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ABSTRACT 
The low-cost, plant-based phytoremediation technique has often been described as a promising technique to remediate agricultural land 
contaminated with organic and inorganic pollutants. The plants used, have to meet certain requirements, which are fulfilled by tobacco 
(Nicotiana tabacum). It is a fast growing plant with a high biomass, which is easily harvested. Its propagation is simple, as each plant 
generates thousands of seeds. It can prosper everywhere between the 50th latitude north and the 40th latitude south and has no demanding 
requirements on temperature, humidity and soil conditions. Tobacco has also revealed a high tolerance for various organic and inorganic 
pollutants. It can accumulate heavy metals in relatively high-levels, especially Cd, in comparison to other species and has also shown not 
be susceptible to various organic pollutants, such as polychlorinated biphenyls (PCB) and trinitrotoluene (TNT). Its rapid growth, high 
leave biomass and its high disposition for transformation has made tobacco an optimal plant for genetic engineering. It has not only been 
applied in the field of medicine, e.g. production of antibodies, but also in the area of phytoremediation. Metal chelator, metal transporter, 
metallothionein (MT), and phytochelatin (PC) genes have been transferred to plants for improved metal uptake and sequestration. Also the 
expression of bacterial enzymes has enabled the reduction of phytotoxicty or the concentration reduction of various organic pollutants. 
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INTRODUCTION 
 
Over the centuries, human activities, such as extensive 
mining, agriculture, industry and military operations have 
released huge amounts of toxic compounds, contaminating 
large areas in both developed and developing countries. 
These contaminants have negative effects on the ecosys-
tems and other natural resources, and, moreover pose great 
danger to public health, as pollutants can enter food via 
agricultural products or leach out into drinking water (Com-
mission of the European Communities 2002; European En-
vironmental Agency 2003). The European Environment 
Agency has estimated the total costs for the clean-up of 
contaminated sites in Europe to be between EUR 59 and 
109 billion (Commission of the European Communities 
2002). World wide about 2 000 million ha of soil, equi-
valent to 15 per cent of the Earth’s land area (an area larger 
than the United States and Mexico combined), have been 
degraded (i.e. erosion, contamination) through human acti-
vities (UNEP 2002). 

There are two major classes of contaminants: inorganic 

and organic. Inorganic compounds include heavy metals, 
such as cadmium (Cd), lead (Pb) and mercury (Hg), and 
non-metallic compounds, such as arsenic (As), and radio 
nuclides, such as uranium. Organic contaminants include 
different compounds, such as petroleum hydrocarbons, 
chlorinated solvents, halogenated hydrocarbons, such as tri-
chloroethylene, and explosives, such as trinitrotoluene 
(TNT). 

The clean up of contaminated land by traditional phy-
siochemical methods, including soil excavation and land fil-
ling, soil washing and immobilisation or extraction can be 
very costly, and, in addition, destructive to the soil. Phyto-
remediation, the use of green plants to remove pollutants 
from the environment or to render them harmless (Raskin et 
al. 1997), with its lower cost and environmental friendly 
nature, has received increasing attention in the last decades 
(Salt et al. 1998; Garbisu and Alkorta 2001). This emerging 
low-cost technology can be applied to both inorganic and 
organic pollutants, present in solid substrates (e.g. soil), li-
quid substrates (e.g. water), and the air. 

The area of phytoremediation focusing on the removal 
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of inorganic pollutants from soil (phytoextraction) is based 
on a natural propensity of plants to take up metals. Certain 
plant species, known as hyperaccumulators, such as Thlaspi, 
Urtica, Chenopodium, Polygonum sachalase and Alyssum 
have shown the ability to extract, accumulate and tolerate 
high levels of heavy metals. By definition, a hyperaccumu-
lator must accumulate at least 100 mg kg-1 (0.01% dry wt.) 
Cd, As and some other trace metals, 1000 mg kg-1 (0.1% 
dry wt.) cobalt (Co), copper (Cu), chrome (Cr), nickel (Ni) 
and Pb and 10,000 mg kg-1 (1% dry wt.) manganese (Mn) 
and Ni (Watanabe 1997; Reeves and Baker 2000). However, 
their potential for application in bioremediation is limited 
by the fact that they are slow growing and have a small bio-
mass (Mulligan et al. 2001; Puschenreiter et al. 2001). 
Another option is the use of high biomass plants which are 
usually not considered to have metal-specific affinity and 
contain only low to average heavy metal concentrations, but 
which compensate for this by their high biomass, as for 
example tobacco (Keller et al. 2003). 

