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ABSTRACT 
Thioredoxins are small, ubiquitous proteins with a dithiol/disulfide active site (CGPC) and have been characterized in a wide variety of 
prokaryotic and eukaryotic cells. In the thioredoxin system, thioredoxin reductase serves to reversibly reduce oxidized thioredoxin using 
NAD(P)H as electron donor. In 1964, thioredoxin was originally discovered as electron donor for ribonucleotide reductase in Escherichia 
coli. By now, many thioredoxins are identified to fulfil a number of important cellular functions, e.g. they are the major cellular protein 
disulfide reductases, controlling the cellular redox potential. The multiple and important functions of thioredoxins necessitate to adjust 
their cellular levels according to the requirements. Despite the importance of thioredoxin functions, only little is known about the 
regulation of thioredoxin genes. The present review therefore considers bacterial genes encoding thioredoxins. We give an overview on 
thioredoxin genes and their regulation in different bacteria. Furthermore, we will review the current knowledge about the participation of 
thioredoxin proteins in the regulation of gene expression and protein activity. 
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INTRODUCTION 
 
Many metabolic, signalling and transcriptional processes in-
side cells are mediated by the cellular redox state. Protein 
thiols in form of cysteine residues are key players in redox 
sensing and regulation (Holmgren et al. 2005). 

Thioredoxins are small ubiquitous proteins with a 
highly conserved active site sequence [(Cys-Gly-Pro-Cys) 
(Holmgren 1985, 1995a; Martin 1995)] and share a com-
mon 3D architecture known as the thioredoxin motif, con-
sisting of four �-helices and five �-sheets (Eklund et al. 
1991; Holmgren 1995b; Martin 1995; Capitani et al. 2000). 
The low redox potential of thioredoxins [-270 mV to -330 
mV in Escherichia coli (Krause et al. 1991; Aslund et al. 

1997)] makes these proteins efficient thiol-disulfide reduc-
tants, utilizing the two cysteine residues in their active site. 
The reduction of the resulting active site disulphide in thio-
redoxins is catalyzed by the thioredoxin reductase, which 
uses NADPH as an electron donor. Together, thioredoxin, 
thioredoxin reductase and NADPH constitute the thioredo-
xin system (Fig. 1). Thus, thioredoxins, together with the 
glutathione/glutaredoxin system are responsible for main-
taining protein cysteines in a reduced state and thereby can 
regulate the activity of proteins/enzymes. 

However, the function of thioredoxins is not limited to 
the function as protein disulfide reductases. In E. coli, thio-
redoxin was first described as an electron donor for ribo-
nucleotide reductase (Laurent et al. 1964; Orr and Vitols 
1966). Nowadays, thioredoxins are known to function in 
many cellular processes [e.g. as hydrogen donor for phos-
phoadenosine-phosphosulfate reductase and methionine re-
ductase (Gonzalez Proqué et al. 1970; Lillig et al. 1999), as 
an essential component in the life cycle of some bacterio-
phages (Mark and Richardson 1976; Russel and Model 
1985; Lim et al. 1985; Huber et al. 1987), in the oxidative 
stress response (e.g. Das and Das 2000; Zeller and Klug 
2006a, 2006b)]. Some of the most important functions of 
thioredoxins are summarized in Table 1. 

Several reviews have addressed the general structure 
and function of thioredoxins in prokaryotes and eukaryotes 
(e.g. Aslund and Beckwith 1999; Arner and Holmgren 
2000; Carmel-Harel and Storz 2000; Ritz and Beckwith 
2001; Meyer et al. 2005; Ago and Sadoshima 2006; Arner 
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Fig. 1 The thioredoxin system. As efficient thiol-disulfide reductases, 
thioredoxins reduce protein-disulfides, thereby utilizing the two cysteine 
residues in their active site. The reduction of the resulting active site disul-
fide in thioredoxins is catalyzed by the thioredoxin reductase, which uses 
NADPH as electron donor. Together, thioredoxin (Trx), thioredoxin re-
ductase (TrxR) and NADPH comprise the thioredoxin system. 
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and Holmgren 2006; Haendeler 2006; Vieira dos Santos 
and Rey 2006). The present review mainly addresses bacte-
rial genes encoding thioredoxins, their regulation in differ-
ent bacteria and under different conditions, and considers 
the influence of bacterial thioredoxins on gene expression 
and protein activity. 
 
