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ABSTRACT 
Different aspects related to floral development have a close link to fruit set failures in apricot and other fruit trees. In this work we review 
studies on flower bud development, pollen viability and germinability, ovule development and longevity, fertilization, as well as on 
molecular bases of self- and cross-(in)compatibility. A high flower buds drop and a scarce flower bud production of some apricot cultivars 
affect negatively fruit set. Climatic conditions during flowering influence pollen germination and pollen tubes growth. A delay in the 
ovule development at anthesis has been found as genotype-dependent in apricot and this trait has been related to low percentages of 
fertilisation. Also differences in fruit set observed between cultivars may be related to the ability of the ovules to develop and mature after 
anthesis. Abnormal embryo sacs or ovules have been observed in apricot at different stages of flower development, which is a direct cause 
of low fruit set. Different plant growth regulators can be useful to regulate different processes. The knowledge of the incompatibility 
phenotype for many apricot cultivars has allowed advising about the planting of single-cultivar orchards. The study of the inheritance of 
this and other traits in apricot and other fruit trees has allowed planning of hybridisations to minimise or eliminate the production of 
undesirable seedlings, increasing the efficiency of the breeding programmes. Furthermore, molecular studies and characterization of S-
alleles in apricot have allowed the development of molecular markers for self-(in)compatibility, a successful tool for breeding. All 
together, these studies on the floral development in apricot have provided valuable information to help select the appropriate cultivars for 
producers and to avoid losses caused by an inadequate cultivar selection. 
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INTRODUCTION 
 
Apricot (Prunus armeniaca L.) is a very appreciated fruit 
for its potential health benefit due to a high content of caro-
tenoid and phenolic compounds that are present in many 
cultivars (Ruiz et al. 2005a, 2005b). Productivity is often 
erratic in many apricot cultivars depending of several and 
frequently unclear factors. It is known that fruit set is affec-
ted by climatological events prior or during flowering (Egea 
1995). The influence of weather conditions on pollination, 
stigma receptivity, ovule fertility, ovule longevity and fruit 
set have been widely studied in many apricot varieties (Bur-
gos et al. 2004). 

There are many factors that affect productivity before 
blooming. Failure in bud development, inadequate bud pro-
duction and high flower bud drop have a negative influence 
on fruit production and yield (Legave 1978). 

Different aspects of reproductive biology such as self-
compatibility, pollen viability, the stage of development of 
the ovules at bloom or the fertilization process are impli-
cated in a successful yield. Pollen germination is strongly 

influenced by environmental conditions such as high tempe-
ratures during flowering (Burgos et al. 2004). Yield of 
male-sterile apricot cultivars can be scarce due to inade-
quate pollen transfer from other cultivars. Male sterility is a 
heritable trait and can be avoided by breeders through selec-
tion of homozygous fertile parents (Burgos and Egea 2001). 
Delayed ovules that are not able to develop, produce low 
fertilization percentages of flowers in some apricot cultivars 
(Alburquerque et al. 2004b). 

The presence of some plant growth regulators at speci-
fic levels prior or during flowering has been described as a 
positive influence on the development of reproductive or-
gans in fruit tree flowers (Naylor 1984). Furthermore, treat-
ments with different plant growth regulators have been ap-
plied to improve fruit set. 

Traditionally the self-incompatibility has been identi-
fied as the main cause of poor crops in apricot, as in other 
fruit species. Nowadays, self-compatible apricot cultivars 
are required by farmers to avoid the use of pollinators. 
There are many studies about the inheritance of compatibi-
lity and consequently modern technologies have been deve-
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loped to determine the genotypes of different cultivars (Ha-
lász et al. 2005; Vilanova et al. 2005). 

Studies on the flower biology may help farmers to bet-
ter choose cultivars well adapted to specific climatic condi-
tions. This review tries to give an overview of the state of 
the art in the research on apricot floral biology and the dif-
ferent aspects that can influence on the final yield. 
 
FLOWER BUDS 
 
Flower bud drop has been widely studied in stone fruits, 
because it negatively affects flower production and there-
fore the final number of the fruits yielded (Hendrickson and 
Veihmeyer 1950; Weinberger 1956; Brown 1958; Monet 
and Bastard 1971; Legave 1978). 