The concept of using plants to remediate soils contami-
nated with organic pollutants is a recent development, based 
on observations that the disappearance of organic chemicals 
is accelerated in vegetated soils as compared with that of 
surrounding non vegetated bulk soils. In addition to the 
direct uptake and metabolism of organics, plants release 
exudates from their roots that enhance microbial bioremedi-
ation in the rhizosphere, which has been termed phytoreme-
diation ex planta (Salt et al. 1995). 

The remedial capacity of plants can be significantly im-
proved by genetic manipulation and plant transformation 
technologies (Cherian and Oliveira 2005). Over the past 
years, a range of different plant systems such as Arabidop-
sis thaliana, Indian mustard (Brassica juncea), canola (B. 
napus) and tomato (Lycopersicon esculentum Mill. cv. 
‘Pera’) have been developed to increase the uptake and the 
detoxification of inorganic and organic pollutants (Oller et 
al. 2005; Farwell et al. 2006; Li et al. 2006; Banuelos et al. 
2007). The choice of system depends on many factors, but 
the intrinsic efficiency and the suitability for scale-up, sto-
rage and downstream processing are particularly important. 
Tobacco (Nicotiana tabacum) is a leafy crop which gene-
rates a large amount of biomass and allows rapid scale up 
due to the immense number of seeds produced in each 
generation. In addition, tobacco is long established as a 
model system for plant transformation, and therefore bene-
fits from simple gene transfer, regeneration procedures and 
optimised vector systems. These characteristics make to-
bacco an excellent candidate for the production of trans-
genic plants in the field of phytoremediation (Stoger et al. 
2005). However, the potential for using these genetic re-
sources in transgenic phytoremediation approaches has 
been poorly explored. Inadequate data is available on the 
performance of these transgenic plants on soil substrate, or 
under field conditions. Most transgenic plants have so far 
only been tested only in hydroponic or agar-based media 
containing trace elements. In this medium, the concentra-
tion of competing ions and the speciation of trace element 
ions are highly reproducible and the plant exposure to ele-
ments is high. On contaminated field sites, the soil compo-
sition, trace element bioavailability and the chemical speci-
ation are site-specific and subject to considerable spatial 
and temporal variations within one site (Sappin-Didier et al. 
2005). 
 
INORGANIC CONTAMINANTS 
 
Phytoextraction 
 
The uptake capability can vary greatly among the tobacco 
species (Doroszewska and Berbec 2004). The study of 
Mench et al. (1989) revealed that N. tabacum extracted a 
significant higher Cd amount than N. rustica as verified in 
the higher Cd concentration in the leaves and greater bio-
mass. Such differences have been reported even amongst N. 
tabacum varieties, although these differences appear less 

important than external factors, such as soil characteristics 
(Lugon-Moulin et al. 2004). Tobacco (N. tabacum) can ac-
cumulate Cd at relatively high levels compared to other spe-
cies (Davis 1984; Mench et al. 1989; Wagner 1993; Kayser 
et al. 2000; Wenger et al. 2002; Keller et al. 2003; Evan-
gelou et al. 2004, 2007b) as summarised and compared to 
other crop plants in Table 1. Concentrations in field-grown 
tobacco leaves usually range from <0.5 to 5 mg Cd kg-1, al-
though higher values can also be found (Lugon-Moulin et al. 
2004). In studies by Kayser et al. (2000), Cd concentrations 
in N. tabacum were only 50% lower than in the hyperac-
cumulators, T. caerulescens and A. murale and were res-
pectively 6-, 7- and 2.5-fold higher than in the crop plants, 
corn (Zea mays) sunflower (Helianthus annuus) and Indian 
mustard (B. juncea). In the same study, in the case of zinc 
(Zn) and Cu the concentrations in tobacco showed no signi-
ficant difference to the crop plants. The hyperaccumulators, 
T. caerulescens and A. murale however reached Zn and Cu 
concentrations in shoots which were 20- and 2.5-fold res-
pectively, higher compared to the concentrations achieved 
by N. tabacum. The findings of Mench et al. (1989) support 
the results of Kayser et al. (2000), as N. tabacum reached 
significantly higher Cd (164 mg kg-1) concentrations than Z. 
mays (21.7 mg kg-1). The studies of Jiang et al. (2003) and 
Quartacci et al. (2003) display a Cd shoot concentration of 
200 mg kg-1 in B. juncea. In these studies however the Cd 
soil concentration was 200 mg kg-1 which is 10-fold higher 
than any study conducted with N. tabacum. N. tabacum as 
seen in Table 1 can achieve high concentrations in the case 
of Zn whereas the uptake of Cu and Pb is in the same order 
of magnitude as the other listed crop plants. 

