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ABSTRACT 
In this work, we contribute an insight into the ability of cationic peptides for the delivery of plasmid DNA in cells. Although most 
peptides used for cellular transfection are cationic, not all of them possess this potential. Using plasmid DNA bearing reporter genes and 
cells of the breast cancer MDA-MB 435 line, we show at first that only peptides in an �-helical structure can give high levels whereas 
peptides with a �-strand structure cannot. Amphipathic peptides rich in lysine, namely L10K5 or L13K6, adopting both an �-helical structure 
are able to be used for this task. Subsequently, we show that protamine, equally rich in basic arginine, but not having an �-helical structure, 
cannot alone efficiently deliver DNA. However, it improved the transfection level by cationic liposomes, undoubtedly by a condensing 
effect. This enhancement in transfection by protamine was not observed using the peptide L13K6 and this peptide did not behave as 
protamine to enhance the transfection level of cationic liposomes. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
During the past two decades, several works have been de-
voted to the research of non-viral carriers for efficient DNA 
delivery. The advantages over viral vectors include weak 
toxicity, reduced immunogenicity and thus safety in their 
use (Schatzlein 2001). The area includes almost cationic 
liposomes and cationic polymers (Felgner et al. 1994; 
Boussif et al. 1995). In association with these carriers, pep-
tides were initially used in a minor role for targeting (Shadi-
di and Sioud 2003), while the employment of cationic pep-
tides to carry DNA was dealt with in parallel (Wyman et al. 
1997; Planck et al. 1999) but has only recently been inten-
sively investigated. In this paper, using two typical ap-
proaches, we will contribute an insight into the use of pep-
tides for DNA delivery. 

The first concerns the true transport and delivery of 
DNA by peptides. Since protein transduction domains 
(PTD) tat isolated from (HIV)-1 TAT (fragment 48-60) and 
penetratin from Drosophila Antennapedia homeodomain 
(fragment 43-58) were shown to be able to transport pro-
teins and deliver them in an active form, there was an in-
crease in the number of papers devoted to peptides for deli-
very in living cells (Gratton et al. 2003; Ziegler et al. 2005; 
Zorko and Langel 2005). These were developed from mem-
brane-permeable carrier peptides, known as cell penetrating 
peptides (CPP) (Castano et al. 1999; Richards et al. 2005; 
Sauer et al. 2005; Kerkis et al. 2006). They were generally 
positively charged peptides, shorter than 30 amino acids, 
able to penetrate cell membranes and translocate different 

cargoes such as peptides, liposomes, oligonucleotides etc… 
into cells (Futaki et al. 2002; Coeytaux et al. 2003; Console 
et al. 2003; Albertshofer et al. 2005; Borghouts et al. 2005; 
Herbic et al. 2005; Melikov et al. 2005; Zorko and Langel 
2005; Kerkis et al. 2006). The potential of CPP to deliver 
nucleic acids into cells has been reported (Planck et al. 
1999) but still rarely. Most non-viral DNA carriers or pep-
tides for DNA delivery were designed on the basis of their 
cationic character to load negatively charged nucleic acids 
by electrostatic binding (El-Aneed 2004), and cellular deli-
very of DNA was assayed using oligo-arginine peptides, 
histidine-rich or lysine-rich peptides (McKenzie et al. 2000; 
Rittner et al. 2002; Kim et al. 2003; Kichler et al. 2006). 

The second concerns also the use of peptides for DNA 
delivery – but not directly – and necessitated a carrier such 
as a cationic liposome. This includes peptides which serve 
as a ligand, associated to the carrier for cellular targeting 
(Slimani et al. 2006) and signal peptides, associated to 
DNA, which, once internalized in the cell by the carrier, 
could conduct DNA towards the nucleus or towards the 
mitochondria (Zanta et al. 1999; Geromel et al. 2001). 

In a previous work, some of us observed that a leucine- 
and lysine-rich peptide of sequence KLLKLLLKLLLKLLK 
(L10K5� or LK15�) bearing 15 amino acids, with 5 cationic 
charges on lysines, was able to deliver oligodeoxynucleo-
tides (ODN) into cells (Boukhalfa-Heniche et al. 2004; 
Hernandez et al. 2006). In this work, we will show that this 
peptide can be used for delivery of plasmid DNA of 7100 
base pairs. In a comparative study with a LK-peptide 
having the same number of amino acids (i.e. 15), but with a 
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sequence favouring a �-strand conformation, we will de-
monstrate that the �-helical conformation of the peptide was 
the essential condition for the delivery of plasmid DNA in 
cancerous MDA-MB 435 cells. 