Different factors may influence development and flower 
bud drop. So, in temperate fruits, such us peach (Prunus 
persica L. Batsch) (Erez and Lavee 1971), or apple (Malus 
domestica Borkh) (Jackson et al. 1983) the absence of ade-
quate chilling or unfavourable spring temperatures have 
been related to reductions in growth rate and development 
and low yield. In sweet cherry (Prunus avium L.), improved 
flower quality and fruit set have been associated with in-
creases in chilling requirements being satisfied (Mahmood 
et al. 2000). Limited winter chilling has also been consi-
dered a cause of flower bud drop in apricot when cv. ‘Polo-
nais’ was studied (Legave 1978). However, other authors 
did not observe an influence of chilling on apricot flower 
bud drop or bud development. Viti and Monteleone (1991) 
indicated that the abnormalities found in flower buds of 
four apricot cultivars (‘Polonais’, ‘Portici’, ‘Reale d’Imola’ 
and ‘Rival’) can not be attributed to unsatisfied chilling re-
quirements or late frost. Similarly, no correlation was found 
between lack of chilling and flower bud drop in the apricot 
cultivar ‘Guillermo’ (Alburquerque et al. 2003). In other 
crops, such as grape, high temperatures were associated 
with good production, since probably warm temperatures 
are required for flower bud initiation and development 
(Caprio and Quamme 1998). 

Traditionally, problems in flower bud development have 
been associated with deficit irrigation treatments. Benzoni 
and Dunstone (1985) found that Jojoba plants (Simmondsia 
chinensis Link Schneid) need enough available water to 
complete flower bud morphogenesis. Furthermore, Benzoni 
et al. (1992) observed that the final steps of jojoba flower 
bud development were inhibited by water stress and that 
blooms were delayed. 

The effects of timing and severity of postharvest water 
stress on productivity of different species are contradictory. 
So, in nectarine (Prunus persica L. Batsch) drought stress 
delayed flower bud development and flower buds with 
double pistils were found in the cultivar ‘Snow Queen’ 
(Naor et al. 2005). However, water-stressed pomelo trees 
(Citrus grandis L. Osbeck) showed an increase in the num-
ber of inflorescences, flower buds, and opened flowers, and 
the stress treatments had no effect on the percentage of fruit 
set (Nakajima et al. 1993). In the apricot cultivar ‘Búlida’ a 
significant decrease in yield was observed when drought 
stress was caused by withholding irrigation after harvest 

(Ruiz-Sanchez et al. 1999). Authors indicated that the de-
crease in fruit yield was due to early fruit drop. 

Some works indicate that irrigation deficit may cause 
abnormal apricot flower bud development (Brown 1952 
1953; Uriu 1964) and, therefore their drop (Hendrickson 
and Veihmeyer 1950). However, Ruiz-Sánchez et al. (1999) 
found no differences in flower bud drop, which was high in 
all irrigation situations, or flower quality between water 
stress treatments during two consecutive years. Furthermore, 
when different irrigation doses and treatments were applied 
to one apricot cultivar there was no influence on flower bud 
drop and large flower bud drops were recorded in all treat-
ments (Alburquerque et al. 2003). 

A strong influence of apricot genotypes on flower bud 
drop has been reported by different authors. Cultivars ‘Ber-
geron’, ‘Badami’, ‘Royal’ and ‘Stark Early Orange’ showed 
a higher percentage of damages or flower buds drop than 
‘Priana’, ‘Colomer’ ‘Polonais’ and ‘Canino’ (Legave et al. 
1982). When nine apricot cultivars were studied (Al-
burquerque et al. 2004a) flower bud drop percentages were 
lower in the earliest flowering cultivars than in the rest, 
where more than 50% of flower buds drop was recorded, as 
average, in a three-year study (Table 1). 

The type of shoot has a strong influence on bud drop 
and flower damage in apricot. Legave et al. (1982) recorded 
higher percentages of flower buds or young flower drop as 
well as damaged buds or flowers on long shoots than on 
spurs in ‘Polonais’. Similar results were found for long 
shoots in ‘Guillermo’ (Alburquerque et al. 2003) due to 
heavy bud drop (more than 90%) and a high number of mal-
formed flower buds. Therefore, long shoots should be elimi-
nated by pruning to save trees resources used in unproduc-
tive branches. 

