 
 
Following the characterisation of many mutacins, their bio-
technological potential was evaluated by determining their 
spectrum of activity (Table 2). Mota-Meira et al. (2000) 
and Morency et al. (2001) have demonstrated that numer-
ous mutacinogenic strains, as for other lantibiotic-producing 
strains, inhibited the growth of many foodborne pathogenic 
bacteria such as Listeria monocytogenes, Bacillus cereus, 
Clostridium perfringens, Staphylococcus aureus and Cam-
pylobacter jejuni and numerous food spoilage bacilli and 
clostridia as well as LABs. Mutacins can also inhibit many 
streptococci and enterococci, including a considerable num-
ber of clinical multiresistant strains (Mota-Meira et al. 2000, 

2005). The mutacins tested were also active against some 
Gram-negative pathogens such as Neisseria gonorrhoeae, 
Helicobacter pylori and to a lesser extent against a hyper-
permeable Escherichia coli strain (Mota-Meira et al. 2000, 
2005). Mutacin B-Ny266 is active against many nisin A-
resistant strains (L. monocytogenes Scott A, Pediococcus 
acidilactici), oxacillin-resistant strains (N. gonorrhoeae, 
Enterococcus faecalis, S. aureus, and S. epidermidis) and 
vancomycin-resistant strains (N. gonorrhoeae, E. faecalis) 
(Mota-Meira et al. 2000). Mutacin Smb was active against 
11 species of streptococci, as well as E. faecalis and S. 
aureus (Petersen et al. 2006). The lantibiotic mutacins I, II 
and III are active against most Gram-positive bacteria tested 
whereas the non lantibiotic mutacins IV and mutacin N 
have a narrower activity spectrum limited to the S. sangui-
nis and S. mitis species, which are the main competitors of S. 
mutans in the oral microbial community (Qi et al. 2000b, 
2001; Kreth et al. 2005), while mutacin V seems mainly to 
target non-streptococcal species (Hale et al. 2005a). 

Minimum inhibitory concentrations (MICs) have been 

Table 2 Activity of known mutacins against spoilage and foodborne pathogenic bacteria. 
Mutacin Producing strain Bacteriocin Class Similarity with other well 

described bacteriocins 
Activity spectra References 

I S. mutans CH43, 
UA140 

Class Ia-lantibiotic Epidermin Similar to mutacin B-Ny266 Schnell et al. 1988; Mota-
Meira et al. 2000; Qi et al. 
2000a, 2000b, 2001 

II or J-T8 S. mutans T8, UA96, 
17A2 

Class Ia-lantibiotic Lacticin 481 group 
(variacin, macedocin 
among others, see Dufour 
et al. 2006) 

Clostridium spp. (sporogenesa, 
tyrobutyricum, perfringens), 
Bacillus spp. (subtilis, cereus), 
Listeria monocytogenes, 
Staphylococcus aureus, various 
spoilage LAB 

Parrot et al. 1989; Novak et al. 
1993; Pridmore et al. 1996; 
Krull et al. 2000; Balakrishnan 
et al. 2002; Dufour et al. 2006; 
van den Berghe et al. 2006 

III S. mutans UA787 Class Ia-lantibiotic Epidermin Similar to mutacin B-Ny266 Schnell et al. 1988; Qi et al. 
1999; Mota-Meira et al. 2000; 
Qi et al. 2000b 

IVb 
NlmA 
NlmB 

S. mutans UA140, 
UA159, GS-5, K34-1 

Class IIb or class 
IIc 

Thermophilin 13 Similar to thermophilin 13 
(Enterococcus, Lactobacillus, 
Lactococcus, Leuconostoc, 
Streptococcus, Listeria, Bacillus 
spp., and Clostridium spp.) 

Marciset et al. 1997; Qi et al. 
2001; Hale et al. 2005b; 
Yonezawa and Kuramitsu 
2005 

V 
NlmC 

S. mutans UA159 Supposed Class IIb Not known Non-streptococcal species, 
Lactococcus lactis 

Hale et al. 2005a, 2005b; van 
der Ploeg 2005 

1140 S. mutans JH1140 Class Ia-lantibiotic Epidermin Similar to mutacin B-Ny266 Schnell et al. 1988; Hillman et 
al. 1998; Mota-Meira et al. 
2000 

B-Ny266 S. mutans Ny266 Class Ia-lantibiotic Epidermin L. monocytogenes, 
Campylobacter jejuni, B. cereus, 
B. subtilis, C. perfringens, C. 
sporogenesa, C. tyrobutyricum, S. 
aureus, various spoilage LAB 

Schnell et al. 1988; Mota-
Meira et al. 1997, 2000 

N S. mutans N Class IIb Partial similarity with 
mutacin I 

Close to that of mutacin I by 
deferred antagonism tests. 
Streptococcus pyogenes, oral 
streptococci 

