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ABSTRACT 
Bamboo mosaic virus (BaMV) is a single-stranded positive-sense RNA virus with flexuous rod morphology which belongs to the 
potexvirus group. To study the infection cycle of BaMV at the molecular level, a full-length infectious cDNA clone was constructed for in 
vivo protoplast and plant transfection assays. For in vitro transcription assays, RdRp replicase complex extracted from infected plants was 
used. From the results derived from these in vivo and in vitro analyses, we identified that a cloverleaf-like structure in the 3� UTR of the 
BaMV genome is involved not only in viral RNA accumulation in cells but also in viral systemic movement. A major stem-loop contains 
two cis-acting elements, one is a potexviral conserved hexamer motif which is important for the accumulation of viral products in 
protoplasts and the other is the polyadenylation motif which is involved in minus-strand RNA synthesis and in regulating the length of the 
poly(A) tail. To identify the trans-acting factors required for efficient accumulation of viral products in plants two techniques were 
employed. The first one is conventional chromatography to isolate the proteins that bind to the RNA genome. The second is cDNA-
amplified fragment length polymorphism (cDNA-AFLP) to identify the host gene expression profiles that show up- or down-regulated 
patterns corresponding to BaMV infection. We found that chloroplast phosphoglycerate kinase (PGK), a gluconeogenic enzyme binds to 
the poly(A) of BaMV RNA and using virus induced gene silencing, a powerful tool for functional analysis, we found that chloroplast 
PGK is required for efficient accumulation of BaMV in plants. Using the combination of cDNA-AFLP and VIGS, we will identify novel 
genes that regulate the accumulation of viral products in plants. 
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INTRODUCTION 
 
Most cultivated species of bamboo with rhizomes of the 
pachymorph type in Taiwan are susceptible to bamboo 
mosaic; especially in green bamboo (Bambusa oldhamii 
Munro) and Ma Chu (Dendrocalamus latiflorus Munro). 
Symptoms include mosaic on the leaves (Fig. 1) and brown 
internal streaking of shoots and young culms (Lin et al. 
1979). The causal agent is Bamboo mosaic virus (BaMV) 
which was first reported in Brazil (Lin et al. 1977). Besides 
bamboos, BaMV can also be mechanically inoculated onto 
Chenopodium quinoa, C. amaranticolor, Gomphrena glo-
bosa, Nicotiana benthamiana, N. plumbaginifolia, barley 
(Hordeum vulgare L. cv. ‘Larker’) and rice (Oryza sativa). 
BaMV has a single-stranded positive-sense RNA genome 
and belongs to the genus Potexvirus of the family Flexi-
viridae. It causes a serious disease with mosaic symptoms 
(Fig. 1) on bamboos in Taiwan. The genome comprising 
6,366 nt [excluding the 3� poly(A) tail] (Lin et al. 1994) has 
5 open reading frames (ORFs) with a 5� cap and a 3� 

Fig. 1 The mosaic symptoms on bamboo leaves infected with Bamboo 
mosaic virus. 
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poly(A) tail (Fig. 2). The 155-kDa polypeptide of ORF1 has 
been reported to comprise 3 domains: a capping enzyme 
domain (Hodgman 1988; Huang et al. 2004; Huang et al. 
2005; Li et al. 2001), a helicase-like domain with a RNA 5� 
triphosphotase activity (Hodgman 1988; Gorbalenya and 
Koonin 1989; Li et al. 2001), and an RNA-dependent RNA 
polymerase (RdRp) domain (Li et al. 1998). The ORFs 2-4, 
which are called triple gene block and encode 28, 13, and 6 
kDa polypeptides (TGBp1, TGBp2, and TGBp3), respec-
tively, are required for virus movement. The last ORF en-
codes a 25 kDa capsid protein. Two major subgenomic 
RNAs of 2.0 and 1.0 kb are 3� co-termini and are required 
for the expression of the movement protein (Lin et al. 2004) 
and coat protein (Lin et al. 1994), respectively. 