Scarce flower bud production is indicative of poor pro-
ductivity. The production of flower buds has been repre-
sented by flower bud density (number of flower buds per 
branch section). In peach, nectarine (Okie and Werner 
1996) and apricot (Alburquerque et al. 2004a) flower bud 
density is highly genotype-dependent. Generally, early 
blooming apricots (‘Palstein’, ‘Priana’ and ‘Beliana’) 
showed the highest flower bud density, the best fruit set per-
centages and also the highest average productivity in a 
warm area during three consecutive years (Table 1). 

Knowledge on the biological behaviour of flower buds 
provides important information, since floral biology may 
have a strong influence on the final crop. 
 
POLLEN 
 
Pollen viability plays an important role in the fertilization 
process. Apricot pollen shows a high percentage of viability 
and a high number of germinated pollen grains that reach 
the ovary and the ovule (Fig. 1) in a wide range of tempe-
ratures (Vachun 1981; Egea et al. 1992) and the amount of 
produced pollen, for most apricot cultivars tested, was 
enough for a correct pollination (Egea and Burgos 1993). 

The effect of withholding irrigation on pollen quality 
was evaluated during two postharvest periods in drip-ir-
rigated ‘Búlida’ trees. The water stress treatment consisted 

Table 1 Parameters of flower biology in nine apricot cultivars.ª 
Cultivar % Flower buds drop Flower bud density 

(� buds/cm2) 
% Fruit set Productivity 

(� fruits/� flower buds)
‘Palstein’ 52.78 ± 3.43 180.32 ± 10.20 53.77 ± 2.09 25.87 ±  2.42 
‘Bebeco’ 49.41 ± 5.61 175.37 ± 31.55 36.37 ± 5.70 18.60 ±  6.35 
‘Goldrich’ 72.23 ± 4.35 165.65 ± 13.80 12.08 ± 2.16 2.87 ±  1.30 
‘Beliana’ 41.81 ± 6.03 145.42 ± 17.56 63.50 ± 3.30 45.23 ±  8.08 
‘Priana’ 50.53 ± 5.40 133.92 ± 11.94 56.40 ± 2.91 39.93 ± 13.50 
‘Bergeron’ 38.40 ± 4.84 112.16 ± 10.95 14.50 ± 3.08 9.53 ±  4.54 
‘Colorao’ 11.29 ± 2.52 109.96 ± 21.31 7.95 ± 1.06 6.80 ±  1.93 
‘Pepito’ 63.37 ± 3.26 71.34 ±  9.52 13.16 ± 2.33 5.20 ±  2.11 
‘Guillermo’ 60.29 ± 2.86 62.71 ±  7.03 23.43 ± 1.35 11.40 ±  1.86 

ª Data elaborated from results published by Alburquerque et al. 2004a 
Data are means ± standard errors 
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in withholding irrigation during 1.5 months immediately 
after harvest and was found to induce a decrease in pollen 
germination (Ruiz-Sanchez et al. 1999). 

Climatic conditions during flowering influence pollen 
germination and pollen tube growth in different fruit trees 
such as apricot, apple or pear (Pyrus communis) (Burgos et 
al. 2004). Recently, the influence of temperature on sweet 
cherry pollen germination was evaluated. High tempera-
tures reduced pollen germination only one day after an-
thesis (Hedhly et al. 2003). When several sweet cherry 
genotypes (‘Bing’, ‘Stark Hardy Giant’, ‘Van’, ‘Hedel-
fingen’, ‘Blanca de Provenza’, ‘Burlat’, ‘Reverchon’ ‘Tala-
guera Brillante’ and ‘Ambrunés’) were tested, a different 
behaviour of the pollen tube growth was found depending 
on the female cultivar (Hedhly et al. 2005a). Furthermore, 
in that work a significant temperature-genotype interaction 
affecting the number of pollen tubes reaching the base of 
the style was reported. In the sweet cherry cultivars ‘Sun-
burst’ and ‘Cristobalina’ increases in temperature reduced 
pollen germination, but accelerated pollen tube growth. 
However, pollen tube response was genotype dependent and 
the number of pollen tubes reaching the base of the style 
was reduced at 30ºC for ‘Sunburst’ and at 10ºC for ‘Cristo-
balina’, a cultivar native to Southeastern Spain and adapted 
to warm conditions (Hedhly et al. 2004). 

