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ABSTRACT 
The polyamines (PAs), putrescine (Put), spermidine (Spd) and spermine (Spm), are small aliphatic amines that are ubiquitous in all living 
organisms. PA metabolism in higher plants is involved in both biotic and abiotic stresses including nutrient deficiency, salitniy, hyper-
osmosis, temperature stress, drought, pH, hypoxia, paraquat, environmental pollutants, and wounding. PA biosynthetic pathway has now 
been revealed at molecular level in plants and more and more molecular evidences support the roles of PA in plant stress responses, to 
which transgenic approaches to modulate PA biosynthetic genes have provided further evidence. Transcriptomic and proteomic 
approaches will help to elucidate the roles of PA in signaling network under environment stresses. 
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INTRODUCTION 
 
Polyamines (PAs) are low molecular weight polycations 
found in all living organisms, except two orders of Archaea, 
Methanobacteriales and Halobacteriales (Hamana and 

Matsuzaki 1992). In plants, the most common PAs are the 
diamine putrescine, the triamine spermidine and the tetra-
mine spermine, which have been implicated in a wide range 
of plant growth and developmental processes including cell 
division, embryogenesis, morphogenesis, fruit development, 



Plant Stress 1(2), 173-188 ©2007 Global Science Books 

 

fruit ripening, leaf senescence and response to environ-
mental stresses (Bouchereau et al. 1999; Bagni and Tassoni 
2001; Kaur-Sawhney et al. 2003; Bagni and Tassoni 2006). 
During the past few years, a number of genes encoding PA 
biosynthetic enzymes have been isolated in different plants. 
Numerous transgenic plants with perturbed PA metabolism 
have been produced to elucidate their cellular functions. 
Furthermore, the updated transcriptomic and proteomic ap-
proaches have been employed to PA function research; 
however, the precise roles of PAs remain largely elusive. 
With the recent reestablishment of the roles of reactive 
oxygen species (ROS) in the stress response and the rela-
tionship between the nitric oxide biosynthesis and PA titers, 
the roles of PA played in the stress response are attracting 
more attention than ever, which provides a good chance to 
make a retrospect to the past studies on the relationships 
between PAs and stresses, including biotic and abiotic 
stresses. 
 
PA BIOSYNTHESIS AND CATABOLISM 
 
In plants, the first step of PA biosynthesis is the formation 
of putrescine (Put), and there are normally two pathways 
for Put biosynthesis, i.e. ornithine and arginine pathway 
(Fig. 1). In the ornithine pathway, Put is formed directly 
from the decarboxylation of ornithine, by ornithine decar-
boxylase (ODC; EC 4.1.1.17). In the arginine pathway, Put 
is formed indirectly via decarboxylation of arginine by argi-
nine decarboxylase (ADC; EC 4.1.1.19). The resulting 
intermediate agmatine is subsequently converted to N-car-
bamoylputrescine by agmatine iminohydrolase (also known 
as agmatine deiminase) and finally converted to Put by N-
carbamoylputrescine amidohydrolase. Spermidine (Spd) 
and spermine (Spm) are formed by the successive transfer 
of an aminopropyl moiety from decarboxylated S-adenosyl-
methionine onto Put and Spd, respectively, which is corres-
pondingly catalysed by the aminopropyltransferase en-
zymes Spd synthase (SPDS; EC 2.5.1.16) and Spm synthase 
(SPMS; EC 2.5.1.22). Recently, ACL5 showed thermosper-

mine synthase activity rather than Spm synthase (Knott et 
al. 2007). A decarboxylated S-adenosylmethionine is pro-
duced from the decarboxylation of S-adenosylmethionine 
(SAM) by SAM decarboxylase (SAMDC; EC 4.1.1.50). A 
SAM is also the precursor for ethylene biosynthesis, thus 
PA and ethylene biosynthesis may compete for the utili-
zation of SAM pools in the cell. Some evidence from the 
opposite accumulating patterns of these two components 
supported the postulation; however, poor correlations 
between them were also reported as revealed in some cases, 
in which treatment with PAs resulted in the stimulation of 
ethylene (Pennazio and Roggero 1990). Uncommon poly-
amine cadaverine (Cad, 1,5-diaminopentane) is produced 
from the decarboxylation of lysine by lysine decarboxylase 
(EC 4.1.1.18), which is mainly found in the Leguminosae 
and in the flowers of Arum lilies (Smith and Wilshire 1975). 

With the last missing link filled, all the genes in the PA 
biosynthesis pathway of plants have been revealed (Illing-
worth et al. 2003; Janowitz et al. 2003). Moreover, several 
genes encoding PA biosynthetic enzymes have been cloned 
from different plants as reviewed by Liu et al. (2007). 
Taking Arabidopsis for example, there are six enzymes res-
ponsible for the PA biosynthesis encoded by 10 genes. Ara-
bidopsis has two copies of ADC (ADC1 and ADC2), SPDS 
(SPDS1 and SPDS2) and SAMDC (SAMDC1 and 
SAMDC2) (Hashimoto et al. 1998; Franceschetti et al. 
2001; Urano et al. 2003). There is one single gene respec-
tively for Spm synthase, thermospermine synthase, agma-
tine iminohydrolase and N-carbamoylputrescine amido-
hydrolase (Hanzawa et al. 2000; Panicot et al. 2002b; Jano-
witz et al. 2003; Piotrowski et al. 2003; Knott et al. 2007). 

Several intensive attempts have not found the existence 
of ODC in Arabidopsis genome (Hanfrey et al. 2001; Allen 
2002; Urano et al. 2003). As for Arabidopsis, the detection 
of ODC activity showed quite discrepancy: several resear-
chers failed to detect any activity, and even though there 
was an uncertain result from Watson et al. (1998), Tassoni 
et al. (2003) could detected putative ODC activity repea-
tedly, these authors showing that most of the putative ODC 

Fig. 1 The biosynthetic pathway for ethylene and major polyamines (putrescine, spermidine and spermine) in plants. ADC, arginine decarboxy-
lase; ODC, ornithine decarboxylase; AIH, agmatine iminohydrolase; CPA, N -carbamoylputrescine amidohydrolase; SAM, S-adenosylmethionine; ACC, 
1-aminocyclopropane-1-carboxylic acid; SAMDC, S-adenosylmethionine decarboxylase; dcSAM, decarboxylated S-adenosylmethionine; SPDS, spermi-
dine synthase; SPMS, spermine synthase. 
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activity was localized in the pelleted fraction, generally 
consisting of chloroplasts, organellar membranes, nuclei 
and mitochondria. Based on the putative ODC activities 
they decteded, Tassoni et al. (2003) postulated the presence 
of an enzyme with low similarity to the known plant ODC 
gene, while Allen (2002) had showed a slim chance for the 
postulation. As of writing, there are 19 plant species with 
partial or full sequences of ODC in Genebank. 

Put is oxidatively deaminated by the action of copper-
containing diamine oxidases (DAO; EC 1.4.3.6), while Spd 
and Spm is oxidized by flavoprotein-containing PA oxidase 
(PAO, EC 1.5.3.11) (Bagni and Tassoni 2001). DAO prefe-
rentially oxidize putrescine and other diamines, and it can 
also act on spermidine. The function of DAO is to convert 
Put into pyrroline, ammonia and hydrogen peroxide (H2O2). 
PAO oxidizes Spd to pyrroline, 1,3-diamine propane (Dap) 
and H2O2, and Spm to aminopropylpyrroline, Dap and H2O2. 
Recent experiment data suggested that the production of 
H2O2 in the cell wall is a mediator of several physiological 
events such as programmed cell death, lignification, wall 
stiffening and cellular defense (Lamb and Dixon 1997; 
Pennell and Lamb 1997). The first complete cDNA se-
quence of PAO in monocot was obtained by Tavladoraki et 
al. (1998) from maize. While Kitashiba et al. (2006) firstly 
presented a complete PAO cDNA sequence of dicot from 
apple. DAP can be catabolized to alanine, while pyrroline 
can be further converted into �-aminobutyric acid catalyzed 
by pyrroline dehydrogenase. �-Aminobutyric acid is trans-
aminated and oxidized to form succinic acid, which can 
then enter Krebs cycle ensuring the recycling of carbon and 
nitrogen from Put (Flores and Filner 1985). Thus, PA 
catabolism is not simply a degradative process, contributing 
to PA homeostasis, amine oxidases and the products deri-
ving from their action have been showed to be involved in 
several important biological processes (Martin-Tanguy 
2001; Cona et al. 2006). For example, recent experiment 
data suggested that the production of H2O2 in the cell wall is 
a mediator of several physiological events such as pro-
grammed cell death, lignification, wall stiffening and cel-
lular defense responses to biotic and abiotic stresses (Pen-
nell and Lamb 1997; Lamb and Dixon 1997; Rea et al. 
2002; Walters 2003). �-Aminobutyric acid accumulation has 
been reported to be a common response to various environ-
mental stresses (Kinnersley and Turano 2000). 
 