Balakrishnan et al. 2000; Hale 
et al. 2004 

Smbc 
SmbA 
SmbB 

BHT-Ac 
BHT-A� 
BHT-A� 

S. mutans GS-5, 
BM71, K34-1 

Class Ic-lantibiotic Lacticin 3147, Plantaricin 
W 

Similar to lacticin 3147 and 
plantaricin W (L. monocytogenes, 
S. aureus), various spoilage LAB 

Morgan et al. 1999, 2000; 
Holo et al. 2001; Hyink et al. 
2005; Yonezawa and 
Kuramitsu 2005; Petersen et 
al. 2006 

BHT-B S. mutans K34-1, GS-
5, S. rattus 67-3, FA1, 
GF71, IB, LG-1 

Class IIb Aureocin A53 Similar to aureocin A53 (E. 
faecium, S. aureus) 

Netz et al. 2002a, 2002b; 
Hyink et al. 2005 

H-29B S. mutans 29B Class Ia-lantibiotic Lacticin 481 group Similar to mutacin II Dufour et al. 2006; Nicolas et 
al. 2006 

K8 c 
MukA1 
MukA2 
MukA3 

S. mutans K8 Class Ia-lantibiotic Lacticin 481 group Similar to macedocin and variacin 
(L. monocytogenes, S. aureus, B. 
cereus, B. subtilis, C. botulinum, 
C. tyrobutyricum) 

Pridmore et al. 1996; Dufour 
et al. 2006; van den Berghe et 
al. 2006; Robson et al. 2007 

a C. sporogenes belongs to group I (proteolytic) Clostridium spp. with the proteolytic strains of the neurotoxin-producing pathogen Clostridium botulinum 
b The first characterisation of mutacin IV included two peptides designated NlmA and NlmB (class IIc bacteriocin) (Qi et al. 2001). However, Hale et al. (2005b) showed that 
disruption of the nlmB gene has no impact on the activity of mutacin IV, placing mutacin IV in class IIb  

c Multi-component mutacin 
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determined for some mutacins. Mota-Meira et al. (2000) 
compared MICs of mutacin B-Ny266 to the lantibiotic nisin 
A, and the antibiotics vancomycin and oxacillin. The lan-
tibiotics were found to be as active as these antibiotics 
against most of the strains tested (actinobacilli, bacilli, clos-
tridia, corynebacteria, enterococci, listeria, mycobacteria, 
neisseria, staphylococci, streptococci, H. pylori, and C. 
jejuni). Mutacin B-Ny266 was even active against strains 
resistant to nisin A, oxacillin and vancomycin. Its wide 
spectrum of activity in the nanomolar range makes mutacin 
B-Ny266 an excellent candidate for antibiotherapy or to be 
used as biopreservative in the food industry. Mutacins I and 
III were shown to be more efficient than nisin against me-
thicillin-resistant S. aureus (MRSA), vancomycin-resistant 
Enterococcus faecium (VRE) and S. epidermidis, showing 
MICs lower than 10 �g/mL (Qi et al. 1999, 2000b). Muta-
cins I, II, III and IV are very active against group A strep-
tococci and penicillin-resistant Streptococcus pneumoniae 
with MICs lower than 1 �g/mL (Qi et al. 2000b). 
 