In the peach cultivar ‘Hakuho’ a negative effect of con-
stant high temperatures (above 25ºC) on pollen germination 
was observed. However, the pollen tube growth in the pistil 
was faster than at 15 or 20ºC (Kozai et al. 2004). Accor-
dingly, pollen germination and pollen tube growth kinetics 
was accelerated when temperature was increased from 10ºC 
to 20ºC and 30ºC, and a higher number of pollen tubes were 
found at the base of the style in the peach cultivars ‘Rose 
Diamond’, ‘Pavía Amarilla de Tolosa’ and ‘Moret’ (Hedhly 
et al. 2005b). 

Male sterility is defined as the failure of plants to pro-
duce functional anthers, pollen or male gametes (Kaul 
1988). When apricot pollen fertility was studied in many 
cultivars, only three male sterile cultivars (‘Arrogante’, 
‘Colorao de Moxó’ and ‘Colorao’) were described (García 
et al. 1988; Burgos 1991). Also the cultivar ‘Trevatt Blue’ 
showed anthers containing degenerated microspores, with 
some failure in tapetal breakdown, which was related to its 
low fruit set (Lillecrapp et al. 1999). 

Burgos and Ledbbeter (1994) proposed a preliminary 

model for the inheritance of male sterility in apricot after 
observing a relatively high number of male-sterile trees in 
progenies from controlled hybridisations among fertile cul-
tivars in apricot. This trait is controlled by one recessive 
gene, which was confirmed in a later work (Burgos and 
Egea 2001). Other mode of inheritance of male-sterility has 
been described in several fruit trees (Yamamoto et al. 1997; 
Besnard et al. 2000; Yaegaki et al. 2003) based in cytoplas-
mic genes interacting with nuclear genes (gene-cytoplasmic 
type). 

Nowadays, monoculture apricot production seems to be 
the best option for farmers and cultivars that do not need 
cross-pollination are chosen. In the case of male-sterile 
cultivars, yield could be restricted because their production 
depends on an adequate pollen transfer from other cultivars. 
This trait can be avoided by breeders through selection of 
homozygous fertile parents. Also, the information about the 
inheritance of male sterility has been used to develop mole-
cular markers that will allow detection and elimination of 
male-sterile plants at the seedling stage (Badenes et al. 
2000). 
 
OVULES 
 
The stage of development of the ovule at anthesis (just 
when the flower opens) and its influence on the reproduc-
tive process until fruit set have been studied in different 
species and important differences have been found between 
them. Thus, in sweet cherry (Eaton 1962; Stösser and An-
vari 1982), sour cherry (Stösser and Anvari 1982; Furukawa 
and Bukovac 1989) or plum (Thompson and Liu 1972) a 
well developed embryo sac at anthesis was found. However 
in other Prunus species, such as almond (Pimienta and 
Polito 1983) or apricot (Eaton and Jamont 1964; Toyama 
1980; Egea and Burgos 1994; Lillecrapp et al. 1999; Albur-
querque et al. 2002a) a genotype-dependent delay in ovule 
development has been described. 

Frequently, over-maturity of the megagametophyte has 
been considered a cause of poor fruit set (Eaton 1962; 
Marro 1976; Stösser and Anvari 1982). However, the delay 
in embryo sac development at anthesis has also been related 
to low percentages of fertilisation in apple (Sato et al. 1988) 
and fructification in pear (Jaumien 1968; Herrero 1983), 
sour cherry (Furukawa and Bukovac 1989) or apricot (Lille-
crapp et al. 1999). The influence of the cultivar on the deve-

