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ABSTRACT 
Water convolvulus is an aquatic plant capable of growing in a low nutrient solution and poor water quality. There are many reports on 
utilization of this plant for the efficient remediation of salt contaminated wastewater. The aim of this investigation was to identify the 
criteria that could be used to classify the salt tolerance and salt sensitivity of water convolvulus using multivariate characters. Six lines of 
water convolvulus plantlets were photoautotrophically grown in a controlled environmental system and then treated with 0 (control) or 
342 mM NaCl (salt stress) for a week. Pigment levels, chlorophyll a fluorescence and growth reduction were measured as potential 
multivariate parameters to group plants into two classes: salt tolerant (WC083, SR739 and SR716) and salt sensitive (MK98, WC001 and 
WC092). Total chlorophyll and carotenoid pigments in salt-stressed plantlets were reduced by 80.0% and 68.6% in salt tolerant lines. In 
salt-sensitive lines these pigments were degraded by 88.0% and 79.8%, respectively. This suggests that the major pigments, total 
chlorophyll and carotenoids in salt-tolerant lines were more stable than those in salt-sensitive lines. The function of both major pigments 
in salt-tolerant lines was strongly related to light harvesting (�PSII) (r2 = 0.81) and photooxidative damage (NPQ) defenses (r2 = 0.81), 
respectively. Further, several growth parameters (plant height, number of leaves, root length, number of roots, fresh weight) progressively 
decreased when exposed to salt stress, especially in salt-sensitive lines. The salt-tolerant lines of water convolvulus can be further utilized 
for NaCl-contaminated wastewater phytoremediation, while the salt-sensitive lines may be applied as effective indicators of salt 
contamination in the water. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
Wastewater, released from urban, agricultural and industrial 
zones is a critical problem (Oron 2003). It has increased salt 
concentrations considerably (El-Fadel et al. 1997; Bowman 
et al. 2002) and includes domestic wastewater (345 mg L-1 
Na+) (Patterson 2004), leached waste landfill (1,442 mgL-1 
Cl-) (Aluko et al. 2003), sewage sludge [0.8% Na+ (% total 
solids)] and horticultural waste [1.27% Na+ (% total solids)] 
(Stabnikova et al. 2005). The contaminant salts in the waste-
water pond are readily oxidized to toxic ions, especially 
sodium ions (Na+) and chloride ions (Cl-), which damage 
aquatic plant species (Hootsmans and Wiegman 1998; Rout 
and Shaw 2001; Klomjek and Nitisoravut 2005) in terms of 
biochemical, physiological and morphological characters. 
Aquatic plant species have a high potential phytoremedia-
tion capacity for removing salt contamination and filtering 
sediments (Karnchanawong and Sanjitt 1995; Jing et al. 
2002; Kyambadde et al. 2004; Klomjek and Nitisoravut 
2005; Chen et al. 2006). Phytoremediation of salt-contami-
nated waste water using aquatic plant species is an impor-
tant topic for investigation. Lack of information regarding 
the emerging plant species and those adapted to flooding is 
a major impediment for practical application of this method 
for reclaiming salt-contaminated waste water. 

Water convolvulus (Ipomoea aquatica Forsk) belonging 

to Convolvulaceae family is an effective aquatic species, 
which grows well in fresh water marshes and ponds (Shar-
ma 1994). It has been used as vegetable crop in Asian coun-
tries and is rich in antioxidant compounds, namely carote-
noid and vitamin A (Chen and Chen 1992; Wills and Rang-
ga 1996; Tofern et al. 1999; Malalavidhane et al. 2000; Hu-
ang et al. 2005). Several studies utilizing water convolvulus 
in wastewater phytoremediation in terms of heavy metals i.e. 
cadmium (Cd), cupper (Cu), zinc (Zn), lead (Pb), mercuric 
(Hg) and nickel (Ni) have been reported (Sun and Wu 1998; 
Fonkou et al. 2002; Gothberg et al. 2004), bisphenol A 
(Noureddin et al. 2004), sulfate (Sakulkoo et al. 2005; Mee-
rak et al. 2006), sewage sludge and horticultural waste (Stab-
nikova et al. 2005) as well as salt contaminant removal 
(Jing et al. 2002; Klomjek and Nitisoravut 2005; Stabni-
kova et al. 2005; Kirdmanee et al. 2006). 