The main directive idea often associated with the trans-
port of DNA by cationic carriers was the condensation of 
DNA (Tecle et al. 2003). Using protamine, rich in arginine 
and well known for its effect on DNA compaction (Hersko-
vits and Brahms 1976), we will show that such a condensa-
tion was not sufficient for plasmid DNA transport. A com-
parative study of CD spectra of protamine and LK19� will 
provide proof in favour of the structural effect of the pep-
tide on transfection. However, this condensation allowed to 
improve the cellular delivery of DNA by cationic liposomes 
(Li and Huang 1997; Harvie et al. 2003), and we will dis-
cuss how it was possible to use protamine for DNA delivery. 

 
MATERIALS AND METHODS 
 
Reagents 
 
OPTIMEM, glutamax-containing Dulbeco modified Eagle me-
dium (DMEM), fetal calf serum (FCS), penicillin/streptomycin, 
trypsine-EDTA and phosphate-buffered saline (PBS) were ob-
tained from In Vitrogen (Paisley, UK). Reagents were analytical 
grade and purchased from Sigma-Aldrich (Saint-Louis, MI), Carlo 
Erba (Milano, Italia) and Promega (Madison, WI). All other che-
micals were of the purest grade available. Dioleoyl phosphatidyl 
ethanolamine (DOPE) was purchased from Avanti Polar Lipids. 
Cationic lipid 3�[N-(N�,N�,N�-dimethylhydroxyethylaminopro-
pane)-carbamoyl] cholesterol iodide (DMHAPC-Chol) was syn-
thesized and liposomes were prepared with DOPE as described 
previously (Percot et al. 2004). 
 
Peptides LK15�, LK15�, LK19� and protamine 
 
Three peptides were studied and denoted as 
LK15� or L10K5�  KLLKLLLKLLLKLLK �-helical structure 
LK19� or L13K6� KLLKLLLKLLLKLLLKLLK �-helical struc-
ture 
LK15� or L7K8�  KLKLKLKLKLKLKLK �-strand structure 
 

They were synthesized at the Institut Pasteur (Paris) following 
a solid phase Fmoc procedure as previously described in detail 
(Boukhalfa-Heniche et al. 2004). Because of their low water solu-
bility, all the peptides were dissolved in methyl alcohol (MeOH), 
generally at the concentration of 1 nmol/μl of cationic charge. 

Peptides were characterized by mass spectrometry. Moreover, 
the secondary structures of LK15� and LK15� were investigated 
by CD and Raman spectroscopies (Boukhalfa-Heniche et al. 2004; 
Hernandez et al. 2006). 

Protamine sulfate was purchased from Sigma (Ref. P4505-
1G). That is an arginine-rich mixture of three peptides, YI, YII and 
Z, belonging to the family of clupeine, formed of 31-32 amino 
acids of sequence 
 
YI AR3RS3RPIR4PR3TTR4AGR4   20 R residues  
YII PR3TR2ASRPVR4PR2VSR4AR4 20 R residues  
Z AR4SR2ASRPVR4PR2VSR4AR4 21 R residues  
 

There are 20-21 arginine residues in each molecule. The pro-
duct is soluble in water. 
 
Plasmid DNA, reporter genes pCMV-�gal and 
complexes with peptides or liposomes 
 
pCMV-�gal plasmid used was a plasmid of 7.164 kb containing 
the �-galactosidase reporter gene sequence under the control of the 
cytomegalovirus promoter (pCMV) (Clontech, Palo Alto, CA). 
Plasmids were amplified in JM109 stain of Escherichia coli, and 
purified using a Qiagen Plasmid Maxi Kit (Qiagen GmbH, Hilden, 
Germany). The concentration of plasmid DNA was measured by 
UV absorption at 260 nm and plasmid DNA purity was controlled 
using the A260/A280 ratio and agarose gel electrophoresis. Plasmids 
were conditioned in Tris-EDTA buffer (pH 8). 

For the study of peptides, protamine or cationic liposomes as 
carriers, plasmid (0.1 μg/μl in water) was complexed at desired 
ratios by mixing with peptide (in MeOH), protamine (in water) or 
cationic liposomes (aqueous solution). 

For the study of the effect of protamine on the transfection by 
cationic liposomes or peptides, aqueous plasmid was mixed with 
aqueous protamine before the complexation with cationic lipo-
somes or peptides. 
 
Circular dichroism spectroscopy 
 
Samples were diluted at a concentration of 0.15 mg/ml, equiva-
lent to 36 μM for protamine and 100 μM for LK19�. 