At least 2 major steps are involved in the replication of 
positive-sense RNA viruses: the minus-strand and plus-
strand RNA syntheses. The key enzyme catalyzing these 
reactions is the viral-encoded RdRp (Buck 1996), which 
may associate with host factor(s) to form a replicase com-
plex (Lai 1998). An in vitro transcription system using the 
purified RdRp complex is a valuable strategy in identifying 
the host factor(s) in the complex as well as the cis-elements 
of the RNA templates. In vitro copying the exogenous tem-
plates with a purified, solubilized RdRp complex has been 
demonstrated in Brome mosaic virus (Quadt and Jaspars 
1990), Cucumber mosaic virus (Hayes and Buck 1990), Tur-
nip crinkle virus (Song and Simon 1994), Tobacco mosaic 
virus (Osman and Buck 1996), Turnip yellow mosaic virus 
(Deiman et al. 1997; Singh and Dreher 1997) and BaMV 
(Cheng et al. 2001; Lin et al. 2005b). 

Constructing a full-length infectious cDNA clone or a 
replicon is another way to understand the functions of the 
products encoded by each ORF (Beck et al. 1991; Chapman 
et al. 1992; Guilford et al. 1991), the cis-elements required 
for viral replication (Weiland and Dreher 1989; Tsai and 
Dreher 1992; White et al. 1992), and the relationships 
between the viral RNAs and host symptom development 
(Chapman et al. 1992; Kavanagh et al. 1992). 
 
THE CIS-ACTING ELEMENTS IN BaMV INFECTION 
CYCLE 
 
The cis-acting elements reside in the 3� UTR of 
BaMV RNA 
 
The cis-acting elements for minus-strand RNA synthesis of 
positive-sense RNA viruses located at the 3� untranslated 
region (UTR) have been identified in vitro in several plant 
RNA viruses: the stem-loops of Alfalfa mosaic virus (Hou-
ser-Scott et al. 1997; Houser-Scott et al. 1994; Reusken and 
Bol 1996) and TCV (Song and Simon 1995), and the tRNA-
like structures of BMV, TMV, and TYMV (Kao and Sun 
1996; Osman and Buck 1996; Deiman et al. 1997, 1998; 
Singh and Dreher 1997). The primary sequence and the 
secondary structure localized at the 3� UTR in picornaviral 
RNAs are presumably recognized by the replicase complex 
containing viral and host proteins that initiate the minus-
strand RNA synthesis (Pilipenko et al. 1992; Cui et al. 
1993; Cui and Porter 1995; Todd et al. 1995). Mutations in-
troduced to abolish the pseudoknot structure of the entero-

virus RNA are non-viable; however, viability is restored by 
the compensatory mutations (Mirmomeni et al. 1997). 

The tertiary structure of the 3� UTR of BaMV RNA 
comprising 3 consecutive stem-loops form a cloverleaf-like 
structure (ABC region), a major stem-loop containing a 
bulge and an internal loop (D region), and a pseudoknot 
containing part of the poly(A) tail (E region; Fig. 3). The 
conserved sequences among all members of the potex-
viruses, the hexamer (ACXUAA) and the putative poly-
adenylation (AAUAAA) motifs, are located at the apical 
and internal loops, respectively, in the D region (Fig. 3). 
Results derived from in vivo protoplast transfection showed 
that the hexamer motif is important for the accumulation of 
viral products in BaMV (Cheng and Tsai 1999) as well as in 
Clover yellow mosaic virus (White et al. 1992). Further stu-
dies of this motif indicated that the very 5� adenylate resi-
due of this motif is purine specific, and the following cyti-
dylate is restricted to pyrimidine. The nucleotides at posi-
tions 4-6 of this motif, UAA, are unalterable. Substitution at 
the third position has less effect on viral accumulation in 
protoplasts (Chiu et al. 2002). 