The ability of tobacco to achieve high heavy metal con-
centration in the shoots, combined with high biomass, 
makes it possible to reach high heavy metal outputs. In 
Keller et al. (2003) N. tabacum had significantly higher Cd 
outputs (g ha-1) than B. juncea and Z. mays, and similar out-
puts compared to willow (Salix viminalis), but lower than T. 
caerulescens. In the case of Cu N. tabacum achieved sig-
nificantly higher outputs than all the other plants mentioned 
above, with the exception of Z. mays. In Wenger et al. 
(2002), although N. tabacum reached higher Zn concentra-
tions than Z. mays, the biomass was lower and, therefore, 
the removal of Zn was higher by Z. mays than by N. taba-
cum. 

In this review the effect of added chelating agents and 
their effect on the uptake of heavy metals will not be exa-
mined as it has been recently elsewhere reviewed by Evan-
gelou et al. (2007). However, the tolerance or susceptibility 
of N. tabacum to various chelating agents applied to soil 
will be briefly discussed. Ethylene diamine disuccinate 
(EDDS) displayed a similar degree of toxicity towards H. 
annuus (Meers et al. 2005) and a higher one towards Z. 
mays and white bean (Phaseolus vulgaris) (Luo et al. 2005) 
compared to N. tabacum. Meers et al. (2005) applied 1.77 
mmol kg–1 EDDS and observed no toxicity symptoms, 
whereas Luo et al. (2005) applied 5 mmol kg–1 EDDS and 
the dry weight decreased by approximately 55% in com-
parison to the control. With respect to ethylene diamine 
tetraacetate (EDTA), it showed a similar degree of toxicity 
towards B. juncea (Epstein et al. 1999; Wu et al. 2004) and 
H. annuus (Meers et al. 2005). Regarding EDDS, this was 
not the case with N. tabacum. It was no more susceptible to 
chelating agents than other plant species. The degree of 
toxicity is in concurrence with present literature on the 
subject. 

Besides achieving a high heavy metal concentration in 
the shoots, the translocation factor (TF), the ratio of metal 
(loid) concentration in shoots to that in roots, is very impor-
tant. The TF can be used to evaluate the capacity of a plant 
to transfer metals from roots to shoots (TF is usually >1 (or 
�1) in (hyper)accumulators and <1 in excluders (McGrath 
and Zhao 2003), thus revealing if the harvestable part of the 
plant is the component with the highest metal concentration. 
In the study of Keller et al. (2003), N. tabacum was the only 
species which showed TF >1 for Cd, Cu and Zn. Zea mays 
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showed a TF >1 only for Zn, while B. juncea showed a TF 
>1 for Cd and Zn as did T. caerulescens. Although Chiang 
et al. (2006) in their study of N. benthamiana and H. 
annuus reported a TF <1 for Cd, this does not contradict the 
results of Keller et al. (2003), as another tobacco species 
was used. 
 
Transgenic tobacco and phytoextraction 
 
A large number of genes involved in acquisition, allocation 
and detoxification of trace elements have been identified 
and characterised from a variety of organisms. Genetic en-
gineering methodologies have made it possible to transfer 
such appropriate genes into high biomass plants. An acqui-
sition strategy would entail in using genes involved in the 
biosynthesis of metal chelators, such as citrate, malate, his-
tidine or in root exudation of protons (Hall 2002). An al-
location strategy would examine the modification of the 
metal transport across the plasma membrane. Several trans-
porters (i.e., the heavy metal (CPx-type) ATPases, the natu-
ral resistance-associated macrophage protein family, mem-
bers of the cation diffusion facilitator family) (Williams et 
al. 2000) and N. tabacum calmodulin-binding protein (Ara-
zi et al. 1999) involved in the transport of metals could be 
over expressed in order to increase metal uptake and detoxi-
fication. A detoxification approach could be the over ex-
pression of peptides involved in the metal homeostasis of 
plants such as metallothioneins (MT), phytochelatines (PC) 

and glutathione (Cobbett and Goldsbrough 2002), the re-
duction of free metal concentration in the cytoplasma by 
chemical transformation (Bizily et al. 1999; Rugh et al. 
1999) or the over expression of superoxide dismutase to re-
duce active oxygen species (Boominathan and Doran 2006). 
An overview of the methods applied to transform tobacco 
and their uptake and tolerance enhancement are displayed 
in Table 2. 