Circular dichroism (CD) spectra from peptide samples were 
analyzed in the 180-250 nm range (bandwidth 1 nm) on a JASCO 
J-810 spectrophotometer equipped with a Peltier accessory. Sam-
ples were placed in suprasil quartz cells (with path lengths 0.01 
mm or 1 mm). Each spectrum corresponds to the average of 5 
scans with a speed of 100 nm/min (5 min of accumulation). CD 
spectra of the buffer were used as the baseline in all experiments. 
The measured ellipticity for each sample, [�]observed, was norma-
lized to obtain the so-called mean residue ellipticity, [�], by using 
the expression : [�]=[�]observed /10ncl, where n, c, and l are the 
number of residues in the peptide, the molar concentration and the 
path length of sample, respectively. Normalized ellipticity was ex-
pressed in deg cm2 dmol–1. 
 
Cells and growth conditions 
 
MDA-MB 435 cells were grown on plastic ware in monolayers at 
37°C in a humid atmosphere containing 5% CO2 in air. The gluta-
max-containing culture medium DMEM (In Vitrogen) was supple-
mented with fetal calf serum (FCS, 10%) and penicillin/strepto-
mycin (50 U/ml). 
 
Transfection protocol and transfection level 
measurements 
 
In order to determine the transfection levels, cells were seeded in a 
6-well Falcon plate (4.105 cells per well) on the day preceding 
transfection. Just before transfection, culture medium was replaced 
with 1 ml OPTIMEM without serum, and 20 �l peptide-plasmid 
complexes at desired charge ratio X (containing 3 nmoles of plas-
mid) were added. After 6 hours of incubation, OPTIMEM was re-
moved, replaced with culture medium containing serum. After 48 
h, cells were twice washed with PBS and the transfection level 
was measured using the chemiluminescence of �-galactosidase in 
the presence of APMGD (3-(4-methoxyspiro(1,2-dioxetane-3,2�-
tricyclo(3.3.1.1)decan)-4-yl)phenyl-�-D-galactopyranoside) sub-
strate with a Tropix Galactolight Plus kit (Applied Biosystems, 
Bredford, MA). Following the procedure of the supplier, the trans-
fected cells were lysed with 200 �l of a lysis solution containing 
0.5 mM of dithiothreitol (DTT) freshly added. After, 20 �l of the 
cell extract was incubated with 200 �l of the chemiluminescent 
substrate reagent (diluted to 1%) before 300 �l of the light emis-
sion accelerator reagent was added. Immediately after the mix, 
luminometric measurement was made using a BCL luminometer 
(Gouteyron Technologies, Vals le Puy, France) operating at integ-
ration mode for 10 seconds. Protein was titrated by using the Bio-
Rad DC Protein assay kit (Hercules, CA), in order to normalize 
results expressed in relative light unit per mg of protein (RLU/mg) 
as described previously (Percot et al. 2004). The base level of un-
transfected cells was measured and subtracted. 
 
RESULTS 
 
Circular dichroism results: structures of LK19� 
and protamine 
 
CD spectra of protamine and LK19� are displayed in Fig. 1. 
These results clearly show that protamine is rather unstruc-
tured in water, as confirmed by a negative signal peaking at 
ca. 198 nm. However a long high wavenumber tail follows 
the negative peak, leading us to think about the existence of 
some minor populations of ordered structures (presumably 
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�-type conformers) in aqueous solution. In contrast, the 19-
mer LK-peptide adopts an �-helical conformation, as mani-
fested by two negative bands at ca. 208 and 222 nm. The �-
helical structure of this peptide is shown to be independent 
of its environment in solution (pure water, methanol, PBS, 
phosphate buffer, etc.), as it is also the case for the 15-mer 
LK15� (see for more details, Boukhalfa-Heniche et al. 
2004; Hernandez et al. 2006). We have also previously 
shown that LK15� �has a natural tendency to adopt a sec-
ondary structure belonging to the �-family (Hernandez et al. 
2006), on the basis of the results obtained by optical spec-
troscopy. 
 
Transfection level: Effect of helical secondary 
structure and chain length of the LK peptides 
 
Transfection of MDA-MB 435 cells using peptides LK15�, 
LK15� and LK19� was carried out and �-galactosidase acti-
vity levels were measured. 

Fig. 2 represents the transfection level of peptides 
LK15�, LK15�, LK19� and protamine in MDA-MB 435 
cells. The results of �-galactosidase activity 48 hours after 
transfection are indicated. The level of naked DNA was 
negligible, showing that without carrier, the plasmid was 
not internalized in these cells. Results for peptide/DNA 
complexes with molar charge ratios X comprised in the 
range from 1 to 5 showed that the �-galactosidase activity 
was optimal with approximately X = 3, illustrated for LK19�. 