 
Fig. 1 Pollen germination in pistils of the apricot cultivar ‘Pepito del Rubio’. Pollen tube germination on the stigma (A). Pollen tube growth in the 
style reaching the ovary (B) and detail of a pollen tube entering the ovule (C). Samples were processed 72 hours after pollination under controlled 
conditions of 20ºC. Bars represent 50 μm in (A) and (B) and 10 μm in (C). 
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lopmental stage of the ovules was greater than the year in 
nine apricot cultivars studied (Alburquerque et al. 2002a). 
In those cultivars with low chilling requirements, more than 
50% of functional ovules were recorded. However, late-
blooming cultivars, with high chilling requirements, had 
most of their ovules non functional at anthesis and often 
showed a low fruit set. In a later work, approximately 50% 
of apricot ovules were found at very immature stages 5 and 
6 days after anthesis, which seems to indicate that ovules 
stopped their development at early maturation steps (Albur-
querque et al. 2004b). These suggest that a certain degree of 
ovule development at anthesis is required for a successful 
fertilisation. Work by other authors supports this hypothesis 
and an incapacity of immature ovules to attract pollen tubes 
has been described (Cerovic and Micic 1999; Shimizu and 
Okada 2000). Different signals provided by the ovary and 
the ovule are necessary to orient and direct pollen tube 
growth to the right course (Herrero 2001), and particular 
secretions from ovary cells, along the pollen tube pathway, 
are required for the pollen tube to proceed towards the em-
bryo sac (Herrero 2000). Furthermore, changes in the mega-
gametophyte seem to play an important role in the entry of 
pollen tubes into the ovule. In cotton (Gossypium hirstium), 
the structure and composition of synergid cells change 
between pollination and the arrival of pollen tubes (Jensen 
et al. 1983), which enter the ovule through the synergid, 
causing its degeneration. In Arabidopsis thaliana it has 
been suggested that the egg and synergid cells are necessary 
to attract the male gametophyte toward the ovule. Also, 
non-functional or abnormal embryo sacs or ovules with 
delayed embryo sac development were unable to attract 
pollen tubes (Ray et al. 1997). Pollen tubes lost their way 
before entering the micropylar channel, which suggests that 
a functional and well-developed megagametophyte is res-
ponsible for pollen tube attraction. 

The fertilization process of apricot ovules is poorly 
understood. The biochemical and genetic events that are 
implicated or the hormonal changes that occurs during this 
process have not been deeply studied. There are some 
works related to changes of starch contents in apricot 
flowers or in ovules. The high values of photoassimilates 
stored at anthesis in the flowers decreased whereas the 

ovary size increased (Rodrigo et al. 2000). When the ovules 
were observed, primary ovule growth was inversely related 
to starch content and independent of the pollination (Ro-
drigo and Herrero 1998). The results of these works suggest 
a self-supported development of the ovary on its own car-
bohydrate content. 

Different development anomalies of the embryo sac 
have been observed at different stages of flower develop-
ment in different species, including apricot (Table 2). Twin 
nucellus or shortened integuments was the most frequent 
malformation observed in several apricot cultivars at anthe-
sis. The frequency of malformed apricot ovules was higher 
when they were analysed few days after anthesis than at full 
bloom (Burgos and Egea 1993; Burgos et al. 1995). In  
later works, ovules without megasporocyte and with a fai-
lure of elongation of the embryo sacs several days after an-
thesis were classified as malformed (Alburquerque et al. 
2000) and the presence of ovules without mother cell and 
embryo sacs were higher than the degenerated ovules at six 
days from anthesis (Alburquerque et al. 2004b). 

From the extensive studies carried on, it can be con-
cluded that the frequency of malformed ovules from anthe-
sis to ten days after anthesis in apricot is a trait with a 
strong genotype influence. 
 
INFLUENCE OF PLANT GROWTH REGULATORS 
 
Plants produce hormones that play a regulatory role in 
growth, development and reproduction process. Different 
plant growth regulators can be useful to regulate bud deve-
lopment, initiation or termination of bud dormancy, promo-
tion or delay of flowering, thinning of flowers, fruit set and 
fruit development, etc. (Naylor 1984). 

Promalin® is a mixture of the cytokinins 6-benzylade-
nine (BA) and gibberellins GA4 and GA7, which has been 
applied to different fruit trees to improve fruit set and also 
the fruit quality (Rai and Bist 1991; Son and Kuden 2005). 

The effect of different gibberellins was observed on 
flower bud development in peach (Reinoso et al. 2002). The 
treatment with the gibberellin 16,17-dihydro GA5 was the 
best and more consistent for enhancing flower bud develop-
ment. Gibberellic acid (GA3) applied at late developmental 

Table 2 Percentages of malformed ovules or aborted ovaries found in different fruit tree crops. 
Specie/cultivar % Examined ovules Type of malformation Reference 
Pear/ ‘Decana del Comizio’ 25 500 Embryo sacs with necrosis, ovules with two embryo sacs Bini 1972; Jaumien 1968
Avocado/ ‘Fuerte’ 20.7 692 
Avocado/ ‘Ettiger’ 40 1.400 
Avocado/ ‘Hass’ 15.6 416 
Avocado/ ‘Tova’ 15.3 431 