CONJUGATION OF PA 
 
In plant cells, PAs often occur as free molecular bases and 
at the same time they may exist in the conjugated form with 
phenolic acids and also in the bound form with various 
macromolecules such as proteins (reviewed in Martin-
Tanguy 1997, 2001). PAs are most commonly conjugated to 
cinnamic acids such as p-coumaric, ferulic and caffeic acids, 
and the resulting conjugates are known as hydroxycinnamic 
acid amides (HCAAs) (Smith et al. 1983; Walters 2003). 
Post-translational covalent linkage of PAs to proteins is 
catalyzed by transglutaminases (EC; 2.3.2.13). The different 
plant species may contain varied proportions of free and 
conjugated PA (Bagni and Tassoni 2001). In some species 
such as tobacco and barley, up to 90% of the PA pool is in 
the conjugated form (Torrigiani et al. 1987, Coghlan and 
Walters 1990). However, less than 10% of PA contents in 
carrot cell cultures are conjugated (Minocha and Minocha 
1995). In plant cells, the “bound” PAs correspond to the 
acid-insoluble fraction, and the acid-soluble fractions con-
sist of free plus conjugated PAs. The results from Slocum 
and Galston (1985) and Flores and Filner (1985) suggested 
that PA conjugation might be a way of regulating the free 
PA pool in the plant cell. In totacco, the enzyme involved in 
the conjugation process was characterized whereas the en-
zyme for the hydrolysis of PA conjugates was not yet iden-
tified (Bagni and Tassoni 2001). Besides the importance for 
the regulation of PA concentration inside the cell, the conju-
gates may be involved in the regulation of certain growth 
and developmental events and defense mechanisms against 

biotic and abiotic stresses (Bors et al. 1989; Bagni and Tas-
soni 2001; reviewed in Martin-Tanguy 2001). 
 
LOCALIZATION AND TRANSPORT OF PA 
 
Since PAs are relatively small, soluble, diffusible molecules 
at physiological pH, it is difficult to carry out their immobi-
lization in the cell (Galston and Kaur-Sawhney 1990; Kak-
kar et al. 1998). Thus, little information is known about the 
subcellular localization of PAs in plants. Early reports on 
the entirely different metabolic fate for the endogenous and 
exogenous arginine in PA biosynthesis and the different 
metabolism for endogenous and exogenous PAs indicate 
that enzymes and substrates in the PA metabolic pathways 
are functionally compartmented in the cell (Galston and 
Kaur-Sawhney 1990). ADC and ODC were hypothesized to 
have different functions by a separate localization within 
cellular compartments. The use of antibodies produced 
against oat ADC revealed that oat ADC is localized in chlo-
roplasts (Borrell et al. 1995). Recently, it has been demons-
trated that in soybean both ODC and ADC transcripts were 
found in most plant organs examined. Nevertheless, the 
localization of ADC and ODC transcripts in expanding cells 
of root cap, cortex parenchyma and central cylinder could 
provide evidence that expression of both genes could be in-
volved in cell expansion (Delis et al. 2005). 

It was demonstrated that only PAs in the free form are 
translocated possibly due to that PAs conjugated to cin-
namic acids are sequestered in the vacuoles and probably 
unable to enter the cytosolic fluid of the sieve tubes (An-
tognoni et al. 1998). Considerable amounts of PAs have 
been detected in the phloem of Ricinus communis seedlings, 
suggesting translocation between different organs (Antog-
noni et al. 1998). 
 
FUNCTION OF PA 
 
PAs are aliphatic polyacations, and Put, Spd and Spm pos-
sess two, three and four positive charges, respectively, at 
physiological pH owing to the protonations of their amine 
groups as shown in Fig. 2 (Cohen 1971). PAs can readily 
bind to the negatively charged phospholipids head groups 
or other anionic sites on membranes, thus affecting the sta-
bility and permeability of such membranes (Marton and 
Morris 1987), through which the membrane-localized en-
zymes can be affected (reviewed in Slocum et al. 1984). 
They are also able to bind to cellular polyanions such as 
DNA, RNA, protein and cell wall components, and thereby 
affect the synthesis, structure and function of the macro-
molecular (Tassoni et al. 1996; Messiaen et al. 1997; Tas-
soni et al. 1998; Hou et al. 2001). The reversible protona-
tion of the multiple amino groups of PAs may function to 
elevate the levels of organic acid or H+ ions under some 
acid condition. Thus it was postulated that PA metabolism 
may facilitate a buffering mechanism to maintain cellular 
pH and ion homeostasis (Smith 1971; Young and Galston 

Fig. 2 Formulae of polyamines. 

175



Plant Stress 1(2), 173-188 ©2007 Global Science Books 

 

1983). PAs function as free radical scavengers directly or 
indirectly (Ha et al. 1998). PAs have an antioxidative pro-
perty by quenching the accumulation of O2

.- probably 
through inhibition of NADPH oxidase (Papadakis and Rou-
belakis-Angelakis 2005). 
 
INVOLVEMENT OF PA IN ENVIRONMENTAL 
STRESS OTHER THAN POLLUTANTS 
 
Nutrient deficiency 
 
Since the discovery by Richards and Coleman (1952) on the 
accumulation of Put in barley leaves under conditions of 
potassium (K) and magnesium deficiency (Smith 1973), 
starvation in rice culture (Shih and Kao 1996) and K-defi-
cient oats (Young and Galston 1984) have also been shown 
to stimulate Put accumulation. Geny et al. (1997) reported 
that PAs (especially conjugated and wall-bound forms) in 
different organs of grapevine (Vitis vinifera L. cv. ‘Caber-
net Sauvignon’) cuttings were strongly influenced by K+ 
supply before visual deficiency symptoms appeared. Never-
theless, the changes in PA titers induced by K nutrition 
differed according to tissue and stage of development. Wat-
son and Malmberg (1996) showed that A. thaliana respon-
ded to K deficiency by increasing ADC activity to 10-fold 
more than unstressed plants with a corresponding increase 
in Put levels of up to 20-fold whereas Spd and Spm levels 
did not increase proportionately. They further showed the 
increase in ADC activity induced by K deficiency did not 
appear to involve changes in mRNA or protein abundance, 
suggesting the posttranslational regulation mechanism for 
ADC activation. Enhanced ADC activity and PA titers were 
observed in phosphate deficient suspension-cultured rice 
cells. A further experiment indicated that Put accumulation 
might be one of the causes for inhibition of cell growth 
under phosphate starvation conditions (Shih and Kao 1996). 
In contrast, the addition of K+ leads to a decrease of PA 
titers, especially for Put levels (Reggiani et al. 1993). A 
number of other ionic treatments caused less changes in PA 
titers (Young and Galston 1984). 
 
Salinity 
 
Excessive soluble salts (mainly NaCl) in the soils are harm-
ful to most plants. It was reported that about 20% of irriga-
ted land in the world is affected by salinity (Yeo 1999). 
Understanding the mechanisms of plant salt tolerance will 
lead to effective means to create salt-tolerant crops through 
better convention breeding or genetic engineering (Xiong 
and Zhu 2002). 

PA accumulation under stress has been well docu-
mented in several plant species. However, their role in stress 
responses is still elusive and even contradictory (reviewed 
by Bouchereau et al. 1999; Sanchez et al. 2005). During salt 
stress, PA contents have been reported to change dependent 
on the tissue, species, salt concentration and duration of the 
experiment (Ashraf and Harris 2004; Kasinathan and Wing-
ler 2004). 

Short-term salt treatment, i.e. in a time frame of hours, 
induces Put accumulation in mung bean (Vigna radiata (L.) 
Wilczek), rice and tomato (Friedman et al. 1989; Basu and 
Ghosh 1991; Santa-Cruz et al. 1998). Under long-term salt 
stress, high titers of Spd and/or Spm, rather than Put, are 
correlated with the response of a plant to salinity (Krishna-
murthy and Bhagwat 1989; Santa-Cruz et al. 1997; Sanchez 
et al. 2005; Wen et al. 2007). 

Krishnamurthy and Bhagwat (1989) reported that salt-
tolerant rice cultivars were effective in maintaining high 
concentrations of Spd and Spm, with a negligible increase 
of Put content, whereas salt-sensitive ones were character-
ized by excessive accumulation of Put and low levels of Spd 
and Spm in the shoot system under saline condition. Thus, it 
was deemed that saline resistance in rice in these cultivars 
was due to the great increase in Spd and Spm versus the 
little increase in Put. A similar situation was reported in 

barley (Hordeum vulgare L.) cultivars (‘J4’, salt-tolerant; 
‘KP7’, salt-sensitive; Liu et al. 2006a), and lettuce (Lactuca 
sativa L.) cultivars (Zapata et al. 2003). 

Recently, Liu et al. (2006b) investigated the involve-
ment of the ADC pathway in the salt stress response using 
apple (Malus sylvestris (L.) Mill. var. domestica (Borkh.) 
Mansf. cv. ‘Orin’) callus. Salt stress (200 mM NaCl) caused 
a higher increase of free Put levels compared with the con-
trol, with increased conjugated Put limited to the early stage 
under salt stress. Accumulation of Put was in accordance 
with the induction of ADC activity and transcript level of 
ADC, whereas ODC activity showed a pattern opposite to 
that of ADC and no ODC transcript level was detected. It 
was also showed exogenous Put could effectively alleviate 
salt stress-induced damage. The authors suggested a pos-
sibility of different compartmentation for endogenous and 
exogenous Put to explain why the salt-induced internal Put 
could not function to alleviate the stress injury. 

Urano et al. (2004) presented direct evidence that Put 
biosynthesis under stress conditions (150 mM NaCl) is con-
trolled by the induction of AtADC2 in Arabidopsis using a 
Ds insertion mutant of the AtADC2 gene (adc2-1). In the 
adc2-1 mutant, free Put content was reduced to about 25% 
of that in the control plants, and Spd and Spm showed no 
difference compared to the control. In control plants, free 
Put increased twice but not Spd and Spm. However, Put did 
not increase under salt stress in the adc2-1 mutant. The 
stress-derived damage in the adc2-1 was alleviated by the 
addition of exogenous Put (2 mM). 