In this study, water convolvulus is utilized as a model 
plant to investigate the multivariate parameters for the iden-
tification of salt tolerance. As previous studies have shown, 
mechanisms of salt tolerance are composed of multiplex 
defenses or quantitative traits such as membrane systems, 
osmoregulation systems, antioxidant systems and hormonal 
systems (Hasegawa et al. 2000; Mansour and Salama 2004; 
Ashraf 2004; Parida and Das 2005). There are many reports 
on in vitro culture systems as a tool for selection of stress-
tolerant clones (Lee et al. 2003; Misra and Dwivedi 2004; 
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Houshmand et al. 2005), gene expression for stress resis-
tance (Kumria and Rajam 2002), and plant responses to ex-
treme environmental conditions (Ekanayake and Dodds 
1993; Wahome et al. 2001; Lin et al. 2002). However, the 
natural environment is quite different from the conventional 
in vitro culture (Kozai et al. 1997; Mills and Tal 2004). An 
in vitro environmental control system of photoautotrophic 
condition has been successfully applied to simulate realistic 
phenotypic responses to salt stress in woody plants (Kird-
manee and Cha-um 1997; Cha-um et al. 2004a) and crop 
species (Cha-um et al. 2004b; Cha-um et al. 2005). In ad-
dition, chlorophyll degradation and net-photosynthetic rate 
reduction in salt-stressed plants have been developed as in-
dices to classify the salt tolerant clones of forest tree and 
crop species (Kirdmanee and Mosaleeyanon 2000; Wani-
chananan et al. 2003). Salt tolerance is recommended for 
multiple indices in rice (Zeng 2005), green gram (Ahmad et 
al. 2005), wheat (El-Hendawy et al. 2005) and tomato (Juan 
et al. 2005). The aim of this investigation was to develop 
rapid indicators of salt tolerance in water convolvulus lines 
using an in vitro photoautotrophic system. 

 
MATERIALS AND METHODS 
 
Plant materials 
 
Seeds of six water convolvulus lines (MK98, SR716, SR739, 
WC001, WC092, and WC083) were obtained from the Asian 
Vegetable Research and Development Center (AVRDC), Thailand 
and the Faculty of Horticulture, Chiba University, Japan. Seeds 
were bark-peeled to approximately 0.25 cm diameter, and then 
washed for 2-3 min in 70% ethanol. The whole seeds were steri-
lized once in 5% Clorox� [5.25% active ingredient sodium hypo-
chlorite (w/v), Clorox Co., Ltd., USA] for 12 h and once in 30% 
Clorox� for 30 min, then washed thrice in sterilized distilled water. 
The surface-sterilized seeds were germinated in 25 ml vials (Opti-
clear� KIMBLE, USA) on hormone-free-MS media (Murashige 
and Skoog 1962) supplemented with 87.60 mM sucrose (photo-
mixotrophic condition) and solidified with 0.24% (w/v) Phytagel� 
(Sigma, USA). The pH of the culture media was adjusted to 5.7 
before autoclaving at 120ºC for 15 min. All of the cultures were 
incubated under 25 � 2ºC temperature, 60 � 5% relative humidity 
(RH) and 60 � 5 μmol m-2 s-1 photosynthetic photon flux density 
(PPF) provided by fluorescence lamps (TLD 36W/84 3350 lm Phi-
lips Thailand) with a 16 hd-1 photoperiod for 10 days. Nodes of 

seedlings were propagated on MS media supplemented with 13.32 
μM N6-benzyl adenine (BA) with a monthly subculture interval. A 
single shoot was dissected and induced to root on MS hormone-
free media for 14 days. Plantlets, 5 � 0.5 cm in height, were selec-
ted as initial plant material, then aseptically transferred to sugar-
free liquid MS media (photoautotrophic condition) in glass vessels 
using vermiculite as supporting material (Fig. 1A) and incubated 
in plastic culture chambers (W�L�H; 26�36�19 cm). The air-ex-
change rate was adjusted to 5.1 � 0.3 h-1 by perforating the sides of 
the plastic chambers with 32 holes and placing filters over them 
and reducing relative humidity (65 � 5 %RH) by adding sodium 
chloride saturated salt solution in the chamber (Fig. 1B). After in-
cubation for a week, the culture media were adjusted to 0 (control) 
or 342 mM NaCl (salt-stress) for 7 days (Fig. 2). Chlorophyll con-
tent, chlorophyll a fluorescence, shoot height, number of leaves, 
root length, number of roots, fresh weight and dry weight of plant-
lets were measured. 
 