Most of the studies have focused on Cd as tobacco has a 
natural propensity to accumulate Cd. In order to confer re-
sistance to toxic levels of heavy metals, Misra et al. (1989) 
introduced a chimeric human MT gene into N. tabacum 
cells. The transgenic plants displayed a 6-fold higher tole-
rance to Cd than the control plants. The dry weight of the 
control dropped from 28.6 g to 5 g owing to the Cd treat-
ment (0.1 mM CdCl2), whereas the dry weight of the trans-
formed N. tabacum plants remained at approximately 28 g. 
de Borne et al. (1998) used tobacco plants which expressed 
the mammalian MT gene, and observed that the leaf Cd 
levels were decreased by 73% compared to the control 
plants. The Cd concentration in control leaf lamina, 4.44 mg 
kg-1 was reduced to 1.8 mg kg-1. However, the decrease in 
leaf Cd was correlated with an increase in Cd in the roots 
and stems, thus leaving a large part of the Cd in the non har-
vestable part of the plant. In controls, 70-80% of the Cd was 
translocated to the leaves, whereas 40-50% was translo-
cated in MT1 plants. Significantly Macek et al. (2002) in-
troduced an additional small metal binding domain, a poly-

Table 1 Dry matter yields, heavy metal concentrations, and heavy metal yields of various crops. No differentiation was made between pot and field 
experiments. 
Metal Crop DM yield 

t ha-1 
Heavy metal 
concentration 
mg kg-1 

Heavy 
metal yield
g ha-1 yr-1 

Reference 

Cd N. tabacum 13 3.5-164.5 
(leaf) 

45 Davis et al. 1984; Mench et al. 1989; Kayser et al. 2000; Keller et al. 2003; 
Evangelou et al. 2004, 2007b 

 S. vinimalis 13 3.8-7 17-49 Kayser et al. 2000; Keller et al. 2003; Klang-Westin and Eriksson 2003 
 B. juncea 7 1 (200) 7 Kayser et al. 2000; Jiang et al. 2003; Keller et al. 2003; Quartacci et al. 2003 
 B. rapa  1.5-2.1  Gr�man et al. 2001; Shen et al. 2002; Gr�man et al. 2003 
 H. annuus 28 0.6-1.5 11-20 Kayser et al. 2000; Keller et al. 2003; Liphadzi et al. 2003; Meers et al. 2005 
 Z. mays 16 0.6-21.7 

(leaf) 
10 Mench et al. 1989; Kayser et al. 2000; Keller et al. 2003; Luo et al. 2005 

 A. murale 0.8 7 5.6 Kayser et al. 2000; Keller et al. 2003 
 T. caerulescens 0.5 7 3.5 Kayser et al. 2000; Keller et al. 2003 
 Populus sp.  3-75  Robinson et al. 2000; Liphadzi et al. 2003 
Zn N. tabacum 2-13 150-1900 1950 Kayser et al. 2000; Wenger et al. 2002; Keller et al. 2003 
 S. vinimalis 13 300 3900 Kayser et al. 2000; Keller et al. 2003 
 B. juncea 7 120 840 Kayser et al. 2000; Keller et al. 2003 
 B. rapa  50-450  Gr�man et al. 2001; Shen et al. 2002; Gr�man et al. 2003 
 H. annuus 28 10-110 120-3080 Kayser et al. 2000; Keller et al. 2003; Liphadzi et al. 2003; Meers et al. 2005 
 Z. mays 4.5-16 24-140-1365 2240-4700 Cooper et al. 1999; Wu et al. 1999; Kayser et al. 2000; Wenger et al. 2002; Keller 