BACTERIAL THIOREDOXINS, THIOREDOXIN 
GENES AND GENE ORGANIZATION 
 
Thioredoxin 1 (TrxA, also known as Trx1), first discovered 
in E. coli in 1964, is encoded by the trxA gene, contains 109 
amino acids and has a central core of five strands of twisted 
�-pleated sheet flanked by four �-helices and the active site 
located in a protrusion of the protein (Gleason and Holm-
gren 1988; Miranda-Vizuete et al. 1997). In 1997, a novel 
thioredoxin, TrxC (Trx2), was identified in E. coli by Mi-
randa-Vizuete et al., which is encoded by the gene trxC. 
Both thioredoxins are equivalent for most of their in vivo 
functions (Stewart et al. 1998), but in contrast to TrxA, 
TrxC contains an additional N-terminal domain of 32 amino 
acids including two additional Cys-X1-X2-Cys motives 
(Miranda-Vizuete et al. 1997). The four cysteines of these 
two Cys-X1-X2-Cys motives function to coordinate one 
zinc atom (Collet et al. 2003). Available information on the 
abundance of thioredoxin proteins indicates that TrxA is an 
essential and ubiquitously distributed protein whereas TrxC 
may have limited distribution to circumvent certain envi-
ronmental conditions (Li et al. 2003a; Sarin and Sharma 
2006). The existence of at least one thioredoxin has been 
described in various bacterial species, including e.g. Rhodo-
bacter sphaeroides [TrxA (Clement-Metral 1979)]; Rhodo-
bacter caspulatus [TrxA and TrxC (Li et al. 2003a)]; Strep-
tomyces sp. [TrxA and TrxC (Horecka et al. 1996; Stefan-
kova et al. 2006)]; Desulfovibrio desulfuricans [TrxA and 
TrxC (Sarin and Sharma 2006)]; Bacillus subtilis [TrxA 
(Scharf et al. 1998)], Helicobacter pylori [TrxA and TrxC 
(Windle et al. 2000; Baker et al. 2001; Comtois et al. 
2003)]. Interestingly, up to eight thioredoxin genes can be 
found in cyanobacterial genomes (Florencio et al. 2006). 
Primary structure analysis reveals that there are four distinct 
groups of thioredoxins in cyanobacteria. Three groups are 
shared between cyanobacteria and photosynthetic eukary-
otes including m-type (TrxA), x-type (TrxB) and y-type 
thioredoxins (TrxQ). The fourth group of the cyanobacterial 
thioredoxins, the c-type (TrxC), is unique to cyanobacteria 
(Florencio et al. 2006.) 

While both trx genes are not essential for viability of E. 

coli (Ritz et al. 2000), TrxA is required for viability of a 
number of bacteria, e.g. R. sphaeroides (Pasternak et al. 
1997), B. subtilis (Scharf et al. 1998), Anacystis nidulans 
(Muller and Buchanan 1989), Synechocystis sp. PCC 6803 
(Navarro and Florencio 1996). To our knowledge, TrxC has 
not been described to be essential in bacteria. 

A quite diverse organization of trx genes is found 
among various bacterial genomes. In most bacterial species, 
the trxA gene is clustered with the gene encoding thiore-
doxin reductase (trxB or trxR), whereas the trxC gene is un-
linked to other thioredoxin genes. Nevertheless, in some 
bacterial chromosomes, trxA genes are unlinked to trxB 
genes. 