A mutation in polyadenylation signal, AAUAAA, of 
White clover mosaic virus or a deletion containing this 
motif in the 3� UTR of BaMV RNA reduced the infectivity 
dramatically (Guilford et al. 1991; Kao and Sun 1996). 
Fifteen single point substitutions introduced in this motif of 
BaMV RNA revealed that the third nucleotide (the only uri-
dylate residue) is less important in viral RNA accumulation 
in protoplasts and plants. The second and the last adenylate 
residues are involved in minus-strand RNA accumulation. 
However, the two adenylates at the fourth and the fifth 
positions in this motif are not only involved in minus-strand 
RNA synthesis but also in polyadenylation efficiency, the 
length of the poly(A) tail being reduced from 150 to less 
than 50 adenylates, on average, when mutations are intro-
duced at these 2 positions (Chen et al. 2005). 

Maintaining the integrity of the structures in D stem-
loop and pseudoknot is essential for efficient viral accumu-
lation in protoplasts (Tsai et al. 1999). Mutations that dis-
rupt the stem formation in these structures resulted in inef-
ficient accumulation of viral products. However, when com-
pensatory mutations were introduced to reform the stems 
the accumulation viral products is restored. Full-length 
transcripts with fewer than 10 adenylates at the very 3�-end 
fail to accumulate viral products in protoplasts, however, 
transcripts with 15 or 22 adenylates can reach to 26% or 
similar to that of the wild type, respectively (Tsai et al. 
1999). These results suggested that maintaining the pseudo-
knot structure is important for viral RNA replication. The 
initiation site of minus-strand RNA synthesis is not fixed at 
one position but, rather, resides opposite one of the 15 ade-
nylates of the poly(A) tail, with the highest frequency of 
initiation being from adenylates 7 to 10 counted from the 5� 
most adenylates of the poly(A) tail of the 3� UTR of BaMV 
genomic RNA (Cheng et al. 2002). 

The cloverleaf-like ABC region in the 3� UTR is in-
volved in not only the accumulation of viral products in 
protoplasts and plants but also viral long-distance move-
ment (Chen et al. 2003). The accumulation of viral products 
of mutants BaMV40A/�B and -/�C were about 30% that of 

Fig. 2 Illustration of the genome orga-
nization of BaMV and constituents of 
ORF1 product. (Adapted from Tsai et 
al. 2006). 
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the wild type. However, the level of accumulation of viral 
products of BaMV/�A was similar to that of the wild type 
in protoplasts and inoculated leaves. Interestingly, the ac-
cumulation of viral products was not as efficient as that of 
the wild type in systemic leaves, which indicates that stem-
loop A is dispensable for replication but signifies a role in 
systemic accumulation. 

The gist of these results is that the 3� UTR of BaMV 
RNA is involved in the initiation of minus-strand RNA syn-
thesis, polyadenylation, and viral RNA long distance move-
ment. 
 
The cis-acting elements for BaMV plus-strand 
genomic RNA synthesis 
 
To identify the promoter region for plus-strand genomic 
RNA synthesis, in vitro RdRp assay was used to examine 
short transcripts, 39-, 77-, and 173 nt, derived from the 3� 
terminus of the minus-strand RNA for their ability to direct 
RNA synthesis (Cheng et al. 2001; Lin et al. 2005a). The 
3�-terminal 77 nt RNA (Ba-77) was shown to be the most 
efficient RNA template with the minimal sequence required 
to form two stem-loops (Lin et al. 2005a). The enzymatic 
structural probing data supported the existence of the pre-
dicted structure with a large stable stem-loop and a small 
unstable stem-loop in Ba-77 (Fig. 4). Ba-77/�5 without the 
terminus UUUUC directed the RNA synthesis only 7% that 
of Ba-77 in vitro. Mutant with a deletion of 16 or 31 nt from 
the 3�-end but retaining the internal UUUUC repeating unit 
as the terminal UUUUC could partially preserve the tem-
plate activity to about 60%. These results indicated that 
UUUUC sequence at the very 3�-end was important for 
plus-strand RNA synthesis (Lin et al. 2005a). 