Data collections 
 
Concentrations of chlorophyll a (Chla), chlorophyll b (Chlb), total 
chlorophyll and total carotenoids (Cx+c) concentrations were ana-
lyzed as described in Shabala et al. (1998) and Lichtenthaler 
(1987). One hundred milligrams of leaf material were collected 
from the second and third nodes of the shoot tip. The leaf samples 
were placed in a 25 mL glass vial (Opticlear� KIMBLE, USA), 
containing 10 mL of 95.5% acetone, and blended using an homo-
genizer (T25 basic ULTRA-TURRAX�, IKA, Malaysia). The 
glass vials were sealed with parafilm to prevent evaporation and 
then stored at 4�C for 48 h. The Chla and Chlb concentrations were 
measured using an UV-visible Spectrophotometer (DR/4000, 
HACH, USA) at 662 nm and 644 nm wavelengths. Also, the Cx+c 
concentration was measured by Spectrophotometer at 470 nm. A 
solution of 95.5% acetone was used as a blank. The Chla, Chlb, 
total chlorophyll and Cx+c (μg g-1 FW) concentrations in the leaf 
tissues were calculated according to the following equations. 
 
[Chla] = 9.784D662 – 0.99D644 
[Chlb] = 21.42D644 – 4.65D662 
Total chlorophyll = [Chla] + [Chlb] 

 
 

 
 

where Di is an absorbance at the wavelength i. 
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Fig. 1 In vitro culture system 
of water convolvulus grown in 
liquid MS media using 
vermiculite as support material 
(A). Plastic culture chambers 
covered with Millipore filters. 
The chamber sides were perfo-
rated for aeration (B). Relative 
humidity was maintained at 65 
± 5% using saturated sodium 
chloride solution. 
 

In vitro plantlets under 
photomixotrophic condition 

for 14 days

In vitro acclimatization in 
Plant Growth Incubator 
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Salt stress treatments 
using 0 or 342 mM NaCl

for 7 days

Fig. 2 Schematic of screening for salt toler-
ance in water convolvulus. 
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Chlorophyll a fluorescence emission from the adaxial surface 
on the third leaf from the shoot tip was monitored with a Fluo-
rescence Monitoring System (FMS 2; Hansatech Instruments Ltd., 
UK) in the pulse amplitude modulation mode, as previously des-
cribed by Loggini et al. (1999). A leaf, adapted to dark conditions 
for 30 min using leaf-clips (PEA/LC, Hansatech Instrument Ltd., 
UK) was initially exposed to the modulated measuring beam of 
far-red light (LED source with typical peak at wavelength 735 nm). 
Original (F0) and maximum (Fm) fluorescence yields were mea-
sured under weak modulated red light (<0.5 μmol m-2 s-1) with  
1.6 s pulses of saturating light (>6.8 μmol m-2 s-1 PAR) and auto-
calculated by FMS software for Windows� (Fluorescence Moni-
toring System Software, Hansatech Instrument Ltd., UK). The 
variable fluorescence yield (Fv) was calculated by the equation of 
Fm – F0. The ratio of variable to maximum fluorescence (Fv/Fm) 
was calculated as maximum quantum yield of PSII photochemistry. 
The photon yield of PSII (�PSII) in the light was calculated by 
�PSII = (Fm
-F)/Fm
 after 45 sec of illumination, when steady state 
was achieved. In addition, non-photochemical quenching (NPQ) 
was calculated as described by Maxwell and Johnson (2000). 