Rodríguez-Kessler et al. (2006) investigated the res-
ponse to salt stress of genes in the PA biosynthesis pathway 
(Zmodc, Zmadc, Zmsamdc, Zmspds2A and Zmspds2B) in 
maize (Zea mays L. cv. ‘Cafime’) leaves. The results 
showed that only Zmodc, Zmspds2A and Zmspds2B were 
up-regulated by salt stress; whereas the other two genes 
were not much affected by salt treatment. Concerning salt-
stress, the induced PA response has been generally assumed 
to rely mainly on ADC gene activation (reviewed in Bou-
chereau et al. 1999). This is one of the seldom cases where 
ODC transcript was found to be involved in salt stress. 

Dondini et al. (2000, 2001) demonstrated the possible 
role of transglutaminase-induced PA conjugation in the 
assembly of chloroplast proteins in cells affected by salt 
stress using a PA-deficient strain (PA–vs) of the halo-toler-
ant Dunaliella salina, a unicellular green alga. The PA–vs 
provides an ideal system for the detection of PA-conjugated 
proteins since conjugation sites are available for linkage by 
exogenous radioactively labeled PAs. In the PA–vs ac-
climated to high salinity, transglutaminase activity exhi-
bited an increase of two-fold or more. The chloroplast pro-
teins, ribulose 1,5-bisphosphate carboxylase/oxygenase 
large subunit, and CAB, namely: LHCII, CP 29, CP 24, and 
CP 26 were identified by incubating chloroplasts with 
labelled PAs. It was reported that the post-translational 
modification of purified Rubisco large subunit by PAs 
favours the polymerisation to the active octameric form and 
its stabilisation (Margosiak et al. 1990). Furthermore, the 
phosphorylation of the CAB affects its position in the 
thylakoid membrane, and consequently affects stacking 
(Allen 1995), while the addition of positive charges by 
conjugated with polyamine may have an effect opposite that 
of phosphorylation. Therefore, the transglutaminase in-
duced polyamine conjugation to chloroplast proteins may 
contribute to the protective mechanism against stress for 
polyamines. 

Legocka and Kluk (2005) presented evidence that NaCl 
and sorbitol treatment trigger organ-specific changes in PA 
levels and in the activity of ADC in lupin (Lupinus luteus L. 
var. ‘Ventus’) seedlings. After exposed to salt stress for 24 
h, the free-Put levels decreased in roots and cotyledons by 
about 48% and 54%, respectively, and increased in hypo-
cotyls and leaves by about 27% and 73%, respectively. The 
free Spd titer decreased in roots, and elevated in hypocotyls 
and leaves. At the same time, ADC activity was enhanced 
by 66% in roots, whereas no difference was observed in 
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leaves compared to the control. The authors concluded that 
the stresses induce PA biosynthesis in the roots, as well as 
Put accumulation in the leaves, which possibly indicate 
translocation of Put from the roots to the shoot. It was also 
shown that a higher level of PAs bound to microsomal 
membranes was observed in roots and leaves when subjec-
ted to NaCl and sorbitol treatment, suggesting the important 
role in stress tolerance for the PAs bound to microsomal 
membranes. 

A study in rice suggested the important role for Spm in 
salt stress tolerance (Maiale et al. 2004). Arabidopsis dou-
ble knockout mutant plant (acl5/spms), incapable of produ-
cing Spm, showed higher sensitivity to salt stress than wild-
type plants. This phenotype was cured by exogenous Spm 
but not by Put and Spd, suggesting a strong link between 
Spm-deficiency and NaCl-hypersensitivity (Yamaguchi et 
al. 2006). 

Among different PAs used to counteract salt-induced 
damage, Put was most effective as observed in pine (Tang 
and Newton 2005), barley seedling (Zhao and Qin 2004). 
While Roy et al. (2005) clearly demonstrated that the 
deficit of salt-sensitive rice cultivars, e.g. high accumula-
tion of Na+, loss of K+ salinity stress-induced sharp inhibi-
tion of plasma membrane-bound H+-ATPase activity, could 
be overcome by exogenously supplied Spd (1 mM, 16 h). 

One of the ‘‘hallmark ’’cellular responses to salt-stress 
is a massive K+ e�ux, which reduces the intracellular K+ 
pool, and signi�cantly impair cell metabolism (Shabala et al. 
2007). Shabala et al. (2007) showed that treatment by 1 
mM PAs substantially reduced NaCl-induced K+ efflux 
from the pea (Pisum sativum L.) leaf mesophyll, most likely 
by blocking the non-selective cation channels. It was sug-
gested that the observed stress-induced elevation of endo-
genous PAs titers under saline conditions may represent an 
important adaptive mechanism, in which the uptake of Na+ 
and leakage of K+ from mesophyll cells are reduced, thus 
assisting plants in their adaptation to salinity. 
 
Hyperosmosis 
 
Cereal (oat, barley, corn and wheat) leaves subjected to the 
osmotica show a rapid increase in ADC activity, a massive 
accumulation of Put, and slow conversion of Put to the 
higher PAs, Spd, and Spm (Flores and Galston 1984). By 
contrast, in the plants of dicot genera like Nicotiana, Capsi-
cum, Datura, Trigonelia, and Vigna, Put titer as well as 
ADC and ODC activities decline while Spd and Spm titers 
increase under osmotic stress (Tiburcio et al. 1986a, 1986b). 

Drought-tolerant wheat cultivar (Triticum aestivum L., 
cv. ‘Yumai No. 18’) showed marked increases of free Spd 
and free Spm and bound Put levels in leaves after polyethy-
lene glycol (PEG) 6000 treatment for 7 days, while drought-
sensitive cultivar showed a significant increase of Put level. 
Exogenous application of methylglyoxal bis-(guanylhydra-
zone) (MGBG) (1 mM) resulted in reduction of free Spd 
and free Spm levels in leaves and aggravation of PEG-in-
duced injury to drought-tolerant wheat cultivar, while exo-
genous Spd treatment resulted in an increase of free Spd and 
free Spm content in leaves and an alleviation of PEG-in-
duced injury to drought-sensitive wheat cultivar (T. aesti-
vum L., cv. ‘Yumai No. 9’). It was proved that conjugated 
PAs in leaves has no relationship with the osmotic stress 
tolerance of wheat seedlings. All these findings collectively 
suggested that free Spd, free Spm and bound Put play im-
portant role in the osmotic stress tolerance of wheat seed-
lings (Liu et al. 2004). It was further elucidated that this 
tolerance is associated with the activity of H+-ATPase and 
the contents of non-covalently conjugated (NCC)-Spd and 
NCC-Spm together with covalently conjugated (CC)-Put 
and CC-Spd in the plasma membrane of roots (Liu et al. 
2005b). By contrast, it was reported that Put, Cad and Spm 
titers were generally increased in leaves and roots of wheat 
(T. aestivum L. cv. ‘Sappo’) plants exposed to 0.4 M man-
nitol for five days, whereas Spd was reduced in first leaves 
and roots of these plants (Foster and Walters 1991). 

In rape (Brassica napus L. var. oleifera cv. ‘Samourai’) 
leaf discs exposed to osmotic stress, Put and Dap (an oxi-
dation product of Spd and/or Spm) increased while Spd 
titers decreased. These results suggested that detected chan-
ges of PA titers responsive to the stress involved not only a 
rise in Put biosynthesis, but also a stimulation of PA oxida-
tion (Aziz et al. 1997). This result concerning Spd change 
responsive to the mannitol stress seems to be contradicted 
with a previous report by this research group, where in-
creased Spd titers were detected under similar condition 
(Aziz and Larher 1995). Larher et al. (1998) showed later 
that exogenous PAs, especially Spm suppress proline ac-
cumulation induced by osmotic stress. The effect of PA 
suppression could be involved in the proline synthesis 
rather than in proline degradation. 

ROS was initially recognized as toxic by-products of 
aerobic metabolism, removed by means of antioxidants and 
antioxidative enzymes. However it has recently become 
established that ROS plays an important signaling role in 
numerous plants growth and development processes inclu-
ding response to biotic and abiotic environmental stimuli 
(Bailey-Serres and Mittler 2006). The study by Li et al. 
(2004) suggested that through reducing ROS levels, PAs 
inhibited ethylene production in the deeply and moderately 
osmoticly stressed wheat (T. aestivum L. cv. ‘Ganchun 20’) 
leaves and that through promoting ROS levels, ethylene 
promoted PA oxidation and hence reduced its content in the 
deeply osmoticly stressed wheat leaves. 

Feirer et al. (1998) showed that ADC is the enzyme pri-
marily responsible for biosynthesis of Put in osmotically 
stressed A. thaliana, and it was further demonstrated 
AtADC2 is the crucial gene responsible for the induction 
using an Arabidopsis mutant line carrying an insertion of 
the En-1 transposable element at the AtADC2 locus by Soy-
ka and Heyer (1999), which is the first report of a geneti-
cally mapped mutation in the PA biosynthetic pathway in 
plants. 
 