Moreover, mutations that alter the sequence at the large 
stem-loop significantly reduced the RNA synthesis in vitro 

and viral RNA accumulation in vivo, which suggests that 
the sequence of the stem is involved in regulating the 
BaMV plus-strand RNA synthesis. Besides the terminal 
UUUUC and the large stem-loop, the distance between 
these two regions could also play a role in regulating the ef-
ficiency of BaMV plus-strand RNA synthesis. Mutants that 
shorten distance between these two regions reduced the 
levels of plus-strand RNA synthesis in vitro and of viral 
RNA accumulation in vivo (Lin et al. 2005a). 

All of these results suggest that the replicase complex 
could have at least 2 different RNA interacting domains: the 
one in the catalytic core requires the template containing the 
UUUUC terminal sequence and the other domain is the spe-
cificity determinant which recognizes the large stem-loop. 

Ba-39 is a short template with a UUUUC terminal se-
quence that could directly fit in the catalytic core and ini-
tiate RNA synthesis but far less efficient. However, to be an 
effective template a large molecule such as Ba-77 requires 
both interactions. Therefore, shortening the distance bet-
ween these 2 RNA moieties will interfere with the effici-
ency of RNA synthesis. 

Overall, there are at least 3 cis-acting elements in the 3�-
end of BaMV minus-strand RNA which are required to ef-
ficiently initiate viral RNA synthesis, the terminal UUUUC, 
the sequence of the large stem-loop, and the distance bet-
ween these two regions. 
 
THE TRANS-ACING FACTORS IN BaMV 
INFECTION CYCLES 
 
We have been using two strategies to identify the trans-ac-
ting factors involved in BaMV infection cycle. The first 
aims for specific interaction with viral RNAs identified by 
electrophoretic mobility shift (EMSA), UV cross-linking, 
footprinting, and competition assays. The second aims to 

 

Fig. 3 Illustration of the interactions of the BaMV 3� UTR and two of the three domains of its ORF1 (adapted from Tsai et al. 2006). The RdRp 
domain shown in yellow and the helicase-like domain shown in blue with oval shape are indicated. The functions of the motifs and cis-acting elements in 
the 3� UTR of BaMV RNA are indicated in boxes. SL stands for stem-loop. 
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detect up- or down-regulation of host genes during BaMV 
infection employing cDNA-amplified fragment length poly-
morphism (cDNA-AFLP) (Money et al. 1996) followed by 
a gene knock-down experiment of the gene of interest to 
examine the relationship between virus and the host gene. 
 
The trans-acting factors derived from BaMV 
 
The Escherichia coli-expressed RdRp domain and helicase-
like domain derived from BaMV ORF 1 were used to de-

monstrate the specific binding to the 3� UTR (Huang et al. 
2001; Cheng et al. 2002; Chen et al. 2003). Results indica-
ted that the RdRp domain binds to at least two independent 
RNA binding sites: the stem-loop D and the poly(A) tail 
(Fig. 3). Footprinting analysis revealed that RdRp could 
protect the sequences at the D domain containing the hexa-
mer motif, part of the stem, and approximately 20 nt of the 
poly(A) tail adjacent to the 3� UTR which matches to the re-
gion used to initiate minus-strand RNA synthesis (Huang et 
al. 2001; Cheng et al. 2002). UV cross-linking and competi-

Fig. 5 The gene expression profile of Nicotiana benthamiana leaves during BaMV transfection. (A) Fluorescent cDNA-AFLP fragments were sepa-
rated on 6.5%polyacrylamide urea denaturing gel and imaged with a fluorescent scanner. The size markers are indicated at the left of the gel. The arrows 
indicate the examples of three differential expressed fragments and were shown in (B). The mock and BaMV RNA inoculated samples are shown with H 
and I, respectively. The time (days) of the samples harvested post inoculation is shown above each lane. (B) The expression profile of the differential 
expressed cDNA fragments directly taken from (A) as indicated and confirmed with RT-PCR shown under the cDNA-AFLP. 