The shoot height, leaf number, root length, root number, the 
fresh weight and dry weight of plantlets were measured as growth 
characteristics by the methodology of Lutts et al. (1996). The 
plantlets were dried at 110�C in a hot-air oven (Memmert, Model 
500, Germany) for 2 days and then incubated in desiccators before 
the measurement of their dry weight. The pigment degradation, 
chlorophyll a fluorescence diminution and growth reduction per-
centages were calculated according to equation: 

 
 
 

 
 
Experimental design 
 
The experiment was designed as 2�6 factorial in Completely 
Randomized Design (CRD) with five replicates and four plantlets 
per replicate. The mean values obtained were compared by Dun-
can’s New Multiple Range Test (DMRT) and analyzed by SPSS 
software (SPSS for Windows, SPSS Inc., USA). The correlations 
between chlorophyll a and Fv/Fm, total chlorophyll concentration 
and �PSII, total carotenoid concentration and NPQ, as well as �PSII 
and plant height, were evaluated by Pearson’s correlation coeffici-
ents. Multivariate parameters associated with significant difference 
in statistical analysis of lines were input to classify groups as salt-
tolerant and salt-sensitive using Hierarchical cluster analysis in 
SPSS software. 
 
RESULTS AND DISCUSSION 
 
Chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll 
and total carotenoid (Cx+c) levels in all water convolvulus 

lines sharply decreased when exposed to extreme salt stress 
(342 mM NaCl), leading to low quantum efficiency of PSII 
(�PSII) as well as a reduction in root length and fresh weight. 
Multivariate parameters of pigment degradation, chloro-
phyll a fluorescence diminution and growth reduction in 
salt-stressed water convolvulus were subjected to Hierarchi-
cal cluster analysis in SPSS software for salt tolerant or salt 
sensitive classification. The results were significant and 
showed that there were two district classes, salt-tolerant 
lines – SR739, SR716 and WC083, and salt-sensitive lines 
– MK98, WC001 and WC092 (Fig. 3). The Chla, Chlb, total 
chlorophyll and Cx+c levels in both salt-tolerant and salt-
sensitive lines decreased significantly when exposed to 342 
mM NaCl or salt stress (Table 1). Those pigments in salt-
tolerant line were degraded for 77.9, 82.5, 80.0 and 68.6%, 
and were lower than those in salt-sensitive lines by 1.13, 
1.06, 1.10 and 1.16 times, respectively. The pigment degra-
dation in salt-stressed water convolvulus was strongly af-
fected by both the choice of water convolvulus lines or salt-
stress (Table 1). The total chlorophyll degradation in salt-
sensitive and salt-tolerant lines was closely related to �PSII 
(r2 = 0.64 and r2 = 0.81, respectively) (Fig. 4). In addition, 
the Cx+c degradation in both lines was inversely related to 
non-photochemical quenching (NPQ) (r2 = 0.66 and r2 = 
0.81, respectively) (Fig. 5). In the case of chlorophyll a fluo-
rescence parameters, the salt stress conditions significantly 
affected on �PSII and NPQ, while Fv/Fm did not change 
(Table 2). The �PSII activity in salt-tolerant lines was two-
fold higher than that in salt-sensitive lines. Conversely, the 
NPQ parameter, antioxidant defensive activity, in salt-tole-
rant lines was lower than that in salt-sensitive lines by 1.20 
times. This means that the chlorophyll pigments in salt-tole-
rant lines of salt-stressed water convolvulus have a high po-
tential to harvest the light energy, represented by �PSII as 
well as enriched Cx+c pigments to function as an antioxidant 
system with low NPQ activity. The �PSII diminution in salt-
stressed plantlets was positively related to plant height (r2 = 
0.81 and r2 = 0.83) (Fig. 6). Growth characters, such as 
plant height, number of leaves, root length, number of roots 

100
NaCl mM 0
NaCl mM 3421(%) nDegradatio ��



�

�
�
� ���

Table 1 Analysis of pigments in water convolvulus lines subjected to salt stress. 
Lines Salt-stress 

(mM) 
Chlorophyll a 
(μg g-1 FW) 

Chlorophyll b 
(μg g-1 FW) 

Total chlorophyll 
(μg g-1 FW) 

Total carotenoid 
(μg g-1 FW) 