A comparative transfection of LK15� in an �-helical 
form and another, LK15�, in a �-form (sequence KLKLKL 
KLKLKLKLK) has been undertaken (Fig. 2A) in order to 
study the effect of the peptide conformation on the ability of 
cellular internalization. The structures of these peptides 
were studied by circular dichroism spectroscopy (Bouk-
halfa-Heniche et al. 2004). In the same experimental condi-
tions for transfection of MDA-MB 435 cells as described 
above and with the same molar charge peptide/DNA ratio X 
= 3, the results in Fig. 2A undoubtedly indicated that only 
the sequence inducing the alpha form gave a high level of 
transfection, while the peptides LK15� with a �-strand 
structure did not result in a noticeable level. 

On the other hand, an effect of the peptide length on the 
cellular permeation of peptide alone was reported (Castano 
et al. 1999). Such an effect on the delivery of plasmid DNA 
was observed by studying another peptide with 19 amino 
acids, LK19�, (sequence KLLKLLLKLLLKLLLKLLK 
with 6 cationic charges) synthesized and assayed in compa-
rison with LK15�. The results in Fig. 2B showed that the 
peptide length constitutes another factor affecting the trans-
fection level. Measurements of the �-galactosidase activity 
induced by the longer chain LK19� also with an � structure, 
indicated a clear enhancement effect. The level obtained 
with LK19� was 2.5-fold better than LK15�. 

 
Comparison of transfection levels by LK19� and 
protamine 
 
Now we consider a natural basic peptide, protamine. That is 
an arginine-rich peptide. When complexed with plasmid 
pCMV-� following the protocol as with LK19�, in varying 
the protamine/DNA weight ratio r up to 5, any of these 
complexes did not give a noticeable transfection level in 

Wavelength /nm

190 200 210 220 230 240 250 260 270
-10

-5

0

5

10

15

LK19 (L13K6) 100 μM in PBS
LK19 (L13K6) 100 μM in MeOH
Protamine 36 μM in pure water

[�
]x

10
-3

 /d
eg

 c
m

2  
dm

ol
-1

Fig. 1 CD spectra of LK19�, 100 μM in MeOH and in PBS and prota-
mine, 36 μM in water. See text for experimental procedures. 

LK15a LK15b
0

20

40

60

80

100

120

R
el

at
iv

e 
tr

an
sf

ec
tio

n 
le

ve
l (

%
)

Peptide

LK15aX3 LK19aX05 X1 X2 X3 X5
0

50

100

150

200

250

300

350

400

Tr
an

sf
ec

tio
n 

le
ve

l (
10

9  R
LU

/m
g)

Peptide/DNA molar charge ratio

Cells LK19 Protamine
0

20

40

60

80

100

120

140

R
el

at
iv

e 
tr

an
sf

ec
tio

n 
le

ve
l (

%
)

Carrier

A

C

B

Fig. 2 Transfection level in MDA-MB 435 cells, 48 h post transfection 
using (A) Peptide LK15� compared with LK15�� molar charge ratio pep-
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w/w ratio r = 2. Other experimental conditions as described in the text. 
Bars correspond to ± SD of 3 or 6 experiments. 
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MDA-MB cells after 48 h (Fig. 2C). This indicated that 
protamine can not used alone as a carrier for DNA. 

As discussed below, this difference which is similar to 
that between levels of LK15� and LK15� suggested us to 
investigate the structures of protamine and LK19� by circu-
lar dichroism spectroscopy. In the conditions used for trans-
fection in this work, results as indicated in Fig. 1 showed 
that LK19� has an �-helical structure, whereas protamine 
did not show any bands characteristic of an �-helical struc-
ture. Such an �-helical conformation of LK19� seems to be 
the key structural factor for the uptake of the DNA/peptide 
complex (Rittner et al. 2002; Kerkis et al. 2006). 
 
Protamine enhanced the transfection level of 
cationic liposomes 
 
Although the complex of protamine alone with DNA did 
not deliver the latter in MDA-MB 435 cells, this complexa-
tion prior to mixing with cationic liposomes enhanced their 
transfection level as indicated in Fig. 3A. For this study, 
cationic liposomes DMHAPC-Chol/DOPE 1:1 were used 
and the transfection levels were measured 48 h after incuba-
tion. As can be seen in this Figure, where the molar charge 
ratio X’ (cationic lipid/DNA) was kept constant and equal 
to 2, complexes with various w/w ratios r (protamine/DNA) 
prior to be mixed with cationic liposomes gave levels much 
higher than that of liposomes. This enhancement was in 
accordance with the improvement by protamine in the lipid-
protamine-DNA complex, known as LPD (Li and Huang 
1997) and investigated by other workers. 
 