Fig. 4 The secondary structure of the 3�-
terminal 77 nt of BaMV minus-strand 
RNA. The cis-acting elements required for 
efficient plus-strand genomic RNA synthe-
sis studied in vitro and in vivo are indicated 
in reds and described in boxes. The initia-
tion site of plus-strand RNA synthesis is 
also indicated. The RdRp domain shown in 
light yellow and the helicase-like domain 
shown in light blue with oval shape are 
indicated. (Adapted and modified from Tsai 
et al. 2006). 
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tion experiments indicated that that the helicase-like domain 
could preferentially interact with the ABC domain (Fig. 3) 
(Chen et al. 2003). Besides, the helicase-like domain of 
BaMV replicase can also specifically interact with the large 
stem-loop of the promoter for plus-strand RNA synthesis 
done by UV-crosslinking and competition assays. Unfortu-
nately, the RdRp domain showed a weak interaction in the 
assay. Since the helicase-like domain is connecting to the 
RdRp domain of the replicase, the hypothetical model of 
the localization of these two domains is proposed (Fig. 4). 
The helicase-like domain recognized the large stem-loop 
and help the RdRp domain to localize at the very 3�-end of 
minus-strand to initiate the plus-strand RNA synthesis. 
 
The trans-acting factors derived from host plants 
 
Besides the viral-encoded RdRp, host factors are required 
for the formation of the replicase complex of RNA viruses. 
In Q�-infected bacteria, the replicase complex comprised 
not only viral RdRp but also translation elongation factors 
EF-Ts and -Tu and the ribosomal protein S1 to synthesize 
the plus-strand RNA (Blumenthal and Carmichael 1979; 
Blumenthal 1980). Moreover, a ribosome-associated protein, 
HF1, is required for the synthesis of the minus-strand RNA 
(Barrera et al. 1993). Translation factors also participate in 
viruses replicating in eukaryotic cells; for example, transla-
tion elongation factor 1a (EF1a) was claimed to be involved 
in some viruses including TMV, West Nile virus (WNV), 
Vesicular stomatitis virus, and TYMV (Joshi et al. 1986; 
Mans et al. 1991; Blackwell and Brinton 1997; Das et al. 
1998; Dreher et al. 1999; Zeenko et al. 2002; Matsuda et al. 
2004). 

Using EMSA and UV cross-linking competition tech-
nique, host proteins p51 and p43 were demonstrated to bind 
specifically to the 3� UTR of BaMV RNA. Results derived 
from LC/MS/MS indicated that p43 is chloroplast phospho-
glycerate kinase (PGK) (Lin et al. 2007), a well known 
ATP-generating enzyme involved the glycolytic, gluconeo-
genic, and photosynthetic pathways (Banks et al. 1979; 
McHarg et al. 1999). The other protein p51 could be EF1a 
and negatively regulates the RdRp activity in vitro (Lin et al. 
2007). EF1a has also been reported to bind the tRNA-like 
structure of BMV (Bastin and Hall 1976) and claimed to 
function in the negative-regulation of TYMV minus-strand 
RNA synthesis (Matsuda et al. 2004). On the contrary, 
EF1a interacts with the 3�-terminal stem-loop of WNV 
RNA and facilitates viral minus-strand RNA synthesis 