Twin ovules and embryo sacs, extra-ovary ovules, intra-
ovary abnormal positions, additional nuclei and immature 
ovules 

Tomer et al. 1976 

Olive/ ‘Manzanillo 12 158 
Olive/ ‘Rubra’ 10 134 
Olive/ ‘Swan Hill’ 84 289 

Ovules with a small cavity at the ovule micropylar end Rallo et al. 1981 

Apple/ ‘Golden Delicious’ 24 50 
Apple/ ‘Starkrimson’ 23 62 

Two or less completely developed embryo sacs Forino et al. 1987 

Sweet cherry/ ‘Windsor’ 4.8 21 Degenerated embryo sacs Eaton 1959 
Almond/ ‘Nonpareil’ - - Delayed ovule development Pimienta and Polito 1982, 

1983 
Banana/ ‘Chinese Cavendish’ - - 
Banana/ ‘Hsien Jen Chaio’ - - 

Protusion of the nucellus and nucellar cap through the 
micropyle 

Fortescue and Turner 2005

Apricot/ ‘Moniquí’ 0 80 
Apricot/ ‘Pepito del Cura’ 0 40 
Apricot/ ‘Gitano’ 1.25 80 
Apricot/ ‘Velazquez fino’ 1.5 80 
Apricot/ ‘Pepito del Rubio’ 2.5 80 
Apricot/ ‘Velazquez tardío’ 0 40 
Apricot/ ‘Carrascal’ 0 80 
Apricot/ ‘Candelo’ 1.25 80 

Twin nucellus or shortened integuments, which leave part 
of the nucellus in contact with the ovary wall 

Egea and Burgos 1994 

Apricot/ ‘Velazquez fino’* 18.5 302 
Apricot/ ‘Gitano’* 24.3 321 

“ Burgos et al. 1995 

Apricot/ ‘Moniquí Fino’* 18.8 341 “ Burgos and Egea 1993 
Apricot/ ‘Palstein’* 1 20 
Apricot/ ‘Goldrich’* 2 20 

Ovules without megasporocyte or no elongated embryo 
sacs 

Alburquerque et al. 2000

*Ovules collected from the day of anthesis to several days later 
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stages also hastened floral bud development and shortened 
the time to bloom. Also gibberellins may inhibit flowering 
in fruit trees. It is thought that these plant regulators, pro-
duced by seeds in developing fruits, move from fruits to 
nearby nodes and, there, they inhibit development of new 
flower primordia (Webster and Spencer 2000). The applica-
tion of exogenous GA3 can be used as an indirect thinning 
method, reducing thinning costs, since during flower bud 
induction may affect the floral process and partially reduce 
flowering in different species such as Japanese plum (Pru-
nus salicina Lindl. cvs. ‘Black Diamond’ and ‘Black Gold’) 
(González-Rossia et al. 2006), the ‘Springlady’ peach and 
the ‘Zincal 5’ nectarine (González-Rossia et al. 2007) or the 
‘Patterson’ apricot (Southwick et al. 1995). Additionally, 
gibberellin application combined with high temperatures 
has been found to induce early embryo sac degeneration in 
the sweet cherry cv. ‘Satohnishiki’ (Beppu et al. 2001). 

Blooming time is very important to avoid risk of frost 
damage. Delayed blooming times have been produced by 
using plant growth regulators (Dennis 1976; Sedgley 1990). 
In a recent work, the application of gibberellic acid and 
ethephon at high concentrations delayed full bloom and re-
duced percentages of opened flowers and fruit set in the 
apricot cv. ‘Shahroudi’ (Moghadam and Mokhtarian 2006). 