High temperature 
 
Many crops cultivated worldwide are exposed to severe 
heat stress during their life cycle, resulting in a reduction in 
yield and quality of fruits (Maestri et al. 2002). In order to 
protect from severe damage and survive the stress, plants 
adopted a set of responsive mechanism characterized by 
elevated synthesis of heat shock proteins (HSPs). In rat 
hepatocarcinoma cells subjected to heat stress, Spd deple-
tion achieved by specific inhibitor �-difluoromethylorni-
thine (DFMO) impairs the DNA binding capacity of selec-
ted heat-shock transcription factors, which may be reversed 
by exogenous Spd. HSPs synthesis in heat-tolerant tobacco 
cells could be detected up to 46°C, but ceased at 40°C in 
heat-sensitive alfalfa cells. It was postulated that PAs might 
directly affect HSPs production at the level of protein syn-
thesis or indirectly by influencing the properties of the cell 
membranes (Königshofer and Lechner 2002). Under condi-
tions of Spd depletion, the DNA binding capacity of the 
transcription factors such as activator protein 1 and HSP 70 
induced by heat shock were impaired in the rat hepatocarci-
noma cells and reversed by exogenous Spd application 
(Desiderio et al. 1999). However, the significance and the 
specificity of the effects of polyamine depletion are dif-
ficult to assess because polyamine influences many biolo-
gical processes. The precise mode of PAs in the regulation 
of HSPs synthesis warrants further investigation. 

The levels of free and conjugated PAs, as well as ADC 
and PAO activities, were found higher in tolerant rice (cv. 
‘N22’) callus than that in sensitive rice (cv. ‘IR8’) callus 
under non-stressed conditions. Heat-stress resulted in high-
er levels of free and bound PAs in callus of the heat-toler-
ant callus than that in the heat-sensitive callus. Further-
more, uncommon polyamines, norspermidine and norsper-
mine, were detected in tolerant cultivar, which increased 
under stress, while they were not detected in sensitive culti-
var under normal or stressed condition. It was concluded 
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that under heat stress, a tolerant rice cultivar had the capa-
city to maintain or increase its total PA pools and to shift 
these pools to uncommon PAs while the sensitive cultivar 
does not have this capacity (Roy and Ghosh 1996). Under 
heat stress treatment, uncommon PAs were also detected in 
the heat-tolerant tobacco cells while they were absent in 
thermo-sensitive alfalfa line. These findings suggested im-
portant function of uncommon and conjugated PAs for 
plants under heat stress. 

Exogenous application of PAs (0.1 mM or 1 mM) could 
enhance the recovery growth of mung bean (V. radiata 
Wilczek cv. ‘ML-131’) after heat stress (50°C for 2 h) with 
the effect order as: Put, Spd and Spm (Basra et al. 1997). 
However, Königshofer and Lechner (2002) found that heat-
tolerant tobacco lines exhibited moderate ratios of free Put 
to free Spd while excessive accumulation of free Put cha-
racterized the more heat-susceptible alfalfa cell line. The 
authors hypothesized that excessive accumulation of free-
PAs might decrease membrane integrity and influence 
finally the level of expression of HSP-encoding genes, 
thereby resulting in less tolerant to heat stress. 
 
Low temperature 
 
Low temperature is one of the most severe environmental 
stresses, which not only affects the growth and distribution 
of plants, but also causes serious damage to a number of 
crops (Heino and Palva 2003). An increase in Put levels 
after exposure to low temperature has been reported in a 
number of plant species (Nadeau et al. 1987; Sarjala et al. 
1997; Bouchereau et al. 1999; Martínez-Romero et al. 
2003). In hardened Scots pines, Put concentration showed a 
positive correlation with frost resistance, whereas Spd and 
Spm show no correlation. Thus, the increased Put concen-
tration was attributed to an increased state of hardening 
(Sarjala et al. 1997). 

It was reported in rice seedlings of a chilling-tolerant 
cultivar (O. sativa L. cv. ‘Tainung 67’), levels of Put in both 
shoots and roots and levels of Spd and Spm in shoots 
increased after exposure to chilling (Lee et al. 1997). In 
chilling-sensitive rice cultivar (O. sativa L. cv. ‘Taichung 
Native 1’), Put levels in shoots increased slightly after ex-
posure to chilling while those of roots decreased drastically. 
A rise in SAMDC activity and a parallel increase in Put and 
Spd levels were observed in the leaves and choloroplasts of 
the chilling-stroken spinach, and it was further demons-
trated that the enhanced SAMDC activity with a conse-
quential rise of Spd in chloroplast is crucial for the cold 
acclimation of photosynthetic apparatus of spinach leaves 
(He et al. 2002). 

Wang (1987) showed that cucumber (Cucumis sativus L. 
cv. ‘Victory’) seedlings induced a substantial increase (2-
fold) in the Spd level when exposed to chilling at 5 °C. 
Consistent with the above findings, Shen et al. (2000) found 
that in chilling-tolerant cucumber cultivar ‘Jinchun No. 3’, 
Spd content increased markedly upon chilling and there was 
little effect on Put and Spm during chilling stress. On the 
other hand, the chilling-sensitive cultivar ‘Suyo’ did not 
show any increase in PA titers upon chilling stress. Though 
the increase of Spm content was slight, pretreatment of Spm 
was effective in alleviating chilling injury of the chilling-
sensitive cultivar. The authors further demonstrated that Spd 
may act as a cellular membrane protectant against chill-in-
duced lipid peroxidation through prevention of superoxide-
generating NADPH oxidase activation. Expression of SAM 
synthetase 2 was found up-regulated during chilling stress 
by a comparative proteomic analysis (Yan et al. 2006), 
which may contribute to the increase of Spd and Spm titers 
in some instances. 

It was reported that in a chilling-tolerant rice cultivar 
‘Tainung 67’, chilling induced an increase of free abscisic 
acid (ABA) levels first, then ADC activity and finally free-
Put levels. A series of evidences seem to suggest that one of 
the strategies of rice seedlings to resist chilling-stress is to 
raise the contents of ABA that consequently enhances the 

ADC-mediated Put synthesis (Lee et al. 1997). On the 
contrary, Kim et al. (2002) showed that both ABA and Put 
were protective against cold stress and exogenously applied 
ABA decreased the endogenous level of Put in the tomato 
leaves. Furthermore, the DMFO-increased electrolyte leak-
age in cold stressed leaves was completely abolished by the 
application of ABA. These results suggest that ABA does 
not exert its role via Put in response to cold stress in tomato 
leaves. Exogenous Spd (1 mM) treatment did not affect the 
contents of ABA in chilled leaves of chilling-sensitive cu-
cumber cultivar, and ABA content did not increase in leaves 
of chilling-tolerant cultivar during chilling, suggesting that 
ABA does not mediate the Spd effect (Shen 2000). The 
evidence from rice research did not support this opinion. A 
root-specific induction of OsSPDS2 was observed in chil-
ling stressed rice. Moreover, OsSPDS2 was up-regulated by 
ABA treatment, suggesting possible involvement of ABA in 
OsSPDS2 gene regulation (Imai et al. 2004). 
 
Drought 
 
Drought is one of the most severe abiotic stress factors 
limiting crop productivity worldwide (Sharp et al. 2004). 
PA metabolism has also been reported to play an important 
role in plant drought tolerance (Nayyar et al. 2005; Yang et 
al. 2007; Yamaguchi et al. 2007). Spd delayed senescence 
in drought-stressed jack pine (Rajasekaran and Blake 1999). 
When chickpea (Cicer arietinum L. cv. ‘GPF2’) and soy-
bean (Glycine max (L.) Merrill cv. ‘Brag’) genotypes were 
exposed to water stress, they experienced severe stress 
injury characterized by increased electrolyte leakage and 
inhibited root and shoot growth rate. Furthermore, Put, Spd, 
and Spm began to rise at the 2nd day of stress and peaked at 
the 4th day in soybean and on the 5th day in chickpea. 
Thereafter, PA levels began to decline significantly, which 
was accompanied by the accentuated stress injury. Exoge-
nous Put and Spd (0.1 mM) markedly mitigated the stress-
induced injuries, suggesting important role of PAs in 
counteracting drought stress, which was further corrobo-
rated by the evidence that the treatment by �-difluoro-
methylarginine (DFMA), DFMO and cyclohexylamine (an 
inhibitor for SPDS) increased the stress injury and severely 
impaired the growth (Nayyar et al. 2005). 

Drought-resistant rice cultivars had higher SAMDC and 
SPDS activities and more free Spd and free-Spm titers in 
the leaves than drought-susceptible ones under water stress, 
implying that both free-Spd and free-Spm are involved in 
rice tolerance to drought (Yang et al. 2007). Furthermore, 
the changes in ADC activity and Put levels under drought 
stress and their relationship with drought resistance of rice 
cultivars varied greatly with the duration or severity of the 
stress. The authors further proposed that a high level of free 
Put at an early stress stage and insoluble-conjugated Put 
during the whole stress period helps the plant to adapt to 
stress. 

Arabidopsis double mutant plant (acl5/spms), which 
cannot produce Spm, is hypersensitive to drought stress. 
This damage could be recovered by Spm (1 mM) pretreat-
ment but not by Put and Spd (1 mM), suggesting that 
drought-hypersensitivity exhibited by the mutant is due to 
Spm deficiency (Yamaguchi et al. 2007). It was further 
showed that absence of Spm causes blockage or slow res-
ponse of stomatal closure during drought-stress, and that 
the mutant plant lost more water compared to wild type 
plants, which may account for its hypersensitivity to 
drought. Among the three PAs, Spm is the most efficient to 
contribute to intrinsic gating and rectification of inward 
rectifier K+ channels (Oliver et al. 2000). Spm was also the 
most efficient PA to block fast-activating vacuolar channels, 
which function in release of K+ and Ca2+ from the vacuole 
to the cytoplasm. Besides these, the mutant plant was im-
paired in Ca2+-homeostatis. Based on the above collected 
knowledge, the authors proposed a model describing the 
role of Spm during drought-stress: Under drought, elevated 
Spm content may modulate the activities of certain ion 
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channels and raise cytoplasmic Ca2+ concentration, which 
will inactivate the K+ inward rectifier at the plasma mem-
brane, thereby stimulating stomatal closure (Yamaguchi et 
al. 2007). Anisul Islam et al. (2003) also presented evidence 
to show the important role of Spm to prevent water stress 
and protect membranes in Pinus strobus L. under drought. 
Exogenous Spm to pines under drought cause a decline in 
transpiration rates, enhanced photosynthesis and promoted 
osmotic adjustment, which would help to maintain turgor. 