MODE OF ACTION OF MUTACINS 
 
Although four types of mutacin have been described 
(monopeptide lantibiotic, dipeptide lantibiotic, monopeptide 
non-lantibiotic, and dipeptide non-lantibiotic), only the 
mode of action of the monopeptide lantibiotic mutacin II 
has been experimentally studied. Mutacin II was grouped 
into the type AII lantibiotics by biochemical tests (Krull et 
al. 2000). Generally, lantibiotics of type AII (Jung 1991; 
Pag and Sahl 2002) were found to kill sensitive cells by for-
ming pores that perturb the cellular membrane. Mutacin II 
was shown rather to inhibit energy metabolism of sensitive 
cells by depolarizing, in a transient manner, the electrical 
transmembrane potential, the transmembrane pH gradient 
and by partially inhibiting amino acid transport (Chikindas 
et al. 1995). This observed mode of action of mutacin II is 
related to that of the type B lantibiotics. However, mutacin 
II shares partial sequence similarities with lantibiotics of 
type A, now described as the lacticin 481 lantibiotic group 
(Dufour et al. 2006). Twomey et al. (2002) observed that 
the N-terminus of the lacticin 481 group and the C-terminus 
of the mersacidin group (type B) share the motif GXXXTX 
(T/S)XEC, which includes several residues involved in the 
bridging of lacticin 481 (van den Hooven et al. 1996) and 
mutacin II (Krull et al. 2000). Actagardin and mersacidin 
also share with mutacin II a Glu-Cys motif which is pro-
posed to be responsible for the inhibition of murein biosyn-
thesis (Zimmermann and Jung 1997; Sahl and Bierbaum 
1998). Lantibiotics are known to possess a dual activity 
against sensitive cells. First they act by disrupting the cel-
lular membrane by forming pores leading to dissipation of 
membrane potential and efflux of small metabolites. Second, 
they block peptidoglycan synthesis (Bauer and Dicks 2005). 
These two functions are ensured by their link to the peptide-
glycan precursor lipid II serving as docking or target mole-
cule (Brötz et al. 1998; Breukink et al. 1999; Wiedemann et 
al. 2001). For mutacin B-Ny266, binding to membrane via 
lipid II has been proposed as a model for its mechanism of 
action (Hsu et al. 2004). Also, an alternative mechanism of 
action has been described for lipid II-targeted lantibiotics 
that are too short to form a pore across the bilayer mem-
brane (such as mutacins from group B) but maintain their 
antibacterial activity. The lantibiotic activity was shown to 
result in removal of lipid II from the septum, which inhibits 
peptidoglycan synthesis and causes cell death (Hasper et al. 
2006). The mode of action of other mutacins was prelimina-
rily deduced from computational analysis using sequence 
comparison with antimicrobial peptides with known func-
tion and modes of action. A membrane-spanning domain 
was found in the N-terminal region of the peptide sequence 
of mutacin N by comparison to the transmembrane domain 
VIII of the E. coli PTS enzyme IIc and also observed in the 
C-terminus of the peptide (Balakrishnan et al. 2000). A 
membrane disruptive mechanism similar to that of aureocin 
A53 was predicted for mutacin BHT-B, which has simila-

rities with this tryptophan-rich and amphipathic bacteriocin 
(Netz et al. 2002a; Hyink et al. 2005). Similarly, the mode 
of action of SmbAB and BHT-A�� peptides were predicted 
based on sequence comparison with the two-component lac-
ticin 3147��. The proposed mechanism is that the � pep-
tide binds to the docking molecule lipid II and then recruits 
the � peptide, which forms pores in the membrane of the 
target cell (Hyink et al. 2005; Morgan et al. 2005; Yone-
zawa and Kuramitsu 2005; Wiedemann et al. 2006). 
 
MUTACIN RESISTANCE 
 
Many bacteriocin resistance mechanisms have been repor-
ted among usually sensitive bacteria, associated with a dif-
ferent phenotypic and genetic traits (Ennahar et al. 2000; 
Ramnath et al. 2000; Dalet et al. 2001; Héchard et al. 2001; 
Gravesen et al. 2002; Vadyvoloo et al. 2002; Ramnath et al. 
2004; Vadyvoloo et al. 2004a, 2004b; Xue et al. 2005; Kra-
mer et al. 2006). While resistant mutant strains were easily 
obtained for nisin (Mazzotta et al. 1997; Crandall and Mont-
ville 1998), no mutacin-resistant mutants have been repor-
ted in the literature (Dagry 1996; Smith et al. 2003). 

For lantibiotic resistance, only nisin resistance has been 
investigated in detail. Nisin-resistant variants of many orga-
nisms have been isolated after exposure to the lantibiotic 
(Mazzotta and Montville 1997; Gravesen et al. 2002 for L. 
monocytogenes; Mazzotta et al. 1997 for Clostridium botu-
linum; Garde et al. 2004 for Streptococcus thermophilus; 
Mantovani and Russell 2001 for Streptococcus bovis; Pes-
chel et al. 1999 for S. aureus). Nisin resistance has been 
related to alterations in the cell wall (Garde et al. 2004), 
membrane fatty acid and/or phospholipid composition (Maz-
zotta and Montville 1997), and the amount of lipoteichoic 
acids in the membrane composition (Peschel et al. 1999; 
Mantovani and Russell 2001). A nisin resistant profile is 
acquired through alterations in the expression of genes that 
are involved in cell wall and cytoplasmic membrane bio-
synthesis (Kramer et al. 2006). According to Kramer et al. 
(2006) four major mechanisms of acquired resistance have 
been defined (i) preventing nisin from reaching the cyto-
plasmic membrane, (ii) reducing the acidity of the extracel-
lular medium, thereby stimulating the binding of nisin to 
the cell wall, (iii) preventing the insertion of nisin into the 
membrane, and (iv) possibly transporting nisin across the 
membrane or extruding nisin out of the membrane. 

