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ABSTRACT 
The genomic RNAs 1 and 2 of the NW isolate of the Arabis mosaic nepovirus were polyguanylated and amplified by RT-PCR, to 
determine the lengths of their poly(A) tails. Primers specific of ArMV-NW RNAs 1 or 2 were used in combination with a primer designed 
to hybridize at the junction poly(A)-poly(G) introduced at the end of the poly(A) tail during the polyguanylation procedure of the viral 
RNAs. The RT/PCR products were cloned and sequenced. The poly(A) tails in the different clones ranged from 10 to 81 adenosine 
residues for RNA 1, and from 10 to 120 adenosine residues for RNA 2, revealing an unexpected variability in the length of the ArMV 
genomic RNAs poly(A) tails. 
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INTRODUCTION 
 
Arabis mosaic virus (ArMV) belongs to the plant virus 
genus Nepovirus of the family Comoviridae. In the wine-
producing areas southwest of Germany, including Neustadt 
an der Weinstrasse (NW), ArMV is, along with the Grape-
vine fanleaf virus (GFLV) and the Raspberry ringspot virus 
(RpRSV), two other nepoviruses, a causative agent of the 
grapevine fanleaf disease. Fanleaf disease is one of the most 
widespread and damaging virus diseases affecting grape-
vine. ArMV is transmitted by the nematode vector Xiphi-
nema diversicaudatum, and has a wide natural host range 
(Wellink et al. 2000, and references therein). 

Nepoviruses have two positive sense, single stranded 
genomic RNAs, RNA 1 and RNA 2, which are polyadeny-
lated at their 3� end, and have a covalently attached small 
genome-linked viral protein (VPg) at their 5� end (for a 
review, see Mayo and Robinson 1996). The complete nuc-
leotide sequences of the RNAs 1 and 2 of the grapevine iso-
late NW of ArMV have been reported (Wetzel et al. 2001, 
2004). The full-length sequences of the RNAs 2 of ArMV 
isolates from grapevine (Loudes et al. 1995), butterbur, nar-
cissus and lily (Genbank accession numbers AB279739, 
AB279740 and AB279741, respectively) have also been 
determined, as well as additional partial sequences from 
various isolates (Steinkellner et al. 1990; Bertioli et al. 
1991; Wetzel et al. 2002a, 2002b). 

For most eukaryotic mRNAs, which contain a 5� cap 
structure (m7G(5�)ppp(5�)N) and a 3� poly(A) tail, efficient 
translation requires mRNA circularisation, which is provi-
ded by the binding of the cap and poly(A) tail to the euka-
ryotic translation initiation factor 4E and poly(A)-binding 
protein, respectively (Kapp and Lorsch 2004; Merrick 2004). 
The involvement of the poly(A) tail in the replication pro-
cess of polyadenylated positive-strand RNA viruses has 
been the focus of more and more attention (Thivierge et al. 
2005, and references therein). The deletion of the poly(A) 
in viral infectious clones has led in some cases to marginal 
infectivity only (Guilford et al. 1991), or loss of infectivity 
(Eggen et al. 1989; Rohll et al. 1995; Kusov et al. 1996). 
Thus, the presence of a poly(A) tail, but also its length have 

been shown to be of importance in the replicative cycle of 
polyadenylated positive-strand RNA viruses (Poon et al. 
1998; Pritlove et al. 1998; Tsai et al. 1999; Kusov et al. 
2001; Chen et al. 2005; Karetnikov et al. 2006). 

In this paper, we report the use of a RT-PCR–derived 
method for the analysis of the length of the poly(A) tail for 
both genomic RNAs 1 and 2 of ArMV. 

 
MATERIALS AND METHODS 
 
ArMV-NW was propagated on Chenopodium quinoa, purified, and 
the viral RNAs extracted as described previously (Pinck et al. 
1988). Purified viral genomic RNAs (100 ng) were used as tem-
plates for polyguanylation using the yeast poly(A) polymerase 
(PAP)(USB), as described (Kusov et al. 2001), with the following 
modifications. The RNAs were heated at 65°C for 10 min and im-
mediately placed on ice, and then incubated 2 h at 37°C with 1 
mM GTP and 1 μl (764U) PAP, in a 10 μl reaction mixture. The 
reaction mixture was then phenol/chloroform extracted, chloro-
form extracted and ethanol precipitated. The pellets were resus-
pended in DEPC-treated water, and used for RT-PCR using the 
One-Step RT-PCR system (Invitrogen). The cycling conditions 
were: 30 min 42°C, 5 min 94°C, 40×(94°C 20 s, 42°C 20 s, 72°C 
30 s). The sequences of the different primers were (5� to 3�): A1-
7123s: ATAACCCAGTTTTAGCACTG, corresponding to nucleo-
tides 7123-7142 on ArMV-NW RNA 1; A2-3561s: TGCTCCGAA 
TTTTATGCAAG, corresponding to nucleotides 3561-3580 on 
ArMV-NW RNA 2; oligo(dCdT): GAATTCCCCCCCCCCTTT 
TTT, designed to hybridize at the junction poly(A)-poly(G) intro-
duced at the end of the poly(A) tail during the polyguanylation 
procedure of the viral RNAs, and containing a recognition site for 
the restriction enzyme EcoRI. The primer oligo(dT)18V was dege-
nerate at its 3� end, to hybridize the last nucleotide of the 3� non-
coding regions and the beginning of the poly(A) tail. The PCR 
products were ligated into a pUC19 vector linearised with SmaI 
and tailed with dTTP as described by Marchuk et al. (1991), 
cloned and sequenced. Sequences were compiled and analysed 
using the DNASIS program package (Hitachi). 
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RESULTS AND DISCUSSION 
 