The genes trxA and trxB constitute an operon in Strepto-
myces (Cohen et al. 1993; Gal-Mor et al. 1998). In S. coeli-
color, both genes are contained as a cluster on a cosmid 
H24 that carries oriC and several genes involved in DNA 
replication. The trxA/trxB locus is positioned approximately 
9.4 kb from oriC. The arrangement of genes near the trxA/ 
trxB region resembles that in Mycobacterium leprae and M. 
tuberculosis (Gal-Mor et al. 1998). 

The genomic organisation of thioredoxin genes in D. 
desulfuricans revealed that dstrx1 (trxA) and dstrxR (thiore-
doxin reductase) genes are in close proximity to each other. 
The stop codon TAA of the dstrx1 ORF overlaps with the 
start codon of dstrxR ORF indicating translational coupling. 
However, the dstrx2 gene (trxC) is positioned elsewhere 
(and on the complementary strand) and is located down-
stream to an open reading frame encoding an ATP depen-
dent zinc protease gene (Sarin and Sharma 2006). 

In the genome of H. pylori the gene encoding thiore-
doxin reductase (trxR) is positioned just downstream from 
trxA. trxC (HP1458) is not found near trxA (HP0824) or 
trxR (HP0825) (Comtois et al. 2003). 

At least three modes of organization of thioredoxin 
genes exist within the bacterial genus Mycobacterium: i) in 
the majority of mycobacterial strains the genes coding for 
thioredoxin and thioredoxin reductase are located on sepa-
rate sites of the genome, ii) in M. tuberculosis strains both 
genes are found on the same locus, overlapping in one nuc-
leotide, iii) in the pathogen M. leprae, thioredoxin and thio-
redoxin reductase are encoded by a single gene and, there-
fore, are expressed as a fusion protein (MlTrxR-Trx), with 
the N-terminal part of the protein corresponding to thiore-
doxin reductase and the C-terminal part to TrxA (Wieles et 
al. 1995). 

In contrast, in the chromosome of several Staphylococ-
cus species, trxA and trxB genes are mapped to quite differ-

Table 1 Main functions of thioredoxins in prokaryotes and eukaryotes. 
Function Reference (e.g.) 
Hydrogen donor 

Ribonucleotide reductases 
Phosphoadenosine-phosphosulfate reductases 
Methionine reductase 

Laurent et al. 1964; Orr and Vitols 1966; Gonzalez Proqué et al. 1970; Lillig et al. 
1999 

Oxidative stress response 
Reduction of protein disulfides (redox regulation) 
ROS scavenging 
Electron donor for peroxiredoxins and peroxidases 

Spector et al. 1988; Chae et al. 1994; Kang et al. 1998; Das and Das 2000; Vieira 
dos Santos and Rey 2006; Zeller and Klug 2006a 

Transcriptional regulation 
Influence on gyrase supercoiling activity 
Redox regulation of transcriptional factors (AP-1, NF�B) 

Schenk et al. 1994; Müller et al. 1997; Saitoh et al. 1998; Nordberg and Arner 2001; 
Kumar et al. 2004; Li et al. 2004b 

Photosynthesis 
Regulation of light-dependent activation of enzymes 
Regulation of photosynthesis genes 
Regulation of �-aminolaevulinic acid 

Clement-Metral 1979; Buchanan 1984; Pasternak et al. 1999; Li et al. 2003a; 
Gelhaye et al. 2005 

Involvement in viral life cycle 
Subunit of T7 DNA polymerase 
Assembly of filamentous phages 

Mark and Richardson 1976; Lim et al. 1985; Russel and Model 1985; Huber et al. 
1987 

Involvement in virulence Bjur et al. 2006 
Involvement in protein folding/refolding (chaperone activity) Kern et al. 2003; McGee et al. 2006 
Involvement in diseases Rubartelli et al. 1995; Saito et al. 1996; Yoshida et al. 1999; Nakamura et al. 2001; 

Nordberg and Arner 2001; Ago and Sadoshima 2006; Arner and Holmgren 2006 
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ent sites. In S. aureus, trxA is located in a cluster of con-
served genes, mutS2-trxA-uvrC (transcribed in the same di-
rection), and trxB is located in a gene cluster just down-
stream of the uvrAB genes (Uziel et al. 2004). A similar 
organization of trx genes occurs in S. epidermidis and S. 
xylosus (Uziel et al. 2004). 