WC001 0 393.29 bc 139.23 bc 532.52 bc 162.15 ab 
 342  64.25 d 26.20 c   90.45 e  42.66 d 
WC092 0 493.90 ab 239.40 ab 733.30 ab 180.51 ab 
 342  45.31 d 15.93 c   61.24 e  34.03 d 
MK98 0 359.35 bc 108.34 bc 467.69 bc 146.64 b 
 342  37.67 d 12.40 c   50.07 e  22.67 d 
SR716 0 425.73 b 131.74 bc 557.47 bc 170.41 ab 
 342  69.79 d  20.52 c  90.31 e  50.27 d 
SR739 0 675.16 a 331.30 a 1006.46 a 238.76 a 
 342 185.41 cd  58.55 c  243.96 de  91.98 c 
WC083 0 468.16 ab 161.61 bc  692.77 b 172.93 ab 
 342 105.29 d 30.93 c  136.22 de  45.19 d 
Significant level     
Line ** ** ** ** 
Salt stress ** ** ** ** 
Line�Salt stress NS NS NS NS 

Highly significance at P � 0.01 and non-significant are represented by ** and NS, respectively. Means followed by different letters are significantly different at P � 0.01 by 
Duncan’s New Multiple Range Test. 

Fig. 3 Cluster analysis of water convolvulus lines using multivariate para-
meters following salt stress. 
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and fresh weight, in salt-stressed water convolvulus were 
reduced in both salt-tolerant and salt-sensitive lines (Table 
3). The reduction in percentages of root length and fresh 
weight in salt-sensitive lines were greater than those of salt-
tolerant lines by 1.33 and 1.44 times, respectively. More-
over, all growth parameters were strongly reduced by salt 
stress condition, except dry weight (Table 3). The different 
classes were significantly affected in terms of number of 
leaves, root length and fresh weight, but there was no vari-
ation in plant height and numbers of roots. 

Green/dark green leaves of salt-stressed water convol-
vulus were changed to light green/yellow leaves within a 

week of salt treatment. The photosynthetic pigments, chlo-
rophyll a, chlorophyll b and total carotenoid contents in 
salt-sensitive water convolvulus lines cultured under salt-
stress were significantly degraded when compared to salt-
tolerant lines (Table 1). It has been showed that in olive, the 
chlorophyll b and total carotenoid contents in the leaves of 
salt-stressed plants (200 mM NaCl) decrease by 1.30 and 
1.48 times respectively, compared with unstressed wild spe-
cies and by 1.33 and 1.73 times respectively, compared with 
unstressed hybrids (Ma et al. 1997). Other research has also 
shown that there are significant degradations of chlorophyll 
pigment in salt sensitive varieties of green gram by 1.96 
times (Ahmad et al. 2005), the 50% anthesis stage of wheat 
by 1.44 times (Sairam et al. 2002), cotton by 1.48 times 
(Meloni et al. 2003) and sorghum by 1.83 times (Netondo et 
al. 2004) when grown in conditions of salt stress, compared 
to plant grown without salt stress. It should be noted that 
salt stress strongly affected chlorophyll degradation and dis-
turbed the chlorophyll biosynthetic partway, especially in 
glycophyte species (Bohnert et al. 1995; Santos 2004). On 
the other hand, the chlorophyll a, chlorophyll b and total ca-
rotenoid concentrations in the salt-tolerant tomato cultivars 
“Brillante” stabilized at higher levels than those in the salt-
sensitive cultivars “Royesta” by 1.50, 1.16 and 2.14 times, 
respectively (Juan et al. 2005) when grown in the condi-
tions of salt stress, compared to plants grown without salt 
stress. The activities of pigments in water oxidation and light 
harvesting were measured using chlorophyll a fluorescence 
parameters, which are reported as highly sensitive in plants’ 
responses to salt stress (Maxwell and Johnson 2000; Neton-
do et al. 2004). In the present study, the results showed that 
the water oxidation or maximum quantum yield of PSII 
(Fv/Fm) of water convolvulus were unaffected by both salt 
stress and the lines chosen (Table 2). It is a similar pattern 
to the previous studies in cotton (Meloni et al. 2003), olive 
(Ma et al. 1997) and sorghum (Netondo et al. 2004). In 
those studies, the Fv/Fm values in both salt stress and culti-
vars are not significantly different. Alternatively, the quan-