The G-tailing RT-PCR method used in this study is based 
on the ability of the yeast poly(A) polymerase to catalyze 
the addition of uridine or guanosine residues at the 3� end of 
poly-adenylated RNAs, although with reduced efficiency 
when compared to the addition of adenosine residues (Mar-
tin and Keller 1998). The ArMV-NW genomic RNAs, 
which have a poly(A) tail at their 3� ends, were enzymatic-
ally tailed with guanosine residues prior to RT-PCR. This 
procedure, which to our knowledge has not been used for 
plant viruses, offered the advantage over previously des-
cribed methods (Poon et al. 1998; Pritlove et al. 1998; Chen 
et al. 2005) to amplify the entire poly(A) tails, thus allow-
ing a precise determination of the number of adenosine resi-
dues (Kusov et al. 2001). The primer combinations used for 
RT-PCR from purified polyguanylated viral RNAs were A1-
7123s/oligo(dT)18V and A1-7123s/oligo(dCdT), for ArMV-
NW RNA 1, and A2-3561s/oligo(dT)18V and A2-3561s/ 
oligo(dCdT), for ArMV-NW RNA 2. RT-PCR products of 
the expected length, 225 bp and 277 bp, were obtained with 
the primers combinations A1-7123s/oligo(dT)18V and A2-
3561s/oligo(dT)18V for RNAs 1 and 2 respectively (Fig. 1), 
which included a poly(A) tail of 18 adenosine residues in-
troduced by the primer oligo(dT)18V. The primers combina-
tions A1-7123s/oligo(dCdT) and A2-3561s/oligo(dCdT) 
produced a more diffuse range of RT-PCR products (Fig. 1, 
lanes 1b and 2b), mainly of bigger sizes than those obtained 
with the previous primers combinations, for both RNAs 1 
and 2. Identical results were obtained in two independant 
repeats for each of the ArMV-NW genomic RNAs, sugges-
ting the presence of poly(As) of various sizes, some of them 
being very short, and some being larger than 100 adenosine 
residues (Fig 1). 

The RT-PCR products generated with the primers com-
binations A1-7123s/oligo(dCdT) or A2-3561s/oligo(dCdT) 
were cloned and twenty clones sequenced. The sequences 
obtained were between 98% and 100% identical to the cor-
responding sequences on ArMV-NW RNA 1 or RNA 2, res-
pectively. It is unknown if this variability reflected natural 
variability in the viral population or were due to mutations 
introduced during the RT-PCR procedure. The poly(A) tail 
lengths obtained for ArMV-NW RNA 1 ranged from 10 to 
81 adenosine residues, and from 10 to 120 adenosine resi-
dues for ArMV-NW RNA 2 (Table 1), which reflects the 
heterogeneity in sizes observed for the RT-PCR products 
(Fig. 1). Most of the clones however contained poly(A) tails 
between 20 and 30 adenosine residues. It is unclear if this 
reflects the distribution of lengths of the poly(A) tails of the 
viral genomic RNAs in planta, or the fact that RT-PCR pro-
ducts containing short homopolymeric sequences are easier 
to clone than those with longer ones. The range of sizes ob-
served for ArMV-NW is much wider than those observed 
for the viral RNA of Hepatitis virus A (HVA), which ranged 
between 41 to 60 adenosine residues (Kusov et al. 2001), 
but much narrower than those observed for Influenza virus 
(Poon et al. 1998; Pritlove et al. 1998) or Bamboo mosaic 
virus (Chen et al. 2005), with poly(A)s of lengths of 300 
adenosine residues. It remains to be determined if ArMV-
NW RNA molecules with very short poly(A) tails still have 
retained some infectivity, or show reduced or loss of in-
fectivity, and which would be the minimal size of a poly(A) 
to guarantee an efficient viral replication process. It is also 
unknown if the ArMV-NW RNA 2 has longer poly(A)s than 
the ArMV-NW RNA 1, or if this result was mainly due to 

the cloning procedure. 
The construction of full-length infectious clones of 

ArMV would allow the insertion of poly(A) tails of various 
lengths in the viral genomic RNAs, and also different 
lengths between RNAs 1 and 2, along with additional muta-
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Fig. 1 RT/PCR from the polyguanylated genomic RNAs of the isolate 
NW of Arabis mosaic virus. (A) Experimental procedure. (A)x: number 
of adenosine residues of the poly(A) tail; G: guanosine residues intro-
duced during the tailing procedure; N: viral nucleotides upstream of the 
poly(A) tail. (B) Agarose gel electrophoresis of the RT-PCR products ob-
tained from polyguanylated ArMV-NW genomic RNAs, with primer com-
binations A1-7123s/oligo(dT)18V and A1-7123s/oligo(dCdT) for ArMV-
NW RNA 1 (lanes 1a and 1b respectively), and with primer combinations 
A2-3561s/oligo(dT)18V and A2-3561s/oligo(dCdT) for ArMV-NW RNA 2 
(lanes 2a and 2b respectively). M: 1kb DNA Ladder. 

 
Table 1 Length of the poly(A) tails of Arabis mosaic virus genomic 
RNAs. The number of adenosine residues in the poly(A) tails of the dif-
ferent clones generated by RT-PCR from polyguanylated viral genomic 
RNAs is indicated. 
RNA 1: 
10 15 19 27 29 30 30 31 67 81 
RNA 2:  
10 19 20 25 29 30 30 80 119 120
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tions in the 3� non-coding region (Karetnikov et al. 2006). 
Their availability would greatly contribute to a better 
understanding of the viral replication process, and the func-
tion(s) of the poly(A) tails. 
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