In E. coli, trx genes map in widely different positions 
on the genome. The E. coli gene for TrxC is positioned at 
58.5 min, far away from the trxA gene, which is located at 
84 min in the E. coli chromosome (Lim et al. 1985; Mi-
randa-Vizuete et al. 1997). The gene encoding thioredoxin 
reductase (trxB) is located at 20-21 min on the E. coli chro-
mosome (Haller and Fuchs 1984). 

The only thioredoxin gene of R. sphaeroides (trxA; 
RSP1529) is located on chromosome 1 next to the gene 
RSP1527 (encoding a helicase, uvrD/REP) in the 5� direc-
tion and is transcribed in the same orientation as RSP1527. 
In the 3� direction of trxA an unknown open reading frame 
(RSP1530) is located and transcribed in the opposite direc-
tion. The gene encoding thioredoxin reductase (RSP1576) is 
located at a different position on the chromosome 1 and 
transcribed on the reverse strand (www.rhodobacter.org). A 
similar gene organization is found in the closely related 
bacterium R. capsulatus. The trxA gene (RRC03345) is lo-
cated next to RRC3344 (helicase, uvrD/REP) in the 5� di-
rection and to RRC3346 (ATP-dependent protease, hsIV) in 
the 3� direction. Here, all three genes are transcribed in the 
same direction (Integrated Genomics, www.ergo-light.com/ 
ERGO). The trxC gene of R. capsulatus (RRC00979) is 
located in a different region of the chromosome. A gene en-
coding a thymidine kinase is found upstream of trxC and is 
transcribed in the same direction. Downstream of trxC a 
tRNA-coding gene is located (Ala-CGC-tRNA). 
 
REGULATION OF BACTERIAL THIOREDOXIN 
GENE EXPRESSION 
 
Despite the importance of thioredoxins in many cellular 
functions (Table 1), our knowledge of trx gene regulation in 
response to external stimuli is still limited. 

The response to one important stimulus, oxidative stress, 
has been examined in various bacteria. Oxidative stress is 
defined as a disturbance of the prooxidant–antioxidant 
balance in favour of prooxidants (Sies 1985) and is caused 
by reactive oxygen species (ROS) generated in the respira-
tory chain and other cellular compounds or in the environ-
ment (Imlay and Fridovich 1991; Gonzalez-Flecha and 
Demple 1995; Messner and Imlay 1999; Seaver and Imlay 
2004). As in many other respects, enteric bacteria served as 
the first bacterial systems to study the oxidative stress res-
ponse. In E. coli, two key factors involved in the adaptive 
responses to oxidative stress have been characterized, OxyR 
and SoxR. OxyR, a transcriptional regulator of the LysR 
family, binds to its target sites (Toledano et al. 1994) in its 
oxidized or reduced form and activates gene expression 
(Tao et al. 1993; Storz and Zheng 2000; Zheng et al. 2001; 
Zeller et al. 2007). In some cases, however, repression of 
gene expression by OxyR was observed (Zheng et al. 2001). 
The second regulon for the oxidative stress response in E. 
coli is the SoxRS regulon. In this system, SoxR and SoxS 
serve as regulators of the response to superoxide (reviewed 
in, e.g., Nunoshiba 1996; Demple 1996; Storz and Zheng 
2000). 