ABA is produced de novo under water deficit conditions 
and plays a major role in response and tolerance to dehy-
dration. In drought-tolerant Populus popularis, initial eleva-
tion of xylem ABA concentrations reduced PA levels and 
enhanced ethylene synthesis simultaneously at the onset of 
water stress or the ABA treatment. The inhibitory effect of 
ABA on PA synthesis was more pronounced in the drought-
sensitive Populus × euramericana (Chen et al. 2002). On 
the contrary, AtADC2, AtSPDS1 and AtSPMS are highly in-
duced by drought stress in Arabidopsis, and these responses 
are mostly impaired in ABA-deficient (aba2-3) and ABA-
insensitive (abi1-1) mutants. These results indicate that 
ABA modulates PA metabolism at transcriptional and meta-
bolite levels in response to drought stress (Alcázar et al. 
2006a). 
 
pH stress 
 
The Put content increased upon acid stress in a tobacco cell 
line that is resistant to DFMO (Hiatt and Malmberg 1988). 
ADC activity increased in a tissue-dependent manner in res-
ponse to acid stress in soybean hypocotyls, which was pre-
ceded by the increase in its mRNA content (Nam et al. 
1997). Enhanced Put accumulation under acid stress was 
also observed in the leaf segments of wheat and oat, which 
was concomitant with ion efflux, and a decrease in both 
macromolecular synthesis and the activities of superoxide 
dismutase and catalase (Shen et al. 1994). Xie et al. (1999) 
described a increased Put accumulation in four tree species 
of Robinia pseudocacia Linn., Liriodendron tulipifera Linn., 
Platanus acerifolia Willd and Gardenia jasminoides Ellis 
under acid stress, which was prevented by the supplement 
of D-arginine. Applying exogenous Put to acid medium 
could mitigate the decrease of catalaze activities induced by 
acid stress. A treatment of simulated acid rain (pH 1.8) 
induced lipid peroxidation and increased the level of H2O2 
in bean leaves, which was prevented by pretreatment with 
Spd and Spm (1 mM) (Velikova et al. 2000). The protective 
effect of Spm was higher than that of Spd, which is 
coincided with the survival test of Escherichia coli K-12 in 
extreme acid or base (Yohannes et al. 2005). In the survival 
test, 10 mM Spm increased survival by 2-fold, and Put in-
creased survival by 30% at pH 2; however, E. coli survival 
was decreased 100-fold by 10 mM Spm, Put, Cad, or Spd at 
pH 9.8. It seems there have no reports on the response of 
PAs in high pH stress in plants. 
 
Hypoxia 
 
Hopoxia often occurs in cells when respiratory activity 
exceeds oxygen availability, and in roots and aerial organs 
as a consequence of poor soil drainage, soil compaction or 
submergence (Fukao and Bailey-Serres 2004). In plants, 
oxygen deficit dramatically reduces the cellular ATP pro-
duction, which brings about deleterious effects such as slow 
down in ion pump activity, a drop in cytoplasmic pH, ac-
cumulation of toxic end products from anaerobic respiration 
and ROS, etc. (Fukao and Bailey-Serres 2004; Liu et al. 
2005a; Mancuso and Marras 2006). Plants have evolved 
adaptation mechanisms to enhance their ability to survive 
long-term hypoxic stress (Liu et al. 2005a). The capacity to 
accumulate Put under low oxygen condition may be one of 
the adaptive mechanisms, which has been evidenced in 
several Gramineae species (reviewed by Bouchereau et al. 
1999). A relationship between ADC activity and the ability 
to tolerate anoxia was observed in seedlings of rice, barn-

yard grass, maize, rye, barley and wheat (Reggiani et al. 
1990). The application of exogenous Put partially increased 
the survival of wheat roots under oxygen-deficit stress. 
Three possible underlying mechanisms for the elevation of 
Put and ADC activity were put forward (Reggiani 1994). 
First, the decarboxylation reaction under anaerobic condi-
tions is beneficial as a result of the consumption of hydro-
gen ions, thereby allowing attenuation of anoxia-induced 
acidification. Second, the biosynthesis and accumulation of 
Put would serve as a homeostatic buffering mechanism to 
maintain cellular ionic balance. Last, Put synthesized via 
ADC pathway during the anaerobic germination of rice is 
considered to be involved in the elongation of the coleoptile 
(Reggiani et al. 1989). Elevated Put could also function as 
a free radical scavenger to remove anoxia-induced ROS. 

Under submergence for Scirpus, the Put levels and the 
activities of ADC and ODC increased, whereas Spd and 
Spm level and SAMDC activity decreased (Lee et al. 1996). 
The reduced Spd and Spm level may be also account for the 
Put accumulation, which may favor the ethylene biosynthe-
sis due to the shifted SAM to ethylene biosynthesis path-
way. This possibility could not ignore since ethylene plays 
an important role in alcohol dehydrogenase induction 
during later stages of hypoxia and in long-term structural 
adaptation mechanisms (Liu et al. 2005a). 
 
Paraquat 
 
Paraquat (methyl viologen, 1,1’-dimethyl-4,4’-bipyrydi-
nium dichloride) is a contact foliar herbicide, which can 
cause rapid membrane damage by producing highly toxic 
superoxide radicals (Calderbank 1968). Put and paraquat 
are similar in the distribution of their positively charged 
amine groups. This commonness stimulated an idea that Put 
and paraquat might share the same transport system, which 
is supported by evidence from E. coli (Kashiwagi et al. 
1990) and plants (Hart et al. 1992). Hart et al. (1992) 
showed that paraquat is taken up by maize root epidermal 
and cortical cells via a system that also functions in the 
absorption of diamines. This result indicates the importance 
of Put in paraquat resistance in plants. 

A rapid increase in free and bound PAs and was ob-
served at the first hour after herbicide atrazine spraying in 
pea, whereas the conjugated PAs in trichloroacetic acid-
soluble fraction decreased (Kurepa et al. 1993, 1998). It 
was further shown that atrazine increases cell senescence 
by lipid peroxidation and loss of unsaturated fatty acids 
from thylakoid membranes of pea plant chloroplasts, which 
was partially relived by the Spm supplement (Stoynova et 
al. 1999). It was reported that some paraquat-resistant weed 
species have increased levels of PAs (Szigeti et al. 1996; Ye 
et al. 1997; Rácz 2000; Soar et al. 2003). 

In resistant Conyza bonariensis biotypes, the constitu-
tively elevated Put levels coincided with the increased 
ADC and ODC activities, and constitutively elevated anti-
oxidant enzyme activities, as well as paraquat resistance 
(Ye et al. 1997). Exogenous Put application (0.1 mM) com-
pletely prevented paraquat-induced damage in the resistant 
biotype, however, the addition of Put failed to enhance 
paraquat resistance in the sensitive biotype (Ye et al. 1997), 
which may exclude the possibility that Put functions as a 
direct quencher of oxidant caused by paraquat. The authors 
postulated that Put might function in concert with other 
mechanisms conferring resistance, which is supported by 
the results from horseweed (Rácz et al. 2000). Recently, 
Soar et al. (2003) showed that paraquat translocation is cor-
related with paraquat-induced injury and is reduced in para-
quat-resistant biotype in Arctotheca calendula. The resis-
tant A. calendula plants contain higher constitutive Put and 
Spd levels than susceptible plants. Pre-treatment with either 
Cad or Spd marked reduced paraquat translocation in the 
susceptible biotype after paraquat application; however, 
pre-treatment with Put had no effect (Soar et al. 2004). 

The resistant horseweed plants have higher constitutive 
Put and Spd levels than susceptible ones, whereas Spm 
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does not differ between them (Rácz et al. 2000). A marked 
increase of PAs content was detected after paraquat treat-
ment in each biotype. Exogenously applied Put (0.1 mM) 
combined with paraquat exerted little or no protective effect 
on detached leaves for both biotypes. However, it cannot 
rule out the possibility that this failure to confirm the pro-
tective effect against paraquat of exogenous Put may be due 
to the low concentration of Put applied when compared to 
other successful cases. 

Contrary to the above examples, there were no obvious 
differences in PA levels between the wild type and mutant 
gi-3 of Arabidopsis, which has an increased tolerance to 
paraquat. Exogenous addition of Put, Spd, and Spm effec-
tively counteracted the toxic effects of paraquat in both wild 
type and the gi-3i, with Spd being the most effective (Ku-
repa et al. 1998). Unlike other reports, a general decrease in 
the contents of the three main PAs was observed in para-
quat-treated sunflower leaf discs (Benavides et al. 2000). 
Exogenous application of PAs (1 mM) could reduce the 
damage produced by 100 μM paraquat to different degrees. 
Spm was the most effective in affording protection, fol-
lowed by Spd and Put. 