Table 2 Analysis of photosynthesis parameters in response to salt stress 
in water convolvulus. 
Lines Salt-

stress 
(mM) 

Maximum 
quantum yield 
of PSII (Fv/Fm) 

Quantum 
efficiency of 
PSII (�PSII) 

Non-
photochemical 
quenching (NPQ)

WC001 0 0.794 0.548 ab 0.154 c 
 342 0.793 0.425 b 0.289 ab 
WC092 0 0.817 0.580 a 0.176 bc 
 342 0.794 0.442 b 0.236 ab 
MK98 0 0.824 0.582 a 0.134 c 
 342 0.772 0.422 b 0.195 bc 
SR716 0 0.820 0.483 ab 0.204 abc 
 342 0.814 0.440 b 0.330 a 
SR739 0 0.801 0.577 a 0.219 abc 
 342 0.788 0.461 ab 0.251 ab 
WC083 0 0.800 0.539 ab 0.200 bc 
 342 0.700 0.496 ab 0.223 abc 
Significant level    
Line NS NS NS 
Salt stress NS ** * 
Line�Salt stress NS NS NS 

Highly significance at P � 0.01, significant at P � 0.05 and non-significant are 
represented by **, * and NS, respectively. Means followed by different letters are 
significantly different at P � 0.01 by Duncan’s New Multiple Range Test. 
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tum yield efficiency (�PSII) and non-photochemical quen-
ching (NPQ) in salt-sensitive lines significantly decreased 
when compared to those in salt-tolerant lines (Table 2). The 
�PSII and NPQ in salt-tolerant sorghum ‘Seredo’ and wheat 
‘AZ-8501’ are more highly expressed than those in salt-sen-
sitive sorghum ‘Serena’ (Netondo et al. 2004) and barley 
‘Morex’ (Jiang et al. 2006), respectively. The pigment deg-
radation and activity as well as growth reduction were used 
effectively to identify salt tolerance in water convolvulus 
lines (Fig. 3). The growth characters and survival percen-
tage of salt-stressed cowpea genotypes are applied to clas-
sify the salt-tolerant abilities into four groups namely, tole-
rant, moderately tolerant, moderately sensitive and sensitive 
(Murillo-Amador et al. 2006). Thus, multivariate criteria or 
parameters in biochemical, physiological and morphologi-
cal characters provide effective means to classify the salt-
tolerant or salt-sensitive species. Similarly, sugarcane varie-
ties have been grouped into four classes – highly tolerant, 
tolerant, sensitive and highly sensitive – using EC50 values 
of germination percentage, plant dry weight, number of 
green leaves, leaf area and number of tillers (Wahid et al. 
1997). In barley varieties, the salt tolerant (AZ-8501 and 
Giza125) and salt sensitive varieties (Morex and TR306) 
have been classified using salinity susceptibility index (SSI) 
in terms of physiological characters, including efficiency of 
light harvesting of PSII (F
v/F
m), internal CO2 concentra-
tion (Ci) and stomatal conductance (gs) (Jiang et al. 2006). 
In addition, wheat genotypes have been clustered into three 
groups – tolerant, moderately tolerant and sensitive – based 
on growth performances, biomass and grain yield using 
Ward’s minimum cluster analysis (El-Hendawy et al. 2005). 
Rice genotypes have been identified into four clusters by 
Ward’s minimum variance cluster analysis based on ion con-
tents, ion selectivity and growth performances (Zeng 2005). 
This study shows that photosynthetic pigments, chlorophyll 
a fluorescence and growth characters in salt-tolerant lines 
are significantly different compared to those in salt-sensi-
tive lines and can be reliably used in multiple parameter eva-
luation. 
 
CONCLUSION 
 
Pigment degradation and PSII function in salt tolerant lines 
were positively correlated with overall growth performan-
ces and were effectively developed as multivariate salt-tole-
rant parameters to rapidly screen water convolvulus popula-
tions for salt tolerance. In addition, pigment degradation or 
yellow leaf color, the activity of pigments and growth per-
formances in salt-sensitive lines in response to salt-stress 
can be utilized as bio-monitors in detecting salt-contamina-
ted wastewater, released-out from urban or industrial zones. 
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