Since oxidative stress conditions change the cellular 
redox-state and promote disulfide bond formation of redox-
sensitive proteins and one major function of thioredoxins is 
the reduction of such disulfides, a regulation of trx genes by 
ROS and the oxygen level is expected. Indeed, many re-
ports have been published, showing the regulation of trx 
genes under oxidative stress conditions. Ritz et al. (2000) 
showed that the expression of the E. coli trxC gene is in-
duced by H2O2 and is regulated by OxyR. In contrast, trxA 
expression is not increased by H2O2 in E. coli and is not 
under control of OxyR (Michan et al. 1999; Garrido and 
Grant 2002). It was described that the trxA gene of E. coli is 

under control of guanosine 3�, 5�-bispyrophosphate (ppGpp), 
is expressed in the stationary phase (Lim et al. 2000) and is 
negatively regulated by cyclic AMP (Sa et al. 1997). Inte-
restingly, TrxA seems to contribute to the regulation of 
SoxR transcriptional activity by affecting the disassembly 
and reassembly of the [2Fe-2S] clusters (Ding and Demple 
1998). Although trxA gene expression seems not to be regu-
lated by ROS, TrxA might contribute to the oxidative stress 
defence by influencing SoxR activity. 

ROS and oxygen tension also affect the expression of 
thioredoxin genes in the related facultatively photosynthetic 
bacteria R. sphaeroides and R. capsulatus. The trxA genes 
of both R. sphaeroides and R. capsulatus are induced by an 
increase of oxygen, while the trxC gene of R. capsulatus is 
slightly repressed (Pasternak et al. 1996; Li et al. 2003a). 
All Rhodobacter thioredoxin genes also respond to oxida-
tive stress. Expression of trxA and trxC in Rhodobacter is 
strongly induced in response to various ROS-inducing 
agents (Zeller et al. 2006b). Expression studies of trx genes 
in oxyR mutants of Rhodobacter indicate an involvement of 
OxyR in the regulation of the trxC gene under oxidative 
stress conditions (Zeller et al. 2006b). In contrast to the 
regulation of trxC, and in agreement with the situation in E. 
coli, expression of trxA is not regulated by OxyR. So far, 
the mechanism of trxA regulation in Rhodobacter under 
oxidative stress conditions is unknown. Although many 
Gram-positive bacteria encode OxyR homologues, they use 
other regulators to control trx gene expression under oxi-
dative stress. In Bacillus subtilis, the essential trxA gene is 
under control of the vegetative sigma factor �A and is also 
transcribed by the general stress sigma factor �B (Scharf et 
al. 1998). Transcription initiating at the �A-dependent pro-
moter is induced by H2O2 (Scharf et al. 1998). In addition, 
induction of the B. subtilis trxA and trxB (encoding the thio-
redoxin reductase) genes by disulfide stress (induced by 
diamide; Leichert et al. 2003) depends on the global regula-
tor Spx (Nakano et al. 2003; Zuber 2004). This activation 
requires a direct interaction between the RNA polymerase 
alpha-subunit and the active form of Spx that has an inter-
molecular disulfide bond (Nakano et al. 2005). The mecha-
nism of Spx-dependent transcriptional activation is unique 
in that it does not involve initial Spx-DNA interaction 
(Nakano et al. 2005). 

In Streptomyces coelicolor trxA and trxB (encoding 
thioredoxins reductase) constitute an operon that is under 
direct control of the alternative sigma factor �R (Paget et al. 
1998; Li et al. 2002, 2003b). The trxC gene was also found 
to be a member of the �R regulon (Paget et al. 2001; Li et al. 
2002). The activity of �R is controlled by the anti-sigma 
factor RsrA. Oxidative stress induces intramolecular disul-
fide bond formation in RsrA, which causes it to lose affinity 
for �R, thereby releasing �R to activate transcription of 
trxBA (Kang et al. 1999; Li et al. 2002; Bae et al. 2004). 
Interestingly, oxidized RsrA is a direct substrate for reduced 
thioredoxin, which allows the formation of the �R-RsrA 
complex, thereby establishing a feedback loop of regulation 
(Kang et al. 1999; Li et al. 2002, 2003b). 