Class IIa bacteriocin resistance has been reported for 
normally sensitive bacteria (Ennahar et al. 2000). In Liste-
ria species, low resistance levels (two- to four-fold) to class 
IIa bacteriocins are caused by alterations in membrane lipid 
composition (Crandall and Montville 1998; Vadyvaloo et al. 
2002, 2004a). An increase in positive charges in the mem-
brane decreases the sensitivity to the class IIa bacteriocins 
(Vadyvaloo et al. 2004b). High resistance levels (1000-fold) 
in L. monocytogenes and E. faecalis result primarily from 
the loss of a mannose permease component (Ramnath et al. 
2000; Dalet et al. 2001; Héchard et al. 2001; Gravesen et al. 
2002). High resistance levels in L. monocytogenes are also 
caused by the loss of a regulating transcription factor (Robi-
chon et al. 1997; Dalet et al. 2001), which positively regu-
lates the expression of the mannose permease. Diep et al. 
(2007) identified a similar mechanism between target cell 
recognition and immunity self-protection for class II bacte-
riocins involving the mannose phosphotransferase compo-
nents IIC and IID as the common target. In fact, the man-
nose transporter complex seems to act as an open door for 
bacteriocin invasion including microcins produced by 
Gram-negative bacteria, which harbour some similarities in 
structure with lantibiotics from Gram-positive bacteria 
(Jack and Jung 2000; Bieler et al. 2006). 
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ARE MUTACINS SUITABLE FOR USE IN THE 
FOOD INDUSTRY? 
 
Limitations to produce and use mutacin in food 
systems 
 
Recently, Gálvez and co-workers (2007) reviewed the most 
important factors influencing the efficacy of bacteriocins in 
food systems. In this chapter, virtual pathogenicity of S. 
mutans, interactions of bacteriocins with food matrices and 
factors related to the obtaining of pure mutacins will be dis-
cussed. Also, conceivable solutions based on intrinsic pro-
perties and test procedures concerning bacteriocin applica-
tions in food are proposed for mutacins. 
 
Pathogenicity 
 
The major objection to the use of S. mutans and/or its pro-
ducts in the food industry is that S. mutans is recognised as 
a “pathogen”. Nobody wants to put S. mutans in food to in-
crease risk of dental caries, do they? However, is S. mutans 
really a “pathogen”? S. mutans is considered as the major 
cause of dental caries, but what is S. mutans really guilty 
of? 

S. mutans produces acid from sugars, but so do all the 
LAB used in milk fermentation processes. It produces 
water-soluble exopolysaccharides, which is often a desired 
trait in the food industry (Tettelin 2004) but also water-
insoluble glucans, which promote adherence to the cells and 
are referred to as unwanted exopolysaccharides in food (de 
Vuyst and Degeest 1999). S. mutans is considered a “patho-
gen” because production of soluble and insoluble glucan by 
extracellular and cell-associated glycosyltransferase pro-
motes accumulation of S. mutans cells on the surface of the 
teeth while carbohydrate metabolism leads to production of 
lactic acid destroying the tooth enamel (Mitchell 2003). 
However, who is the real culprit? Is it S. mutans, or the re-
fined sugar, particularly sucrose, in the diet? In fact, S. 
mutans should not be considered as a pathogen to be afraid 
of, but as one whose only light virulence is linked to the 
diet (Rolla 1989; van Palenstein Helderman et al. 1996). 

S. mutans is an indigenous inhabitant of the oral cavity. 
It was found to be present in almost every human (Hamada 
and Slade 1980) and apart from leading to dental caries, it 
does not cause any damage to its host under normal condi-
tions. Moreover, S. mutans is not the only cariogenic spe-
cies, as dental caries occurs in its absence (Kleinberg 2003). 
S. mutans has rarely been shown to be transmitted horizon-
tally among individuals (Berkowitz 2003). Even people 
living in close proximity do not share the same S. mutans 
strains (Alaluusua 1991; Klein et al. 2004). Transmission of 
S. mutans was demonstrated to occur only from mother to 
infants during a very narrow period (Caufield et al. 1993). 
Thus, S. mutans is not usually contagious. However, S. 
mutans may be associated with endocarditis (Moreillon and 
Que 2004; Nomura et al. 2006). This appears only after oral 
surgery when S. mutans gets access to the blood circulation 
and ends up colonising the cardiac valves. Won’t some 
polysaccharide-producing LAB bacteria do the same if they 
get access to the blood circulation? 

No gene encoding toxins have been detected in the S. 
mutans genome and few virulence traits are reported for S. 
mutans compared to other pathogenic streptococcal species 
(Ajdic et al. 2002; Mitchell 2003). Probable virulence fac-
tors identified in S. mutans are adhesins allowing adhesion 
of cells to exracellular matrix and initiation of biofilm for-
mation, glucan-producing and glucan-binding exoenzymes, 
mainly involved in extracellular sucrose metabolism and 
ensuring aggregation of cells, several proteases and pepti-
dases to provide amino acid nutrients, and other membrane 
and extracellular proteins which could stimulate the im-
mune system (Ajdic et al. 2002; Mitchell 2003). In fact, in-
active relics of pathogenesis-related genes are also found in 
the genome of the food-related LAB species Streptococcus 
thermophilus (Tettelin 2004; Mora et al. 2005). 