et al. 2003; Luo et al. 2005 
 A. murale 0.8 1000 800 Kayser et al. 2000; Keller et al. 2003 
 T. caerulescens 0.5 2000 1000 Kayser et al. 2000; Keller et al. 2003 
 P. sativum  47  Cooper et al. 1999 
 Populus sp.  50  Liphadzi et al. 2003 
Cu N. tabacum 13 18-38 490 Kayser et al. 2000; Keller et al. 2003; Evangelou et al. 2007 
 S. vinimalis 13 14 190 Kayser et al. 2000; Keller et al. 2003 
 B. juncea 7 20 140 Kayser et al. 2000; Keller et al. 2003 
 B. rapa  36  Shen et al. 2002 
 H. annuus 28 9-80 80-560 Kayser et al. 2000; Keller et al. 2003; Liphadzi et al. 2003; Meers et al. 2005 
 Z. mays 16 10-57 160 Cooper et al. 1999; Wu et al. 1999; Kayser et al. 2000; Keller et al. 2003; Luo et 

al. 2005 
 A. murale 0.8 70 56 Kayser et al. 2000; Keller et al. 2003 
 T. caerulescens 0.5 80 40 Kayser et al. 2000; Keller et al. 2003 
 P. sativum  14  Cooper et al. 1999 
 Populus sp.  6  Liphadzi et al. 2003 
Pb N. tabacum  16-40  Evangelou et al. 2006; Sudová et al. 2007 
 B. rapa  2-120  Gr�man et al. 2001; Shen et al. 2002; Gr�man et al. 2003; Kos et al. 2003 
 H. annuus  4-50 6 Huang et al. 1997; Liphadzi et al. 2003 
 Z. mays  2-90  Huang et al. 1997; Cooper et al. 1999; Wu et al. 1999; Luo et al. 2005 
 P. sativum  12-52  Huang et al. 1997; Cooper et al. 1999 
 Populus sp.  10  Liphadzi et al. 2003 
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histidine chain, to the metal binding protein, yeast MT, and 
observed a 90% increased Cd accumulation (27.0 mg kg-1) 
combined with a reduction of Cd content in the roots, by 
55% (9.0 mg kg-1), compared to the control which accumu-
lated 15.8 and 9.0 mg kg-1 Cd respectively. With the same 
construct Pavlíková et al. (2004b) investigated transgenic N. 
tobacco and their study indicated 110% higher Cd levels 
than the control. However, the TF decreased as the Cd con-
tent in the soil increased (from a TF >1 at a Cd soil content 
of <0.6 mg Cd L-1 to <1 for a Cd soil content >0.6 mg Cd  
L-1). Additionally, the construct had no effect on the uptake 
of Zn and Ni. Gisbert et al. (2003), demonstrated in their 
study of N. glauca R. Graham (shrub tobacco) that overex-
pressing a wheat gene encoding phytochelatin synthase 
(TaPCS1) greatly increased its tolerance to metals such as 
Pb and Cd, displayed by the by 160% higher root length 
compared to the control. In addition, seedlings of trans-
formed plants grown in mining soils containing high levels 
of Pb (1572 ppm) accumulated this heavy metal at concen-
tration of 50% higher (52 mg kg-1) compared to those of the 
wild type. In a study by Thomas et al. (2003) pooled leaves 
of transgenic N. tabacum containing yeast MT (CUP 1) 
grown in soils from Cu stamp-sands contained two to three 
times the Cu content of those of the control plants. 

In order to increase the tolerance of tobacco to heavy 
metals other strategies have been also applied. Dhankher et 
al. (2003) showed that N. tabacum which over expressed 
bacterial arsenate reductase gene had an 2-3-fold higher 
fresh weight and contained a 50% higher Cd concentration 