Reactive oxygen and nitrogen molecules are generated 
by mammalian and plant cells as a defence strategy against 
bacterial infections. Therefore, thioredoxins are not only 
important proteins for the oxidative stress response in non-
pathogenic bacteria, but they may also influence the survi-
val of pathogens in host cells. 

An alternative sigma factor, SigH, is involved in the 
regulation of the trxC and trxB2 genes in the intracellular 
pathogen Mycobacterium tuberculosis (Raman et al. 2001; 
Manganelli et al. 2002). SigH regulates the expression of 
the stress-responsive (heat and oxidative stress) sigma fac-
tors SigE and SigB, suggesting a central role of SigH in a 
network regulating heat and oxidative stress responses (Ra-
man et al. 2001; Manganelli et al. 2002). 

In S. aureus several oxidative stress compounds (dia-
mide, t-BOOH and the redox cycling agent menadione) in-
duce the trxA and trxB genes, while no effect of H2O2 was 
observed (Uziel et al. 2004). As in B. subtilis, the induction 
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of trxA and trxB seems to be dependent on Spx activity but 
does not involve the stress sigma factor �B (Uziel et al. 
2004; Pamp et al. 2006). 

In other bacteria, a role of thioredoxins in the oxidative 
stress response has been shown, the mechanism of trx regu-
lation under these conditions however, remains in most 
cases elusive [e.g. H. pylori (Windle et al. 2000; Comtois et 
al. 2003; Baker et al. 2001); Oenococcus oeni (Jobin et al. 
1999); M. leprae (Wieles et al. 1997); D. desulfuricans 
(Sarin and Sharma 2006)]. 

Expression of trx genes is not only regulated under oxi-
dative stress conditions. Reports are available that show an 
involvement of electron flow and light on trx gene expres-
sion. In the photoheterotrophic cyanobacterium Synecho-
cystis sp. PCC 6803, expression of the trxA gene has been 
described to be transcriptionally regulated by the photosyn-
thetic electron transport (Navarro et al. 2000). In this study 
it was shown that trxA expression is regulated in response 
to light and glucose availability, indicating that an active 
electron transport is required. Primer extension analysis 
strongly suggested that trxA is transcribed from two proxi-
mal promoters containing a -10 TATA box similar to the E. 
coli consensus promoters (Navarro et al. 2000). Unlike the 
trxA mRNA, the amount of thioredoxin protein was not 
regulated by light indicating that thioredoxin protein is very 
stable and that the trxA expression is likely to be primarily 
regulated at the transcriptional level, rather than at the pro-
tein level (Navarro et al. 2000). 

Regulation of thioredoxin genes in response to light and 
photosynthetic electron flow has also been suggested in the 
facultatively photosynthetic bacterium Rhodobacter (Zeller 
T., Li K., Metz S. and Klug G, unpublished results). In this 
organism, trxC expression appears to be specifically regu-
lated by blue light. OxyR, shown to regulate the transcrip-
tion of trxC in response to the redox state and oxidative 
stress in R. capsulatus (Zeller et al. 2006b) as well as the 
TrxC protein itself and DNA gyrase (see below), seem not 
to be involved in this light-dependent regulation of trxC. 
The exact mechanism of this regulation is currently under 
study. An overview of thioredoxin genes, their regulation 
and regulators involved is given in Table 2. 
 
INFLUENCE OF THIOREDOXINS ON GENE 
EXPRESSION AND PROTEIN ACTIVITY 
 
Beside their function as thiol-disulfide reductases, thiore-
doxins seem also to influence gene expression and to parti-
cipate in regulation of protein activity. 