Interaction with food material 
 
One limitation to the use of bacteriocins in food is their 
interaction with food constituents, which can affect their ac-
tivity (Aasen et al. 2003). Food structure, food composition 
(nutrients, ingredients, additives), buffering capacity of 
food products and their associated physicochemical factors 
such as pH, temperature, water activity (aw), atmosphere 
(O2, CO2), redox potential, and microbial load can influence 
in situ bacteriocin activity in food products (Gálvez et al. 
2007). All these obstacles should be studied before muta-
cins can be used as food preservatives. It has been observed 
that the growth of some sensitive strains in the presence of 
sucrose can abolish their sensitivity to some mutacins (Ha-
mada and Ooshima 1975b; Rogers 1976b) and that a high 
sucrose diet reduced the activity of mutacin C3603 in vivo 
(Ikeda et al. 1985). However, our results (Morency and 
Lavoie 1991) and those of others (Delisle 1975; Weerkamp 
et al. 1977; Hamada et al. 1986; Willcox and Drucker 1988) 
indicate that this is not always the case. Each mutacin being 
a different substance, their activity in food will have to be 
assessed individually. 
 
Production and purification 
 
The difficulties in producing mutacins or in obtaining good 
mutacin yield in liquid media are well known (Parrot et al. 
1989; Nicolas et al. 2004) and few mutacins have been 
purified from liquid cultures (Novak et al. 1993; Mota-
Meira et al. 1997; Nicolas et al. 2006). Bacteriocin produc-
tion is influenced by several environmental factors, such as 
pH, temperature, concentration of nitrogen and carbohyd-
rate sources, and the presence of essential elements (vita-
mins, oligo-elements) (Parente and Ricciardi 1999). An in-
expensive medium based on whey permeate was found for 
mutacin production making commercial production possible 
(Nicolas et al. 2004). 

The major limiting factor, which is obtaining pure bac-
teriocin, should not be an insurmountable problem. General 
methods of bacteriocin purification are based on their bio-
chemical properties: cationic and amphiphilic peptides. The 
general process for bacteriocin purification often involves a 
straight-forward four-step process (Berjeaud and Cenatiem-
po 2004). The methods most frequently used for isolation, 
concentration and purification include salt precipitation of 
bacteriocin from culture supernatant, cationic exchange 
chromatography and reverse-phase high performance liquid 
chromatography (Saavedra et al. 2004). Large scale food 
grade purification of bacteriocin still requires improvement 
(Guyonnet et al. 2000; Uteng et al. 2002), as the majority of 
processes involve the use of toxic organic solvents. Use of 
food grade mutacins could also be enabled by applying food 
grade purification procedures developed by Coventry et al. 
(1996) and Wan et al. (1996), which use diatomite calcium 
silicate or other ingestible silica compounds to purify differ-
ent bacteriocins to homogeneity. This purification process 
involved both electrostatic and hydrophobic interactions of 
bacteriocins with food grade adsorbing resins. The use of 
food grade emulsifier under limited concentrations for hu-
man consumption to desorb bacteriocins is also possible 
(Daeschel 1993; Coventry et al. 1996; Janes et al. 1998). 
We previously described a technique of purification using 
hydrochloric acid instead of trifluoroacetic acid (Gaussier et 
al. 2002). Methanol could also be replaced by ethanol in the 
elution process. Another possible avenue to explore would 
be to use shrimp exoskeleton (mainly made of chitin) as a 
solid phase in the chromatography process (Casal et al. 
2006). However, although chitin is closely related struc-
turally to chitosan (poly-D-glucosamine), which shows no 
toxicity to mammals, and is approved by FDA as a food 
additive, it was recently shown to induce the accumulation 
in tissue of IL-4-expressing innate immune cells, including 
eosinophils and basophils responsible for allergic reactions, 
when given to mice (Reese et al. 2007). Potential food 
grade alternatives to these processes also include immuno-
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affinity chromatography (Suarez et al. 1997). 
 
Heterologous production of mutacins in GRAS 
bacteria 
 
Heterologous expression systems for bacteriocins produc-
tion may offer advantages over the original producer, such 
as allowing control of bacteriocin gene expression and 
achieving higher production levels by selected food grade 
LAB. Heterologous expression may also contribute to the 
production of hybrid bacteriocins with improved properties 
and effectiveness in food systems (Rodrigez et al. 2002; 
Ingham and Moore 2007). Construction of multibacterioci-
nogenic strains is also possible in order to contravene bacte-
riocin resistance development. With the advances in know-
ledge acquired on the genetics of mutacin production, we 
can envision that some cocktails of mutacins targeting a 
broader spectrum of pathogens could be produced by one 
food grade LAB strain. Research efforts are still necessary 
to improve the production levels of heterologous expression 
of bacteriocin-lantibiotic in genetically modified GRAS 
(Generally Recognised As Safe) organisms. 
 