compared to the control plants, while Nagata et al. (2006) 
increased the tolerance of N. tabacum to Hg (2-fold higher 
biomass and root length) by over expressing the bacterial 
polyphosphate kinase. Rumeau et al. (2004) increased Zn 
content by 30% in transplastomic tobacco plants expressing 
a polyhistidine-tagged Rubisco large subunit however it had 
no effect on the uptake of Cu and Fe. Kawashima et al. 
(2004) increased Cd, Se and Ni tolerance by the over ex-
pression of cysteine synthase in the cytosol and chloroplast 
of N. tabacum. N. tabacum plants expressing Arabidopsis 
antiporter CAX2 (calcium exchanger 2) were not only more 
tolerant to elevated Mn2+ levels but also accumulated more 
Ca2+ (20%), Cd2+ (15%), and Mn2+ (20%) (Hirschi et al. 
2000). Yazaki et al. (2006) inserted the human multidrug 
resistance-associated protein, one of the most intensively 
studied ABC transporters, into N. tabacum cv. ‘Samsun NN’ 
and achieved a higher Cd tolerance compared to the control 
plants. The effect of a transformation is not only correlated 
to the construct introduced but also to where the construct is 
over expressed (Sappin-Didier et al. 2005) and to the target 
metals as displayed by Pavlíková et al. (2004). In the case 
of Sappin-Didier et al. (2005) the constructs (ferritin-over-
expression) inserted in the plasmid had 10-30% higher ac-
cumulation of Mn, Zn, Fe, Cd, Cu and Pb compared to the 
construct inserted in the cytoplasma, while in the case of 
Pavlíková et al. (2004) the introduced construct increased 
the uptake of Cd but did not have any effect on the uptake 
of Zn and Ni. 

merA and merB genes have been isolated from bacteria, 

Table 2 Genes and methods used for the development of transgenic tobacco plants to cope with inorganic pollutants, as well as the effect resulting from 
the transformation. 
Targeted 
metal 

Gene Method Effect (compared to control) Reference 

Human MT-II processed gene (hMT-II) with
CaMV 35S promoter 

Agrobacterium tumefaciens (Ti-
plasmid) 

6-fold better tolerance Misra et al. 1989 

hMT-II with CaMV 35S promoter plant transformation 
vector (pKYLX7135S2) 

73% lower Cd levels in the leaves de Borne et al. 1998 

CUP1 MT gene (Saccharomyces cerevisae) 
with CaMV 35S promoter + HISCUP 

A. tumefaciens (plamid PBI121) 90% higher Cd accumulation in 
leaves and 50% lower in the roots 

Macek et al. 2002 

CUP1 MT gene (Saccharomyces cerevisae) 
with CaMV 35S promoter + HISCUP 

A. tumefaciens (plasmid PBI121) 110% higher Cd accumulation in 
leaves 

Pavlíková et al. 2004b

Wheat gene encoding phytochelatin 
synthase (TaPCS1) 

A. tumefaciens (Ti-plasmid) 160% longer roots Gisbert et al. 2003 

CUP1 MT gene (Saccharomyces cerevisae) 
with CaMV 35S promoter 

A. tumefaciens (plasmid 
pRSGCUP 1) 

Up to 3-fold higher Cd 
concentration 

Thomas et al. 2003 

Bacterial arsenate reductase gene (arsC) A. tumefaciens Higher fresh weight and 50% 
higher Cd concentration 

Dhankher et al. 2003 

Cysteine synthase Cross fertilisation  Kawashima et al. 2004
CAX2 (calcium exchanger 2) with CaMV 
35S promoter 

A. tumefaciens (plasmid pBIN19) 15% higher Cd concentration Hirschi et al. 2000 

Human multidrug resistance-associated 
protein (hMRP1) – ABC-transporter with 
CaMV 35S promoter 

A. tumefaciens (plasmid pJ3�-
MRP) 

Up to 50% better growth, 1.5-fold 
higher Cd uptake 

Yazaki et al. 2006 

Cd 

MThis from S. vulgaris  A. tumefaciens (pCAMBIA 2301 
vector) 

Up to 2-fold higher dry weight, 
50% higher Cd accumulation but 
no effect on photosynthesis 

Gorinova et al. 2007 

Pb Wheat gene encoding phytochelatin 
synthase (TaPCS1) 

A. tumefaciens (Ti-plasmid) 50% higher Pb content Gisbert et al. 2003 

Cu CUP1 MT gene (Saccharomyces cerevisae) 
with CaMV 35S promoter 

A. tumefaciens (plasmid 
pRSGCUP 1) 

Up to 3-fold higher Cu 
concentration 

Thomas et al. 2003 

Bacterial ppk (polyphosphate kinase) gene 
with E12 (CaMV 35S + 2 enhancers) 
promoter 

A. tumefaciens (plasmid 
pPKT116) 

Up to 2-fold higher biomass and 
root lenght 

Nakata et al. 2006 

Bacterial merA/merB gene  Up to 3.5-fold higher biomass and 
up to 80% less Hg in leaves 