An influence of thioredoxins on gene expression has 
mostly been demonstrated by mutant or depletion analysis. 
Significantly increased expression of the genes grxA, fpg 
(DNA repair glycosylase Fpg), nrdA and nrdB (ribonucleo-
tide reductase) were observed in E. coli strains lacking both 
TrxA and glutathione reductase or TrxA and glutaredoxin 1 
(Gallardo-Madueno et al. 1998; Prieto-Alamo et al. 2000). 
In R. capsulatus, the trxC mutant shows much stronger 

H2O2-induced expression of acnA (aconitase A), fur (ferric 
uptake regulator), gorA, katG and stronger paraquat induced 
expression of acnA, fpr (ferredoxin/flavodoxin reductase), 
fur, gorA, and katG than the wild type (Li et al. 2004a). 
Smits and colleagues (2005) also reported the effects of 
thioredoxin depletion on global transcription levels in B. 
subtilis. Since thioredoxins have so far not been reported to 
act as transcriptional regulators, it is likely that these re-
ported transcriptional changes represent indirect effects of 
thioredoxin, probably by an altered cellular redox state due 
to thioredoxin depletion (Li et al. 2004a; Zeller et al. 
2006b). Nevertheless, reports accumulate showing that thio-
redoxins also directly participate in gene expression and 
protein activity. 

In 2004, a new signalling pathway from thioredoxin to 
transcription of photosynthesis genes via the influence of 
thioredoxins on gyrase activity was discovered in Rhodo-
bacter (Li et al. 2004b). In this organism, thioredoxins have 
been demonstrated to be involved in the redox-dependent 
regulation of photosynthesis genes (namely the puf and puc 
operon) (Clement-Metral 1979; Pasternak et al. 1999; Li et 
al. 2003c). Decreased levels of TrxA lead to lower increase 
of puf and puc mRNA levels after a drop of oxygen tension 
compared to wild type strains in R. sphaeroides and R. cap-
sulatus (Pasternak et al. 1999; Li et al. 2004b). Surprisingly, 
a trxC deletion mutant of R. capsulatus showed a stronger 
increase of puf and puc mRNA levels after drop of oxygen 
tension (Li et al. 2003a). In search for proteins interacting 
with Rhodobacter thioredoxins, the gyrase B subunit was 
identified by a yeast-two hybrid screening (Li et al. 2004b). 
The authors showed that trxA mutants of Rhodobacter ex-
hibit lower gyrase supercoiling activity than the wild type. 
In contrast, the trxC mutant exhibits higher gyrase super-
coiling activity. In vitro experiments supported the view of 
modulation of gyrase supercoiling activity by thioredoxin. 
Reduced but not oxidized TrxA can interact with the gyrase 
B subunit and increases its supercoiling activity. In contrast, 
oxidized but not reduced TrxC interacts with gyrase B and 
decreases its supercoiling activity. Since the expression of 
many genes is influenced by the supercoiling status of the 
DNA (Dorman et al. 1988; Franco and Drlica 1989; Schnei-
der et al. 2000), this implies an important function of thio-
redoxins on the expression of many genes. The same effect 
of thioredoxins on gyrase activity as in Rhodobacter was 
found in E. coli, suggesting that the gyrase-mediated effect 
of thioredoxins might be a common redox-dependent sig-
nalling pathway in bacterial adaptation (Li et al. 2004b). A 
model for the action of thioredoxins on gene expression is 
shown in Fig. 2. 

Interestingly, in the same organism (R. sphaeroides), 
TrxA was also shown to influence the expression of photo-
synthesis genes independently of gyrase activity. In this 
case, the influence of TrxA seems to result from its effect on 
cellular redox state (Han Y and Klug G., unpublished re-
sults). 