Stability 
 
The biochemical properties of lantibiotics make them resis-
tant to a wide range of temperatures (up to 100°C for 15-30 
min and some up to 121°C for 15 min) and pH (2 to 12) 
(Delves-Broughton et al. 1996; Lawton et al. 2007). The 
high stability of lantibiotics is explained by their thioether 
bridges which lock the molecule into the biologically active 
conformation as well as the presence of D-amino acids that 
protect them against the activity of certain proteases (Ryan 
et al. 1999). However, from our mutacin producing strains, 
all mutacins were sensitive to pronase E, proving their di-
gestibility, and a few demonstrated reduced activity after 
heat treatment (80°C, 1 h) suggesting their potential use in 
pasteurized food products (Parrot et al. 1990; Morency et al. 
1995; Nicolas et al. 2006). Mutacins H-29B and B-Ny266 
also showed resistance to autoclaving (121°C, 15 min) 
(Nicolas et al. 2006). 
 
APPLICATIONS 
 
Biopreservatives 
 
Can pure mutacin be used as a food biopreservative? Bacte-
riocins produced by S. mutans have interesting properties 
suitable to use as food biopreservative. Similar to bacterio-
cins produced by LAB, mutacins are inactivated by en-
zymes from the gastrointestinal tract, they are heat and pH-
tolerant, they have a bactericidal effect against many food-
borne pathogenic and spoilage bacteria. However, unlike 
LAB bacteriocins, no mutacin-resistant mutants have been 
reported in the literature. Other bacteriocins produced by 
GRAS streptococcal species are currently intentionally or 
unintentionally used either in the food and feed industries or 
in various probiotic treatments and are seriously considered 
for a number of other applications (Kirkup 2006; Diez-Gon-
zalez 2007). By their homology with well-characterized 
bacteriocins, some mutacins could find application in food 
products. 

Mutacin II (H-29B) and mutacin K8 are related to the 
well-described lacticin 481 and to other lantibiotics of the 
lacticin 481 group (Dufour et al. 2006). Many studies have 
reported the effectiveness of this type of lantibiotic in food 
products (O’Sullivan et al. 2003; Ávila et al. 2006; Dufour 
et al. 2006). For example, proposed applications are varia-
cin powder preparation to inhibit B. cereus growth in 
chilled dairy products (O’Mahony et al. 2001), warnericin 
RB4 against spoilage bacteria in acidic fruit juice-based 
drinks (Minamikawa et al. 2005), macedocin-producing 
strains as bioprotective cultures in cheese making (van den 
Berghe et al. 2006). Mutacins Smb and BHT-A are related 
to the well-studied lacticin 3147, which has demonstrated 

its potential as a food preservative by inhibiting many pa-
thogens and spoilage bacteria such as L. monocytogenes, B. 
cereus and S. aureus (Morgan et al. 1999, 2000; Scannell et 
al. 2000; Morgan et al. 2001; Cotter et al. 2005a).  

Peptide A from mutacin IV shows homology with pep-
tide A (ThmA) of thermophilin 13, a bacteriocin that is 
naturally found in yoghurt. Furthermore, the S. mutans 
genome appears to code for additional ThmA-like peptides 
(loci SMU.613 and SMU.616 in the S. mutans genome, 
GenBank accession number AE014133). Thermophilin 13 
is a dipeptide non-lantibiotic bacteriocin able to inhibit 
growth of different species of Enterococcus, Lactobacillus, 
Lactococcus, Leuconostoc, Streptococcus, Listeria, Bacillus 
spp., and Clostridium spp. It even prevents outgrowth of 
spores of B. cereus and Clostridium botulinum (Marciset et 
al. 1997). Thermophilin 13 was shown to act by dissipating 
the membrane potential and the pH gradient in liposomes 
by forming pores and no component from the membrane 
sensitive strains (e.g. lipid or proteinaceous receptor) seems 
to be required for its activity (Marciset et al. 1997). 

Mutacin B-Ny266 is basically related to the lantibiotic 
nisin, which is the only purified bacteriocin approved for 
use as a food additive. It has been used for more than thirty 
years against foodborne and spoilage bacteria in several 
food systems such as low-acid canned foods and dairy pro-
ducts (Delves-Broughton et al. 1996; Chen and Hoover 
2003). Toxicology of pure nisin has been tested and found 
harmless for human consumption (Delves-Broughton et al. 
1996). Mutacin B-Ny266 shows no haemolytic activity 
against blood erythrocytes and no apparent deleterious 
effect in a mouse model (Mota-Meira et al. 1997, 2005). As 
for nisin, mutacin B-Ny266 has a broad activity spectrum 
against important foodborne and food spoilage Gram-posi-
tive bacteria and its activity is enhanced at acidic pH (Mota-
meira et al. 2000; Nicolas et al. 2004). Furthermore, muta-
cin B-Ny266 remained active against bacterial strains that 
are resistant to nisin A (Mota-Meira et al. 2000), placing 
this mutacin as a good candidate to be used when nisin re-
sistant mutants are present in a food system. 