Heaton et al. 1998 

Bacterial merA gene with CaMV 35 S 
promoter 

A. tumefaciens Up to 2-fold higher transpiration 
and 75% less Hg in leaves 

Heaton et al. 2005 

Bacterial merA/merB gene Particle bombardement Up to 2-fold higher biomass and up 
to 2-fold higher chlorophyll content 

Ruiz et al. 2003 

Hg 

Bacterial merA gene with CaMV 35S 
promoter 

A. tumefaciens (plasmid 
pVSTImerApe9) 

5-fold higher Hg release from the 
leaves 

He et al. 2001 

Zn Polyhistidine-tagged Rubisco Particle bombardment 30% higher Zn content Rumeau et al. 2004 
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and when combined may produce elementary Hg from 
methyl-Hg, which can be introduced into plants. A. thaliana 
was first transformed with modified merA and merB genes, 
and produced transgenic plants Hg-resistant and volatile 
(Rugh et al. 1996; Bizily et al. 1999). Since then several 
plants including tobacco, have been transformed. Rugh et al. 
(2000) showed that merA/merB tobacco plants displayed an 
enhanced Hg-tolerance, while merA tobacco plants removed 
3- to 4-fold more Hg from hydroponic medium than un-
transformed controls (Meagher et al. 2000). Heaton et al. 
(1998), He et al. (2001), Ruiz et al. (2003) and Heaton et al. 
(2005) have also worked with similar constructs and have 
achieved encouraging results. In Detail: In Heaton et al. 
(1998) the tranformed tobacco plants displayed up to 3.5-
fold higher fresh weight and up to 80% lower Hg concen-
tration, owing to the volatilisation of Hg, compared to con-
trol. He et al. (2001) observed a higher germination rate and 
a 5-fold higher Hg release from the leaves. Ruiz et al. 
(2003) achieved 2-fold higher biomass and 2-fold higher 
chlorophyll content with the introduction of the construct. 
The merA construct introduced by Heaton et al. (2005) in-
creased the transpiration of the transformed tobacco plants 
by 2-fold and reduced the Hg concentration by 75% in com-
parison to the wild type tobacco plants. 
 
ORGANIC CONTAMINANTS 
 
Phytodegradation 
 
As organic compounds are usually man-made and xenobio-
tic in plants, there are no transporters for their uptake. The 
usual mechanism of uptake is by simple diffusion (passive 
uptake). When organic contaminants come into contact with 
roots, they may be sorbed to the root structure. The hydro-
phobic or hydrophilic nature of the organic compounds also 
determines their possible uptake (Cherian and Oliveira 
2005). 

Organic pollutants can be degraded or mineralised by 
plants, either independently or in association with microor-
ganisms. According to a study by Ryslava et al. (2003), the 
degradation rate of organic pollutants, such as polychlori-
nated biphenyls (PCB) by rhizospheric microbial activity 
depends on the plants used. N. tabacum sufficiently deg-
raded PCB, whereas black nightshade (Solanum nigrum) 
and alfalfa (Medicago sativa) owing to their rhizospheric 
microbial community displayed significantly lower deg-
radation rates. Moreover, N. tabacum showed significantly 

higher PCB contents in its shoots compared to the other two 
species used. 

Plants have significant metabolic activity in both roots 
and shoots, and some of the enzymes involved in these 
metabolic processes, namely nitroreductases, dehalogenases, 
laccases, peroxidases, etc., are useful in the remediation 
process. The process though, in native plants is often in-
complete and inefficient for the vast amount of different or-
ganic pollutants in the environment, and thus genetic engi-
neering can be viewed as a useful tool in coping with these 
challenges. 
 
Transgenic tobacco and phytodegradation 
 
Genetic engineering has several targets in the process of 
phytotransfomation where it can be introduced and used to 
increase its effect. Phytotransformation is a process by 
which plants uptake organic pollutants and, subsequently, 
metabolise or transform them into less toxic metabolites. 
Once taken up and translocated the organic chemicals gene-
rally undergo three transformation stages: (a) chemical 
modification (oxidations, reductions, hydrolysis); (b) conju-
gation (with glutathione, sugars, amino acids); and (c) se-
questration or compartimentation (conjugates are converted 
to other conjugates and deposited in plant vacuoles or 
bound to the cell wall and lignin) (Cherian and Oliveira 
2005). An overview of the methods applied to transform 
tobacco and their effectiveness are displayed in Table 3. 