Paraquat treatment resulted in a higher Put and lower 
Spd and Spm levels in rice leaves (Chang and Kao 1997). 
Pretreatment with Spd and Spm (5 mM) caused drama-
tically increased endogenous Spd and Spm levels and was 
demonstrated to be able to reduce paraquat toxicity possibly 
due to increased activities of catalase and peroxidase in-
duced by the pretreatment. 

Considering the idea that Put and paraquat share same 
transport system, the toxic effect of paraquat would be most 
efficiently reversed by Put (Kurepa et al. 1998); however, 
from above-mentioned cases, we can see that Spd or Spm, 
rather than Put, is the most effective to counteract the para-
quat toxicity. One possible explanation is that “in plants 
paraquat is taken up by cells via a PA transporter whose 
function is under stringent negative regulation by Spd (Ku-
repa et al. 1998). This hypothesis needs further evidence to 
support it. 
 
ENVIRONMENTAL POLLUTANTS 
 
Sulfur dioxide 
 
Sulfur dioxide (SO2) is one of the air pollutants that can 
affect basic plant growth and development processes. 
Decades ago, Priebe et al. (1978) revealed that free and 
bound Put and Spd in peas increased in response to SO2 
fumigation. The supplement of ammonium nutrition resul-
ted in similar results. As both SO2 fumigation and am-
monium supplement increase the H+ ion concentration of 
the cells, the authors postulated that PAs are synthesized to 
bind these H+ ions, thus maintaining an ion homeostasis in 
the cells. Contrarily, the accumulation of Put was greatly 
inhibited after SO2 treatment in coldstored loquat (Erio-
botrya japonica Lindl. cv. ‘Dahongpao’) fruits, whereas no 
significant changes were observed for Spd and Spm levels 
(Zheng et al. 2000). 
 
Ozone 
 
Ozone (O3) is considered as one of the most phytotoxic 
pollutants, having serious effects on vegetation (Krupa and 
Manning 1988). Exogenous PAs were found to result in a 
significant suppression of O3-induced leaf injury in tomato 
and tobacco, indicating a role of PAs in ozone stress res-
ponse (Ormrod and Beckerson 1986). Increase of PA con-
tents (mainly Put and Spd) in response to acute and chronic 
ozone stress was consistently observed in wheat (Drolet et 
al. 1986), tolerant tobacco cultivar (Langebartels et al. 
1991; van Buuren et al. 2002; Navakoudis et al. 2003), 
potato (Reddy et al. 1993), and lentil (Lens culinaris) seed-
lings (Maccarrone et al. 1997). In vitro experiment sug-
gested that free PAs are scavengers of oxygen radicals 
(Drolet et al. 1986), while Bors et al. (1989) presented PA 

conjugates with HCAAs as the probable main protection 
mechanism from ozone-triggered ROS accumulation. In 
ozone-treated potato plants, the levels of mRNA transcripts 
for the large and small subunits of ribulose 1,5-bisphos-
phate carboxylase/oxygenase (rbcL and rbcS, respectively) 
decreased, which at least partially accounts for the ac-
celerated loss of ribulose 1,5-bisphosphate carboxylase/ 
oxygenase protein due to ozone-induced accelerated sense-
cence (Reddy et al. 1993). The increase in ethylene emis-
sion was observed in stressed potato plants, meanwhile in-
creased PA biosynthesis and PA titers were also observed 
(van Buuren et al. 2002). 

Navakoudis et al. (2003) showed that exogenous Put (1 
mM) applied to sensitive tobacco cultivar ‘Bel W3’ resulted 
in tolerant phenotype through reversing ozone effects on 
thylakoid-bound PAs, and especially Put. While application 
of the Put inhibitor, 1,4-diamino-butanone in ozone-tolerant 
Bel B plants impeded the increase of Put bound to thyla-
koid membranes, resulting in a sensitive phenotype. 
 
Ultraviolet (UV)-B radiation 
 
In the past 50 years, the concentration of ozone has dec-
reased by about 5%, mainly due to the release of anthro-
pogenic pollutants (Pyle 1996). Increased UV-B (290–320 
nm) radiation resulting from ozone depletion is one of 
global environmental problems, which has deleterious ef-
fects to the plant on the earth (Tevini and Teramura 1989; 
Ries et al. 2000; Frohnmeyer and Staiger 2003). PAs have 
been reported to play an important role in the protection of 
plants against UV-B damage. High photosynthetically ac-
tive radiation level could decrease UV-B-dependent da-
mage, and Kramer et al. (1992) showed that PAs were in-
volved in the photoprotective effect of high photosynthe-
tically active radiation. The Put and Spd accumulated in 
cotyledon and leaf tissues in response to UV-B radiation in 
both sensitive and insensitive cucumber cultivars, but levels 
were not correlated with sensitivity to UV-B (Kramer et al. 
1991). Later, An et al. (2004) also demonstrated that UV-B 
radiation resulted in a dose-dependent accumulation of PAs 
in UV-B treated cucumber. 

The sensitive legume, Phaseolus vulgaris L. cv. ‘Top 
crop’ exposed to UV-B radiation showed a marked decrease 
in total free-PA levels, primarily due to a decrease in Put, 
which was correlated with UV-B induced damage such as 
chlorophyll loss (Smith et al. 2001). An increase of PAs, 
and especially of Put level in thylakoid membranes upon 
elevated UV-B exposure was observed in the tobacco 
variety Bel B, while the cultivar Bel W3, sensitive to UV-B, 
was incapable to enhance Put level in thylakoid membranes, 
which may attribute to its sensitivity (Lutz et al. 2005). It 
was also observed that the PA levels reduced after pro-
longed exposure to UV-B, which was in agreement with the 
similar phenomena noticed by An et al. (2004). 

Lin et al. (2002) revealed that the PA titers were en-
hanced after exposure to UV-B radiation for 7-14 d in 
different rice cultivars, however the Spd and Spm levels 
were lower than that in the control after prolonged treat-
ment to 21-28 d, while Put remained at a higher level, 
which was in accordance with the fluctuation in PA meta-
bolic enzymes’ activity: For example, enzymes activities of 
ADC, ODC and SAMDC increased by 165.7%, 104.6% 
and 89.6%, respectively in the leaves of cultivar ‘Shan You 
63’ at 7-14 d after treatment; the activities for ADC and 
ODC increased by 89.7% and 3.7%, respectively, while 
SAMDC was reduced by 40.1% at 21-28 d after treatment. 
The activity for PAO was much lower at 7-14 d after treat-
ment, whereas it was markedly higher at 21-28 d after treat-
ment. These results by Lin et al. (2002) presented good evi-
dence to the adaptation change of PA metabolism after pro-
longed UV-B exposure (An et al. 2004; Lutz et al. 2005). 
The accumulation of PAs upon UV-B radiation is in favor 
of the hypothesis that PAs could play an important role in 
the development of the structure and function of the photo-
synthetic apparatus, mainly based on the capability of PAs 
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to stabilize chlorophyll protein complexes (Besford et al. 
1993; Andreadakis and Kotzabasis 1996; Sfichi et al. 2004). 
 
Heavy metals 
 
Heavy metals are important environmental pollutants, 
which can cause serious problems to all organisms when 
present in atmosphere, soil and water, even in trace concen-
trations (Gratao et al. 2005). Heavy metal stress often trig-
gers oxidative damage by producing highly ROS such as 
OH- and O2

·–, which in turn leads to disintegration of bio-
membranes by lipid peroxidation (Panda et al. 2003). Plants 
exposed to metals often synthesize a set of diverse meta-
bolites including PAs to fend off the damage (Sharma and 
Dietz 2006). PAs may function as signalling molecules and 
antioxidants in response to heavy metal stress (Groppa et al. 
2001; Wang et al. 2004; Sharma and Dietz 2006). 

Treatment of oat seedlings and detached oat leaves with 
cadmium chloride (CdCl2) caused an up to 10-fold increase 
in Put content, which resulted from the induction of raised 
ADC activities by Cd treatment, however had little or no 
effect on Spd and Spm (Weinstein et al. 1986). Cd2+-in-
duced accumulation of Put in the free and soluble conju-
gated fractions was also observed in bean leaves, whereas 
Spd was slightly reduced. Cd or lead (Pb) stress combined 
with salinity inhibited nitrate reductase activity and de-
creased organic nitrogen and protein contents in leaf tissue 
of Indian mustard (Brassica juncea L.), the administration 
of Put reverted the nitrate reductase activity and partially 
recovered the reduced organic nitrogen and protein contents, 
indicating a role for Put to mitigate the adverse effect of the 
two stresses (Singh et al. 2002). 