As certain food spoilage and foodborne pathogen strains 
can be naturally resistant or develop resistance to one parti-
cular bacteriocin (Ennahar et al. 2000), combinations of 
bacteriocins represent valuable strategies to eliminate the 
propagation of resistant bacterial contaminants in food pro-
ducts (Hanlin et al. 1993; Bouttefroy and Milliere 2000; 
Vignolo et al. 2000). 
 
Cheese ripening 
 
Enzymatic coagulation, draining, and ripening ensure trans-
formation of milk into cheese. Ripening represents a critical 
step in the maturation of cheese and development of cheese 
flavour and texture. Many complex biochemical reactions 
of proteolysis, lipolysis and glycolysis take place during the 
maturation period. These reactions are generally performed 
by starter cultures and their enzymes. To reduce the cost of 
cheese production, different methods have been developed 
to accelerate the cheese ripening step, such as the use of re-
combinant enzymes or microencapsulated enzymes (Azar-
nia et al. 2006). Mutacins could be used to increase the rate 
of starter culture lysis and enhance the release of intracel-
lular enzymes such as aminopeptidase during cheese ripen-
ing, as has been proposed for other bacteriocins (Ryan et al. 
1996; Morgan et al. 1997; Ross et al. 1999; O’Sullivan et al. 
2003; Ávila et al. 2006). The oral cavity naturally contains 
mutacin-producing strains that show broad spectra inhib-
itory activity not only against pathogenic and food spoilage 
microorganisms, but also against starter and non-starter 
LAB. Under the proper conditions, pure mutacins could be 
used to accelerate cell lysis during cheese ripening (Table 
3). 
 
Biofilm inhibition 
 
Biofilm formation is an emerging problem in sanitation and 

166



Mutacins as food preservatives. Nicolas et al. 

 

safety of the food environment (reviewed by Kumar and 
Anand 1998; Lyndsay and von Holy 2006). Biofilms are 
complex communities of microorganisms irreversibly at-
tached to a substratum, interface, or to each other, produ-
cing an extracellular polymeric matrix (Costerton 1995; 
Kumar and Anand 1998; O’Toole and Ghannoum 2004). 
Cells in biofilms are often more resistant to treatment with 
antimicrobial compounds, such as disinfectants, than plank-
tonic cells (Costerton et al. 1995). Cells of pathogenic or 
spoilage microorganisms may survive cleaning and disin-
fection, detach and contaminate the food products resulting 
in post-processing contamination (Kumar and Anand 1998). 
Undesirable biofilms and their decomposition products on 
surfaces may lead to reduced heat transfer, increased resis-
tance to flow, and corrosion of food processing equipment 
(Kumar and Anand 1998). Biofilms in the food industry can 
be eliminated by physical and chemical methods. In ad-
dition, the use of antimicrobial compounds such as bacteri-
ocins adsorbed onto surfaces has been proposed to inhibit 
biofilm formation (Kumar and Anand 1998). Daeschel et al. 
(1992) and Bower et al. (1995) showed that nisin adsorbed 
to food contact surfaces lowered the incidence of surface 
contamination by L. monocytogenes. Ming et al. (1997) 
proposed the use of bacteriocins on food packaging mate-
rials for the biocontrol of L. monocytogenes on meats. 
Ercolini et al. (2006) used polythene films coated with a 
solution of bacteriocin 32Y from Lactobacillus curvatus to 
package frankfurters artificially contaminated with L. 
monocytogenes. The antimicrobial package was effective in 
inhibiting the growth and survival of the pathogen on the 
surface of the food product during storage. Joerger (2007) 
reviewed the effectiveness of films to which antimicrobials, 
such as nisin, food-grade acids and salts, chitosan, plant ex-
tracts, and enzymes such as lysozyme and lactoperoxi-dase, 
were incorporated for food applications. He pointed out that 
antimicrobial films still face limitations and suggested that 
they be used as part of a hurdle strategy to provide safe 
foods. Mutacins such as mutacin B-Ny266 having specific 
or broad activity spectra against several foodborne bacteria 
could find similar applications (Table 2 and Table 3). 
 