Protamine did not enhance the transfection level 
of LK19� 
 
The same experiment was carried out with peptide LK19� 
instead of cationic liposomes DMHAPC-Chol. As indicated 
in Fig. 3B, the complexation of protamine with DNA prior 
to the mix with peptide LK19� did not enhance the trans-
fection level compared to peptide. This Figure also showed 
that complexes with increasing w/w ratios of protamine/ 
DNA prior to mixing with LK19� gave levels even lower 
than that obtained with LK19�. One of the reasons may be 
the competition of protamine with LK19� – since both of 
them are positively charged – in the association with nega-
tive DNA. 
 
Effect of LK19� on the transfection level of 
cationic liposomes 
 
The last question was to examine whether the enhanced ef-
fect on cationic liposomes DMHAPC-Chol/DOPE was also 
observed when using LK19� in place of protamine. For this, 
LK19� was complexed with DNA (charge molar ratio X) 
prior to being mixed with liposomes (charge ratio cationic 
liposome/DNA X’ = 2) before transfection of MDA-MB 
435 cells. Results in Fig. 3C showed that, compared with 
cationic liposomes, at small ratios of peptide LK19� /DNA 
(X = 1), the level was enhanced but at higher ratios, the 
level was decreased to a level lower than that of liposomes. 
This decrease was not observed for protamine. It may be 
that a competition of two cationic species, DMHAPC-Chol 
and LK19�, occurred. Thus, although both LK19� and prot-
amine are cationic peptides, there was a difference in the 
behaviour of LK19� compared with protamine. 
 
DISCUSSION AND CONCLUSION 
 
The above results proved that peptides containing basic 
amino acids such as lysine or arginine are potentially able to 
be used for the delivery of plasmid DNA into cells. The 
main observation was that a sequence allowing an �-helical 
structure was necessary for a peptide to be an efficient car-
rier. That was the case of LK15� and LK19� having a lon-
ger chain and giving a 2.5-fold level better than LK15�. 

Concerning protamine, which was not in an �-helical 

structure, although its high potential to condense DNA 
(Herskovits and Brahms 1976), this condensation alone is 
not sufficient for an efficient delivery into MDA-MB 435 
cells. This may be explained by the fact that in the complex 
with DNA, protamine preserved the B-form structure of 
DNA but was not in an �-helical structure (Herskovits et al. 
1976). Moreover, as was mentioned by Tsuchiya (2006) for 
HeLa and A549 cells, the low uptake may also probably be 
due to the retention in the endosomes after internalization in 
the cell. 

Although protamine alone can not deliver plasmid DNA, 
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Fig. 3 Effect of precondensation of DNA (D) by protamine (P) on the 
transfection level in MD-MB 435 cells 48 h post transfection by (A) catio-
nic liposomes DMHAPC-Chol/DOPE 1:1 (L) and (B) cationic peptide 
LK19�. (C) Effect of precondensation of DNA by cationic peptide LK19� 
(p) on the transfection level using cationic liposomes DMHAPC-Chol/ 
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Other experimental conditions as described in the text. Experiments were 
in duplicate. 
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this peptide improved the transfection of cationic liposomes. 
The improvement observed can be explained by a synergis-
tic effect contributed by protamine and cationic lipids. Prot-
amine precondensed the plasmid and then cationic lipo-
somes, besides their own ability to carry DNA to cross the 
plasma membrane, promoted the release of DNA from the 
endosomes (Zelphati and Szoka 1996). This improvement 
may also be attributed to the presence of nuclear localiza-
tion sequence of arginine in the molecule and the protection 
against DNAse degradation (Tsuchiya et al. 2006). 

It is also important to note that cationic peptides were 
not used at a stochiometric ratio with DNA but in excess. It 
may be that in the case of cationic peptide LK19�, the 
molecules in excess disturbed the plasma membranes and 
prepared the way for the internalization of complexes with 
DNA. This argument conveniently explains why LK19�, 
with an �-helical structure can be used for an efficient trans-
fection while protamine, although in excess, but without an 
�-helical structure, can not. 

In conclusion, for cell-penetrating peptides or cationic 
liposomes, the ability to cross the plasma membrane is 
obviously essential for the cellular internalization of DNA. 
However, we think that cationic peptides such as LK19� or 
protamine can also be used for DNA delivery in cells, but 
each peptide has its ability, the former directly acting as a 
carrier, the latter indirectly contributing by a precondensa-
tion prior to the association with cationic liposomes. 
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