Copper (Cu) is a heavy metal that is an essential micro-
element for plant growth since it is constituent of many en-
zymes and proteins involved in different metabolic pro-
cesses. However, it is highly phytotoxic at high concen-
trations, since it is implicated in numerous physiological 
processes (Fernandes and Henriques 1991). Cu2+ treatment 
increased the Put levels in detached rice leaves (Lin and 
Kao 1999). In European pear, CuSO4 stress induced the 
changes of free PAs in the wild type and MdSPDS1 trans-
genic lines (Wen et al. 2007). Put titers of all tested lines 
and wild type decreased at the 15th day after treatment. Spd 
and Spm titers differed among the lines, and (Spd+Spm)/ 
Put ratios increased variously among the tested lines and 
wild type. Groppa et al. (2001, 2003) reported that Cd or 
Cu at 0.5 mM reduced Put and Spd content, without affec-
ting Spm in sunflower leaf disks. They further demonstrated 
that Spm or Spd completely restored the activity of gluta-
thione reductase, an antioxidant enzymes, that had been in-
hibited by Cu or Cd stress. However, Put content increase 
was observed in both cadmium- and copper-treated wheat 
leaves using the same experimental design by these authors, 
where Spd titers had no change and Spm was reduced about 
a half (Groppa et al. 2007b). The enhanced Put levels were 
accordant with the induced ADC and ODC activities and 
reduced DAO activity. This data from the same group gives 
a clearly support to the idea that PA metabolism in response 
to stress is sometimes dependent on plant species (Groppa 
et al. 2007b). The authors continually showed that Put and 
Spd levels were increased marked when higher intensity of 
stress (1 mM Cd or Cu) was used, indicating the dosage 
dependent feature of PA metabolism in response to stress 
(Groppa et al. 2007a). Wang et al. (2007) reported that Put 
content rose markedly in Cu2+ treated leaves of Nymphoides 
peltatum, while Spd and Spm titers reduced significantly. 
Exogenous application of both Spd and Spm effectively 
alleviated damages caused by Cu stress, but the effect of 
Spd was more significant than that of Spm. 

Elevated Put and Dap after mercury (Hg) treatment 
were observed in the green alga Chlorogonium elongatum 
(Agrawal et al. 1992). The Spd and Spm content dropped 
significantly under Hg2+ stress (3 mg/L), while that of Put 
was increased markedly in N. peltatum. Exogenous Spd in-
creased the Spd and Spm content and enhanced the antioxi-

dant enzymes activities, and thereby ameliorate Hg2+ da-
mage (Wang et al. 2004). Put levels were significantly in-
creased after in both barley and rape, following stress with 
chromium (Cr) (III) and Cr (VI) (Hauschild 1993). 
 
WOUNDING 
 
PAs play an essential role in the wound healing responses 
in animals (Banan et al. 1998); however, little is known 
about the functions of PAs in wounding response. Exoge-
nous PAs inhibited the wound-induced RNase and the rise 
in RNase activity in excised potato tuber discs, which may 
result from senescence-linked events (Altman 1982). It was 
showed that DAO activity increases in plant cell walls in 
response to wounding (Scalet et al. 1991). Perez-Amador et 
al. (2002) demonstrated an increase in the ADC2 expres-
sion levels in response to mechanical wounding and methyl 
jasmonate treatment in Arabidopsis, providing the first 
experimental evidence for the involvement of PAs in plant 
wound responses. Transcript of ODC1 gene accumulated 
strikingly at the 3 h and was continued until 12 h after 
wounding treatment in hot pepper (Capsicum annuum L.) 
(Yoo et al. 2004). Furthermore, the authors showed that the 
wounding signal does not seem to be transferred to the 
untreated region of the plant. ADC2 is transiently induced 
upon wounding, followed by a transient increase in free Put 
levels concurrent with a transient decrease in the free Spm 
levels (Perez-Amador et al. 2002). Cowley and Walters 
(2005) also observed similar increased free-Put in wounded 
oilseed rape, which may result from both the increased 
ADC activity and the reduced Put catabolism. Further work 
needs to be done to determine the precise role of Put and/or 
Spd in wounding response. 
 
BIOLOGICAL STRESS 
 
Work on PAs and plants responses to microorganisms rela-
tively lags behind other areas of plant PA research (Walters 
2000). Nevertheless, much progress has been achieved re-
garding PAs and plant disease, extensively reviewed by 
Walters (Walters 2000, 2003). Greenland and Lewis (1984) 
were the first to show that PA levels are altered by pathogen 
infection. Later, PAs have been found involved in the res-
ponse of plant infected by fungal pathogens (Greenland and 
Lewis 1984; Asthir et al. 2004) and viruses (Torrigiani et al. 
1997), and in the interaction with mycorrhizal (Walters 
2000). Like the behaviors under abiotic stresses, PA meta-
bolism change after infected by pathogen also varies from 
decrease to increase. 

In barley leaves infected with the fungal pathogen Puc-
cinia hordei, “Green islands” will be formed, which sur-
round the infection sites of rust and powdery mildew fungi. 
Spd levels in this tissue were enhanced 6 to 7-fold when 
compared to healthy control. Elevated PAs were also ob-
served in barley infected by the powdery mildew fungus 
Blumeria graminis f. sp. Hordei (Walters et al. 1985), 
where the change of PA contents was concomitant with in-
creased activities of ADC, ODC and SAMDC, and in wheat 
leaves infected with black stem rust (Foster and Walters 
1992). Increased free and conjugated Put and Spd levels, as 
well as enhanced ADC and ODC activities, were revealed 
in tobacco leaves exhibiting hypersensitive response (HR) 
to Tobacco mosaic virus (TMV) (Torrigiani et al. 1997). 
Negrel et al. (1984) showed that ODC activity was 20-fold 
enhanced in tobacco leaves exhibiting HR to TMV infec-
tion. 

In the response to abiotic stress, ODC induction is not 
so often to be seen; however ODC seems to be tightly in-
volved in biotic stress. Indeed, the ODC gene was found 
up-regulated during the HR process (Yoda et al. 2006). A 
gene encoding putative ODC was identified by a differen-
tial screening cDNA library of the resistant hot pepper 
inoculated with avirulent tobacco mosaic virus (Yoo et al. 
2004). Like hot pepper acidic pathogenesis related (PR) 
gene, CaPR-1, transcripts of the CaODC1 gene started to 
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accumulate at the 24 h post-inoculation of TMV-P0 and the 
signal was spread systemically. CaODC1 showed an HR-
specific expression pattern. Furthermore, the authors 
showed that CaODC1 could be involved in a salicylic acid-
independent, jasmonate acid- and/or ethylene-dependent 
plant defense against a broad range of pathogens including 
viruses and bacteria. 

By contrast, infection of tobacco leaves with four dif-
ferent pathogens brought about a decrease of Put and Spd 
(Edreva 1997). The extent of decrease was not related to the 
type of pathogens (fungi, bacterial and virus) but to the 
severity of damage symptoms. The authors suggested that 
the reduction in PA levels in these interactions was a non-
specific response to tissue damage. A similar response in 
PAs was observed in tomato infected with the fungus Rhi-
zopus stolonifer (Bakanashvili et al. 1987), in tomato and 
Gynura aurantiaca infected by Citrus exocortis viroid 
(Belles et al. 1991). Belles et al. (1993) demonstrated that 
the reduction in Put was due to a decreased ODC activity in 
tomato. 

When sugarcane (Saccharum officinarum L. cv. ‘Barba-
dos 42231’) infected with the smut fungus Ustilago scita-
minea, there was a decrease in the free and conjugated 
forms of Put and Spd titers, and an increase in free and con-
jugated forms of Spm (Legaz et al. 1998). Yamakawa et al. 
(1998) showed that TMV-infected necrotic lesion-forming 
tobacco leaves contained 20-fold higher free-Spm content 
in intercellular spaces than mock-inoculated leaves. After 
evaluating the effect of PAs on PR-1 gene expression, it was 
found that Spm was most effective, followed by Spd 
whereas free Put and Cad had no effect. The authors further 
demonstrated that Spm induced various PR proteins 
accumulation and conferred TMV resistance to host plants 
via a salicylic acid-independent signaling pathway, provi-
ding a first evidence to link Spm to plant defense response 
against viral infection. This work was taken a stage further 
by another group from Japan (Takahashi et al. 2003, 2004a, 
2004b) who identified two MAPKs, SIPK and WIPK and a 
subset of HR marker genes including HIN1, HIN9, HIN18, 
HSR203J, HMGR, HSR201, and HSR515 as Spm respon-
sive. After in-depth studies on these genes, they proposed a 
model for Spm signal transduction pathways in tobacco 
(Takahashi et al. 2004b). During HR triggered by TMV 
infection, free-Spm is accumulated in intercellular spaces, 
which is oxidized by DAO and/or PAO to generate H2O2 
and to enhance Ca2+ flux into the cytoplasm. These series of 
events cause mitochondrial malfunction via an unknown 
mechanism, activating of a subset of HR marker genes as 
motioned above, which may contribute to defense against 
secondary pathogen attack and/or lead to programmed cell 
death during HR. Later, two Cys2/His2-type zinc-finger pro-
teins were also revealed to be involved in this Spm signal-
ling pathway (Uehara et al. 2005; Mitsuya et al. 2007). The 
model seems fit when infected with powdery mildew in bar-
ley, as evidenced by work from Cowley and Walters (2002). 

PAs conjugated to phenolic compounds, HCAAs, have 
been shown to accumulate in incompatible interactions 
between plants and a variety of pathogens (reviewed in 
Walters 2003). In tobacco (‘Xanthi’ n.c.), there was an ac-
cumulation of numerous HCAAs, including feruloylputres-
cine and feruloyltyramine during the HR to TMV infection 
(Martin-Tanguy et al. 1973, 1976) as reviewed by Walters 
(2003). It was shown that treatment of tobacco leaf discs 
with coumaroyl and caffeoylputrescine reduced local lesion 
formation by 90% following TMV inoculation (Martin-Tan-
guy et al. 1976; Walters 2003). Lloyd and Naidoo (1983) 
proposed a linear correlation between the production of 
phenolics and resistance acquisition against smut infection 
in sugarcane. Torrigiani et al. (1997) suggested that high 
levels of PA conjugates might be required for the necrotic 
lesion to develop in tobacco leaves exhibiting HR. There-
fore, conjugation of PAs to phenolics has been described as 
a defense mechanism against infection of pathogens (Legaz 
et al. 1998). 