Combination of mutacins with other hurdle 
technologies 
 
The concept of hurdle technology implies the activity of 
various antimicrobial factors to which foodborne microor-
ganisms are exposed to reduce or control their population in 
food products. Many hurdles have been developed to en-
hance the control of foodborne and spoilage microorga-
nisms found in food products (Leistner 2000). Recently, 
bacteriocins have gained great interest as part of one hurdle 

since they can be easily combined with other selected pre-
servation technologies without losing their antibacterial ac-
tivity. Combinations of bacteriocins with chemical substan-
ces, heat treatment, modified atmosphere packaging, pulsed 
electric field, high hydrostatic pressure, irradiation and 
pulsed magnetic fields have often been studied, showing a 
synergistic effect in inhibitory activity against target micro-
organisms (reviewed by Gálvez et al. 2007). Indeed, by 
their particular physical and chemical properties, bacterio-
cins can be applied to food and can resist treatments such as 
temperature, addition of chemicals, high pressure process-
ing or pulsed electric fields. The combination of different 
kinds of hurdle technologies avoids development of resis-
tant bacteria. It also widens the inhibitory activity spectra of 
the antimicrobial factors targeting Gram-positive and Gram-
negative spoilage bacteria thus improving the preservation 
of foodstuff (Chen and Hoover 2003; Gálvez et al. 2007). 
The counterpart of this kind of process is often the reduc-
tion of the organoleptic properties of food products. Bac-
teriocin efficiency in food matrices depends also on several 
food-related factors to which one particular bacteriocin 
molecule could be less susceptible. Impacts of such food-
related factors on mutacin activity are yet unknown and 
remain to be studied. 
 
CONCLUDING REMARKS 
 
Over the last five years, advances in bacteriocin research 
have been spectacular, contributing to the better understan-
ding of the molecular mechanism of action and structure-
function relationships. Some crucial studies have clarified 
the enzymatic activity responsible for the modification reac-
tions in the biosynthesis of lantibiotics given the possibility 
of synthesizing dehydrated and unsaturated residues in vitro 
(Xie et al. 2004; Li et al. 2006). A more thorough under-
standing of the mechanisms involved in bacteriocin im-
munity is emerging (Cotter et al. 2005a). However, effec-
tive application of bacteriocins in food will be restricted 
until comprehensive studies of their activity, solubility, sta-
bility in food products and more importantly, their toxicity 
are carried out. While a plethora of bacteriocins have gained 
interest in food applications, to date only nisin is legally 
approved for use in the food industry (Delves-Broughton et 
al. 1996; Chen and Hoover 2003). Pediocin, a class IIa bac-
teriocin and lacticin 3147 (class Ic) exhibiting broad acti-
vity spectra, are prototypes of new potentially applicable 
bacteriocins with properties more specific than nisin for ap-
plication in particular food products. Mutacins, in their div-
ersity, possess the general properties of these bacteriocins. 
They are active against various Gram-positive and Gram-
negative bacteriocin-resistant foodborne pathogens and 

Table 3 Summary of proposed applications for some mutacins. 
APPLICATIONS 
Addition of purified or semi-purified mutacins as food additive/biopreservative 
- Inhibition of nonstarter LAB proliferation in cheese making 
- Inactivation of pathogenic bacteria in cheese (L. monocytogenes, S. aureus) 
- Inhibition of C. tyrobutyricum (late-blowing defect in cheese) 
- Inactivation of L. monocytogenes in ready-to-eat foods (e.g. hot dog sausage) 
- Inhibition of spoilage bacteria in processed foods (e.g. Bacillus spp.) 
- Inhibition of spoilage bacteria in acidic fruit-juice-based drinks 
- Inhibition of spoilage bacteria in beer fermentation processes 
Immobilized mutacins in food contact surfaces 
- Equipment and surfaces in the food plant to avoid bacterial biofilm formation 
- Food packaging, e.g. in meat packaging for inhibition of pathogenic (L. monocytogenes) and food spoilage bacteria  
Adjunct in raw milk products 
Acceleration of cheese ripening 
In combination with other bacteriocins to eliminate the propagation of resistant bacterial contaminants in food products 
In combination with other barriers in hurdle technology 
- in MAPa and VPb to inhibit the pathogenic (L. monocytogenes) and spoilage bacteria (LAB e.g. Lactobacillus spp., clostridia) 
- low pH, low NaCl concentration, moderate temperatures, high hydrostatic pressure or pulsed electric fields 
a MAP: modified atmosphere packing 
b VP: vacuum packing 
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spoilage bacteria (Mota-Meira et al. 2000, 2005). Due to 
the cautions over the use of enterococci and streptococci in 
the food industry, heterologous production of mutacins con-
stitutes an attractive mean of exploiting their broad antibac-
terial activity. Finally, application of bacteriocins in food 
should not be seen as the cure to food spoilage and conta-
mination, but rather as a valuable tool contributing to the 
hurdle concept for food preservation and food safety. 
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