(Davis et al. 2007). 
cDNA-AFLP, a highly sensitive and efficient technique 

for studying gene expression (Money et al. 1996); delivers 
reproducible results and has advantages over other differen-
tial display methods (Bachem et al. 1996; Ditt et al. 2001). 
Therefore, we adopted this technique to isolate the genes 
which are up- or down-regulated in N. benthamiana plants 
when infected with BaMV. The experiment uses the cDNA 
derived from mRNAs isolated from leaves 1, 3, 5, and 7 
days post-BaMV inoculation in comparison with those de-
rived from mock-inoculated leaves. To reduce false positive 
bands during the cDNA-AFLP experiments, a couple of dif-
ferent batches of cDNAs must be prepared independently 
and compared on the same gel. The cDNA fragments with 
up- or down regulated expression profile can be easily iden-
tified when they lined up together (Fig. 5). As shown in the 
figure that three fragments, ACAG-1, ACAG-2, and 
ACAG-3, were isolated, cloned, and sequenced. The iden-
tity of these fragments as ferredoxin-NADP reductase, un-
known protein, and chloroplast carbonic anhydrase, respec-
tively, were found using BLAST in Genebank. According to 
the sequence, RT-PCR was used to confirm the expression 
profile (Fig. 5B). Hundreds of these cDNA fragments with 
up- or down-regulated expression profiles during BaMV in-
fection can be isolated by this technique. 

To inspect the possible functions of those genes identi-
fied from UV-crosslinking or cDNA-AFLP with reference 
to BaMV infection, we used the virus-induced gene silen-
cing (VIGS) (Ruiz et al. 1998) system to knockdown those 
genes and see if it affects the accumulation levels of viral 
products. Tobacco rattle virus (TRV) is the viral vector we 
used in VIGS system which has been shown to be more ef-
ficient than other silencing vectors (Ratcliff et al. 2001). 
TRV silencing system has been successfully in many plants 
including Lycopersicum esculentum (Liu et al. 2002) and N. 
benthamiana (Hiriart et al. 2003) to knockdown the homo-
logous genes. 

We have been using VIGS to knockdown the expression 
of chloroplast PGK in N. benthamiana plants (Fig. 6) and 
showed a reduced level of BaMV accumulation (Fig. 7). 
These results suggested that chloroplast PGK plays an im-
portant role in efficient BaMV accumulation in plant cells. 
It has been speculated that the replication complex of 
BaMV RNA is associated with chloroplast (unpublished 
data). Therefore, the interaction between the chloroplast 
PGK and the BaMV RNA seems to suggest that chloroplast 
PGK could assist the viral RNA in targeting it to the 

Fig. 6 The phenotypes of gene-knockdown plants. Arrows indicate the 6th (upper) and the 4th (lower) leaf above the infiltrated leaves of the gene-knock-
down plants. The first from the left is the control plant showing no specific gene-knockdown. The second from the left is the phytoene desaturase (PDS) 
gene-knockdown plant showing a photobleaching effect. The next are two different chloroplast PGK gene-knockdown plants. (Adapted from Lin et al. 
2007). 
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chloroplast membrane. Features of chloroplast PGK namely 
poly(A) binding and chloroplast localization will lead to 
further investigation into the possible functions of chloro-
plast PGK in viral RNA localization. 

Knocking down the expression levels of a microtubule-
associated protein (MAP) which was up-regulated at the 5th 
and 7th days post BaMV infection in N. benthamiana plants 
identified by cDNA-AFLP technique shows a reduced level 
of viral accumulation in inoculated leaves but not in proto-
plasts after transfected with BaMV RNA. These data sug-
gest that the expression of MAP is required for efficient 
cell-to-cell movement but not for RNA replication (unpub-
lished data). 
 
CONCLUDING REMARKS 
 
In combination of using a few techniques together such as 
MESA, UV-crosslinking, conventional chromatography, 
LC/MS/MS, we can identify a few specific trans-acting 
factors derived from host plants interacting with those cis-
acting elements in the life cycle of BaMV. Using cDNA-
AFLP technique, we can isolate hundreds of cDNA frag-
ments derived from differential expressed genes during the 
infection of BaMV. The functional relationship of these 
trans-acting factors in the life cycle of BaMV infection can 
be revealed by VIGS techniques. Now, we have isolated a 
few hundred of differential expressed gene fragments from 
cDNA-AFLP. By using VIGS, we would expect to screen 
and identify the novel genes regulating the life cycle of 
BaMV infection positively or negatively. 
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specific antiserums. All data were the averages (±standard deviations) of three independent experiments and normalized to that of pTRV2. (Adapted from 
Lin et al. 2007). 
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