Polyamines (PAs) are involved in stimulation of cell 
division, regulation of rhizogenesis, embryogenesis, floral 
induction and differentiation of floral organs (Evans and 
Malmberg 1989; Martin-Tanguy 1996; Kakkar et al. 2000). 
Exogenous application of putrescine extended ovule longe-
vity and the effective pollination period in pear (Crisosto et 
al. 1988, 1992). PAs has been suggested to stimulate fruit 
set and the initial phase of fruit development for several 
fruits, such as apple (Costa and Bagni 1983; Biasi et al. 
1991), pear (Crisosto et al. 1986, 1988) and olive (Olea eu-
ropaea L.) (Rugini and Mencuccini 1985), among others. 
Kushad and Orvos (1990) found that the main percentage of 
the total PA content was localized in the reproductive or-
gans, and there were changes in conjugated and free PAs 
related to Citrus flower growth. Pritsa and Voyiatzis (2004) 
studied the fluctuations of free and conjugated spermidine 
and spermine in different organs of two olive cultivars, fin-
ding a relationship between PA fluctuations and develop-
mental processes such as floral differentiation, shoot growth, 
anthesis, fertilisation and fruit growth. 

In apricot polyamine levels varied differently with 
ovary development depending on the cultivar (Al-
burquerque et al. 2006). The exogenous application of put-
rescine to ‘Bergeron’ flowers, which had delayed ovules at 
anthesis, increased the percentage of functional ovules. 
These results support that exogenous polyamine application 
may hasten ovary and ovule development. 

 
 
 

SELF-(IN)COMPATIBILITY 
 
Incompatibility is the inability of a fertile seeded-plant to 
produce zygotes after self- or cross-pollination (self- or 
cross-incompatibility). This reaction is an active, regulated 
constraint of pollen tube growth where, depending on the 
species and the system operating, the process may be 
blocked at the initial steps of pollen hydration and germina-
tion on the stigma (Dickinson 1995), during pollen tube 
growth in the style (Matton et al. 1994) or further down in 
the ovary (Sage et al. 1994). 

Recognising and rejecting their own pollen before ferti-
lisation allows self-incompatible plants to promote outcros-
sing and improve genetic variability, which is considered to 
play an important role in the evolutionary success of the 
angiosperms. Outcrossing establishes a regulated degree of 
heterozygosity in the population. 

Although, traditionally, the European group of apricot 
(within which the apricots grown in Europe, North America, 
South Africa and Australia are included) has been described 
as self-compatible (Mehlenbacher et al. 1991), in the last 
two decades many widely-cultivated apricot cultivars have 
been described as self-incompatible (see review by Burgos 
et al. 2004). In fruit trees, incompatibility complicates horti-
cultural practices because self-incompatible clones require 
the addition of pollinators and the yield depends on abun-
dant pollen transfer among the trees. 

Most of the new apricot selections are self-compatible. 
However, in breeding programmes some self- incompatible 
parentals from the USA have been used to introduce virus 
resistance. Characterization for this trait in the progenies 
generated may allow detection of self-incompatible plants 
at the seedling stage and reduce cost considerably. Also, this 
information can help to avoid cross-incompatibility, which 
appears due to a short genetic base and reduced number of 
parentals used in crosses. 
 
Genetic control 
 
In Prunus, the incompatibility system operating in most of 
the studied species is controlled by one gene with several 
different alleles. Pollen is rejected when its S-allele is pre-
sent in the genotype of the style (Fig. 2A, 2B) and may 
growth if the S-alleles are different (Fig. 2C). Hence, an in-
compatibility reaction will occur between two plants if their 
genotypes at the S locus do not differ in at least one allele 
(Heslop-Harrison 1975). 

Sweet cherry was the first Prunus species where this 
model was described (Crane and Brown 1937). The same 
mechanism has been demonstrated in almond (Dicenta and 
García 1993) and apricot (Burgos et al. 1997). However, a 
different mode of inheritance was found in Japanese plum, 
for which it has been proposed that two genes with epistatic 
relationships control the trait (Arora and Singh 1990). 
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S1 S2 S1 S2

S1 S4
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S genotype 
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S-RNAase 
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Fig. 2 Representation of the self-(in)compa-
tibility system in apricot. After self-pollina-
tion pollen tube growth is arrested in the style 
(A). After cross-pollination only pollen tubes 
with S-alleles of different genotype that is 
found in the style, will grow (B) and (C). 
During a self-compatibility reaction, pollen 
tubes with the Sc genotype will grow in any 
pistil (D). 
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In apricot, alleles for self-compatibility would allow 
pollen tube growth in any style (Fig. 2D). Self-incompati-
bility alleles would stop pollen tube growth if the same 
allele was present in the pistil and the pollen grain (Burgos 
et al. 1997). Therefore, cross-incompatibility will occur if 
two cultivars do not differ in at least one S allele. Two 
groups of cross-incompatible cultivars have been described 
after controlled pollinations. One of them includes three 
Hungarian apricot cultivars (Nyéki and Szabó 1995) and the 
other the North American cultivars ‘Lambertin’, ‘Goldrich’ 
and ‘Hargrand’ (Egea and Burgos 1996). 
 