Little is known about the interaction between plants and 

mycorrhiza. The role of PAs in the mycorrhizal symbiosis 
was firstly demonstrated by El Ghachtouli et al. (1995, 
1996), who showed that exogenously applied PAs (0.5 mM) 
increased Glomus intraradices colonization frequency of 
pea roots. Kytoviita and Sarjala (1997) showed that ecto-
mycorrhizal symbiosis increased free Put levels in mycor-
rhizal roots of Scots pine. The application of an isolate of 
Streptomyces griseoluteus, a bean rhizosphere, to soil 
amended with arginine significantly promoted the growth 
of bean plants, and resulted in a significant increase in the 
levels of PAs compared with control plants (Nassar et al. 
2003). A higher content of total free PAs in arbuscular 
mycorrhizal mycorrhized Lotus glaber plants was detected 
compared to non-mycorrhized ones (Sannazzaro et al. 
2007). Furthermore, mycorrhization also increased (Spd+ 
Spm)/Put ratios in L. glaber roots. The authors proposed 
that modulation of PA pools might be one of the mecha-
nisms used by arbuscular mycorrhizal to improve L. glaber 
adaptation to saline soils. Such hypothesis and roles of PAs 
in plant-mycorrhizal interactions await further research to 
test. 
 
GENETIC MANIPULATION TO MODULATE PA 
METABLOLIC FLUXES AND STRESS RESPONSE 
 
A wide range of plant developmental and stress-related pro-
cesses correlates with changes in PA levels, however, it 
remains to be determined if alterations in PA content are a 
direct cause of these effects (Panicot et al. 2002a). Since all 
the genes in the PA biosynthetic pathway have been cloned, 
genetic manipulation of these genes offers a convenient 
strategy to elucidate the regulatory functions of PAs in 
plant systems and a very effective and potential tool to im-
prove the tolerance against adverse environmental condi-
tions as well (Panicot et al. 2002a; Alcázar et al. 2006a, 
2006b). Kakkar and Sawhney (2002) and Alcázar et al. 
(2006a, 2006b) present a good review on this topic. Herein 
studies on PA pathway manipulation related to stress toler-
ance will be briefly introduced. 

Masgrau et al. (1997) obtained transgenic tobacco 
plants containing oat ADC fused with a tetracycline-indu-
cible promoter. Transgenic tobacco lines, induced during 
vegetative stage, displayed different degrees of an altered 
phenotype, the severity of which was correlated with Put 
content. The detrimental effects caused by overexpression 
of ADC gene was similar to those observed by ADC acti-
vation induced by osmotic stress in the oat leaf system 
(Borrell et al. 1996). The authors postulated that high levels 
of endogenous Put in cells are toxic to the plant (Masgrau 
et al. 1997). Over-expression an oat ADC gene in rice resul-
ted in improved drought tolerance; however, constitutive 
over-expression of this gene severely affected the develop-
ment of the transgenic plants (Capell et al. 1998). Capell et 
al. (2004) reported transgenic plants over-expressing the 
Datura ADC gene under the control of maize Ubi-1 promo-
ter. Under drought stress, transgenic plants expressing 
Datura ADC produced much higher levels of Put that ex-
tends beyond the critical threshold required to initiate the 
conversion of excess Put to Spd and Spm, promoting Spd 
and Spm synthesis and ultimately protecting the plants 
from drought, whereas wild-type plants were incapable to 
produce sufficient Put to trigger the Put conversion. Ex-
pression of the ADC transgene under the control of an 
ABA-inducible promoter led to stress-induced up-regula-
tion of ADC activity and PA accumulation in transgenic 
rice plants (Roy and Wu 2001), suggesting enhanced toler-
ance to salinity stress for transgenic plants. 

It failed to produce sense SAMDC transgenic plant with 
the 35S SAMDC gene construct without SAMDC uORF, 
which might be resulted in toxicity by excessive cellular PA 
in potato transformants (Kumar et al. 1996). Over-expres-
sion of the carnation SAMDC gene construct containing a 
short uORF in the 5�-untranslated region in transgenic 
tobacco (N. tabacum L. cv. ‘Wisconsin 38’) plants led to 
constitutive increases in PA content and enhanced tolerance 
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to multiple abiotic environmental stresses with inducing of 
the genes for anti-oxidative enzymes (Wi et al. 2006). The 
transgenic plants were healthy and did not show any differ-
ence in organ phenotype compared to the wild-type. Fur-
thermore, the transgenic plants had increased number and 
weight of seeds and elevated net photosynthetic rate. This 
study demonstrated the feasibility of engineering plant for 
increased tolerance of abiotic stress and enhanced producti-
vity through overproduction of PAs achieved by over-ex-
pression of SAMDC gene with short uORF. Over-expression 
of Arabidopsis SAMDC in tobacco plants resulted in in-
creased SAMDC activity, accumulation of dcSAM and per-
turbation of PA levels (Franceschetti et al. 2004). A compa-
rative proteomics analysis between transgenic plants and 
wild type plants revealed that chloroplast ribonucleopro-
teins and defense protein PR-1, a known marker for syste-
mic acquired resistance, were induced in transgenic lines 
compared with wild type (Franceschetti et al. 2004). Ripen-
ing induced over-expression of SAMDC in tomato led to PA 
compositional changes by increasing the flux of Put into 
Spd and Spm, resulted in tomato with higher levels of Spd 
and Spm, which have a longer vine life and better quality as 
well (Mehta et al. 2002). Furthermore, ethylene production 
in transgenic tomato was consistently higher than those in 
non-transgenic control fruit, suggesting that PA and ethy-
lene biosynthesis pathway can act simultaneously in ripen-
ing tomato fruit. Waie and Rajam (2003) reported that trans-
genic tobacco lines with over-expresion of SAMDC exhi-
bited tolerance to salinity and drought as well as to fungal 
wilts caused by Verticillium dahliae and Fusarium oxyspo-
rum. This is the first report in which the genetic manipu-
lation of PA metabolism resulted in enhanced tolerance to 
both abiotic and biotic stresses in transgenic plants. 

A. thaliana over-expressing SPDS transgenes from Cu-
curbita ficifolia (FSPDS1) showed a 5- to 6-fold increase in 
SPDS activity, resulted in a 1.3- to 2-fold and 1.6- to 1.8-
fold increase in the free-Spd and free-Spm titers, respec-
tively. Several transgenic lines also exhibited higher free-
Put contents. These transgenic plants were highly tolerant to 
multiple environmental stresses including chilling and 
freezing temperatures, salinity, drought, hyperosmosis, and 
paraquat toxicity (Kasukabe et al. 2004). A comparison 
analysis by means of cDNA microarray between the chilled 
leaves of transgenic line and wild type revealed that genes 
encoding transcription factors such as WRKY, B-box zinc 
finger proteins, NAM proteins, DREB2B, MYB, and NAC 
domain proteins were up-regulated in the transgenes. The 
FSPDS1-transgenic sweet potato (Ipomoea batatas, cv. 
‘Kokei 14’) plants were also found with improved tolerance 
to salt, drought, chilling, heat and paraquat stresses 
(Kasukabe et al. 2006). An apple SPDS gene (MdSPDS1) 
was transformed into European pear (Pyrus communis L. cv. 
‘Ballad’), and a total of 21 transgenic lines showing various 
Spd titers and MdSPDS1 expression levels were obtained 
(Wen et al. 2007). It was proved that the overexpression of 
MdSPDS1 gene substantially increased the tolerance to 
multiple stresses by altering the PA titers in pear. 

High level of PAs may be cytotoxic, thus it is a good 
alternative to use the stress-inducible promoters to regulate 
the expression of PA biosynthetic genes as evidenced by 
successful examples in rice (Capell et al. 2004), in tomato 
(Mehta et al. 2002), etc. A total of 16 transgenic rice cell 
lines expressing the oat adc cDNA accumulates increased 
level of Put in callus but not in vegetative tissue or seeds 
with the exception of only one line, which showed very sig-
nificant increases in Put preferentially in seeds. Therefore, 
in order to identify transgenic plants which express a de-
sired phenotype or genotype, it is generally necessary to 
screen adequate numbers of independently derived trans-
genic plants (Noury et al. 2000). 
 
CONCLUDING REMARKS 
 
Tons of papers have been produced on the relationships 
between PA and environmental stresses; however, there is 

still paucity of direct and unequivocal evidence on the in-
volvement of PA in stress tolerance. Many existing impor-
tant findings came from the genetic and molecular analysis 
of mutants with either altered concentrations of PAs or 
altered sensitivity to PAs from model plants like Arabidop-
sis and tobacco, thus more efforts should be devoted to the 
study using mutant plants. Genetic manipulation of PA 
pathway genes has provided some valuables information 
concerning their roles in stress response. Nevertheless, it is 
necessary to better understand the mechanism of PA 
homeostasis in plant cells in order to devise proper genetic 
manipulation strategy. The combined application of trans-
criptomic and proteomic approaches will help to elucidate 
the PA roles in signaling network under environment 
stresses. Recently, Spm has been demonstrated to have im-
portant role in various stress response. Genetic manipula-
tion of SPMS gene may be also a good strategy to confer 
multiple stresses. Few reports have been published on the 
genetic manipulation to confer biotic stress, which may be 
a direction deserving more attention. Regarding the en-
hanced tolerance of transgenic plants with perturbed PA 
titers, the evidence from the field trial is still lacking. Some 
successful evidences of PA genetic manipulation to counter-
act environment stresses are expected to promote its ex-
tended application to other crops. 
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