Further evidence of the participation of thioredoxins in 

Table 2 Regulation of bacterial thioredoxin genes by different stimuli and/or different conditions.  
? indicates unknown regulator; brackets indicate a putative but so far not established regulator. See text for detailed description. 
Species Stimulus or condition Gene Regulator 
Escherichia coli Oxidative stress trxC OxyR 
 Stationary phase trxA cAMP, ppGpp 
Rhodobacter Oxidative stress  trxA, trxC OxyR; ? 
 Oxygen tension trxA, trxC ? 
 Blue light trxC ? 
Bacillus Oxidative stress  trxA �A¸�B, Spx 
Streptomyces Oxidative stress trxA, trxC �R 
Mycobacterium Oxidative stress, heat stress trxC Sig H 
Staphylococcus Oxiative stress trxA Spx 
Helicobacter Oxidative stress trxA, trxC ? 
Oenococcus Oxidative stress, heat stress trxA ? 
Desulfovibrio Anaerobic growth conditions trxA, trxC ? 
Synechocystis Photosynthetic electron transport, light, glucose availability trxA (cytochrome b6f complex), ? 
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regulatory pathways was provided by Kumar et al. (2004), 
who characterized the thioredoxin-associated E. coli prote-
ome. In this study, a total of 80 proteins associated with 
thioredoxin were identified, implicating the involvement of 
thioredoxin in at least 26 distinct cellular processes in-
cluding transcriptional regulation, cell division, oxidative 
stress, energy transduction, protein folding and several bio-
synthetic pathways. Several transcription factors (NusG, 
OmpR and RcsB) were also found to be associated with 
thioredoxin (Kumar et al. 2004). 

A Chaperon-like activity of thioredoxins has been 
reported in E. coli and H. pylori (Kern et al. 2003; McGee 
et al. 2006). By this activity, thioredoxins are involved in 
the regulation of protein activity. In E. coli, thioredoxin and 
thioredoxin reductases interact with folded and unfolded 
proteins and promote the functional folding of several pro-
teins (Kern et al. 2003). The chaperone properties of thiore-
doxin are at least partially independent from the active-site 
cysteines and therefore independent form the oxidoreduc-
tase activity of thioredoxin (Kern et al. 2003). In H. pylori, 
arginase activity is post-translationally stimulated by TrxA 
but not the homologous TrxC (McGee et al. 2006). In this 
bacterium, TrxA has chaperone activity that renatures urea- 
or heat- denatured arginase back to the catalytically active 
state. Thereby, the mechanism of TrxA mediated stimula-
tion of arginase is not likely due to redox control for cys-
teines. Since most oxygen- and nitrogen intermediates in-
hibit arginase activity; this damage is reversed by TrxA 
Thus TrxA although not acting in a redox role, protects H. 
pylori arginase form oxidative and nitosative stress (McGee 
et al. 2006). 

Thioredoxin-linked processes have also been identified 
in cyanobacteria. In Synechocystis sp. PCC 6803, Lindahl 
and Florencio (2003) have screened cytosolic and periphe-
ral membrane protein complements for proteins interacting 
with the cyanobacterial TrxA. They identified 18 cytosolic 
and 8 membrane-associated proteins as substrates for TrxA. 
One of the targets, phosphoglucomutase, which represents a 
metabolic branch point between storage and utilization of 
carbohydrates, was found to be activated by TrxA (Lindahl 
and Florencio 2003). 
 
CONCLUSIONS 
 
Thioredoxins are important protein thiol/disulfide reduc-
tases. In addition to this established role as disulfide reduc-
tases, thioredoxins possess functions important for many 
cellular processes including transcriptional regulation, cell 
division, oxidative stress, energy transduction, and protein 
folding. Despite their many functions, elucidation of the 

regulation of bacterial thioredoxin genes and the effects of 
thioredoxins on gene and/or protein regulation is still in an 
early phase. Nevertheless, available data demonstrate that 
expression of several thioredoxins is regulated in response 
to environmental changes. Continued expansion in know-
ledge of the regulation of bacterial thioredoxins and their 
involvement in gene regulation and protein activity will 
reveal additional intriguing mechanisms. This will help to 
build up regulatory networks for the maintenance of impor-
tant cellular functions under changing environmental condi-
tions. 
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