Molecular aspects of incompatibility 
 
Within the Rosaceae, a correlation between known geno-
types for self-(in)compatibility and bands resulting from 
electrophoresis of stylar extracts has been found in Japanese 
pear (Sassa et al. 1992; Hiratsuka et al. 2001) where the 
proteins have been characterised as glycoproteins with 
RNase activity (Hiratsuka 1992; Sassa et al. 1993; Hira-
tsuka et al. 1995; Hiratsuka and Okada 1995). Similar re-
sults have been found in apple (Sassa et al. 1994), and Eu-
ropean and Chinese pears (Tomimoto et al. 1996). 

In Prunus, similar studies have been carried out in 
sweet cherry (Mau et al. 1982; Boskovic and Tobutt 1996; 
Boskovic and Tobutt 2001) and almond (Boskovic et al. 
1997; Tao et al. 1997; Certal et al. 2002). In our laboratory, 
a good correlation was established between RNases from 
stylar extracts and the available information on (in)compati-
bility genotypes of different apricot cultivars. It was also 
demonstrated that these proteins were inherited as if they 
were the products of the S gene (Burgos et al. 1998) and 
this methodology was used to genotype unknown cultivars 
and selections from the breeding programme (Alburquerque 
et al. 2002b). 

A further step in the molecular research on S-alleles in 
fruit trees was the use of a combination of S-allele-specific 
primers, designed from non-conserved sequences from each 
allele in apple, and the digestion of PCR products with S-
allele-specific restriction enzymes (Janssens et al. 1995). 
Results from this approach to the identification of S-alleles 
correlated perfectly with information on genotypes from 
phenotypic and RNases analyses and it is a rapid and useful 
method for determination of the genotype of different apple 
cultivars (Sakurai et al. 1997, 2000). In apple 15 different 
S-alleles have been identified using this methodology 
(Broothaerts 2003). 

The same strategy, with or without modifications, has 
been used to design specific primers for S-alleles in almond 
(Tamura et al. 2000; Channuntapipat et al. 2003), pear 
(Zuccherelli et al. 2002), sweet cherry (Tao et al. 1999; 
Yamane et al. 2000; Wiersma et al. 2001; Sonneveld et al. 
2001) and Japanese apricot (Yaegaki et al. 2001). 

The applicability of the S-gene-specific consensus PCR 
primers designed from sweet cherry sequences was tested in 
apricot (Halász et al. 2005). Cherry consensus primers am-
plified 11 out of 16 possible alleles. 

In apricot, the alleles S1, S2 and S4  have been sequenced 
completely (Romero et al. 2004) and were found to be 
highly haplotype-specific. Additionally, the S-RNases were 
expressed only in style tissues but not in pollen or leaves 
whereas the F-box allelic variants (probably the pollen de-
terminants) were only expressed in pollen. All these results 
support these genes as candidates for the pistil and pollen 
determinants of genetic incompatibility in apricot. A further 
step in this research allowed the design of primers from 
these sequences in order to amplify different S-alleles in 
apricot. Combining two sets of consensus primers to am-
plify fragments containing the first and the second S-RNase 
introns all S-alleles could be distinguished (Vilanova et al. 
2005), including the self-compatibility allele that has been 
found in all self-compatible apricot cultivars tested to date 
(Alburquerque et al. 2002b) including self-compatible Ira-
nian cultivars (Hajilou et al. 2006). 

A recent study goes further inside the molecular charac-

teristics of the self-compatibility allele and found that 
whereas the Sc-RNase is unaltered, an insertion was found 
in the SFBc gene, resulting in the expression of a truncated 
protein. Additionally, the allele S2 from the cultivar Canino 
(S2Sc) was found, by PCR analysis of its progenies, to over-
come also the incompatibility barrier. However, differences 
were not found with the wild allele at the S locus and there-
fore other factors, independent from this locus, are also re-
quired for gametophytic self-incompatibility in apricot 
(Vilanova et al. 2006). 
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