Typical plant enzymes which catalyse the first phase of 
the reactions are P450 monoxygenases, and these are a 
good candidate for enhancing the phytoremediation poten-
tial. Bode et al. (2004) introduced two species of human 
P450 cDNA in tobacco cells by Agrobacterium-mediated 
transformation, and these were tested against atrazine meta-
bolism. Transgenic cultures were able to produce larger 
amounts of nonphytotoxic (primary oxidised) metabolites 
than non-transformed cultures. In another study, Didierjean 
et al. (2002), introduced Jerusalem artichoke (H. tuberosus) 
xenobiotic inducible cytochrome P450, CYP76B1, into N. 
tabacum and reported an increase in the tolerance to various 
herbicides, such as linuron (20-fold), isoproturon and chlor-
toluron (10-fold). Transgenic tobacco expressing mam-
malian cytochrome P450 monooxygenase has been shown 
to harbor oxygenating activity for organic compounds, such 
as the herbicide chlortoluron, 7-ethoxycoumarin, benzo[a] 
pyrene, and halogenated hydrocarbons (Shiota et al. 1994; 
Doty et al. 2000). 

Table 3 Genes and methods used for the development of transgenic tobacco plants to cope with various organic pollutants; effect resulting from the 
transformation. 
Targeted organic 
pollutant 

Gene Method Effect (compared to control) Reference 

Atrazine Human CYP1A1 and human CYP1A2 with CaMV 
35 S promoter 

Agrobacterium 
tumefaciens 

transgenic plants transformed 
100% of atrazine to metabolites, 
control plants only 20% 

Bode et al. 2004 

Linuron, Isoproturon, 
Chlortoluron 

CYP76B1 from Helianthus tuberosus with 
GAL10-CYC1 promoter 

A. tumefaciens 
(plamid RK2013)

20-fold tolerance increase to 
linuron and 10-fold to isoproturon 
and chlortoluron 

Didierjan et al. 2002

7-ethoxycoumarin 
benzo[�]pyrene 

Fusion of rat CYPlAl and yeast NADPH-
cytochrome P450 
oxidoreductase 

A. tumefaciens 
(plamid pAFCRl 
and plasmid 
pTF2) 

10-fold higher activity toward 
both 7-ethoxycoumarin and 
benzo[�]pyrene 

Shiota et al. 1994 

TNT Nitroreductase (nfsI) from E. cloacae A. tumefaciens Up to 2-fold higher dry weight, 
higher TNT removal 

Hannink et al. 2001

GTN PETN-reductase (onr1) with CaMV 35 S promoter A. tumefaciens 2-fold faster GTN metabolism Gisbert et al. 2003 
Atrazine modified bacterial atzA gene with CsVMV 

promoter 
A. tumefaciens 
(plasmid pPW1)

38-fold higher atrazine tolearance Wang et al. 2005 

PCP Mn-peroxidase of Coriolus versicolor with CaMV 
35 S promoter 

A. tumefaciens 2-fold higher PCP removal Iimura et al. 2002 

PCP, BCP laccase of Coriolus versicolor with CaMV 35 S 
promoter 

A. tumefaciens Up to 6-fold higher reomoval Sonoki et al. 2005 

PCB Bacterial gene bphC with CaMV 35 S promoter A. tumefaciens 2-fold higher germination 
capability 

Macek et al. 2005 
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Besides assisting the natural phytotransformation, new 
compounds from various organisms can be introduced into 
plants to increase their phytoremediation potential for orga-
nic pollutants. For instance, as 2,4,6-trinitrotoluene (TNT), 
pentaerythritol tetranitrate (PETN) and nitroglycerin, are 
useful because as stated by Meagher (2006) mineralisation 
of TNT by native (that is, non genetically engineered) 
plants is inefficient and generally incomplete. To engineer 
plant tolerance to TNT, two bacterial enzymes (PETN re-
ductase and nitroreductase), able to reduce TNT into less 
harmful compounds, were over expressed in N. tabaccum 
cv. ’Xanthi’. The two genes, onr (encoding PETN reduc-
tase) and nfsl (encoding nitroreductase), under the control 
of a constitutive promotor provided the transgenic plants 
with increased tolerance to TNT at concentrations that se-
verely affected the development of wild type plants (French 
et al. 1999; Hannink et al. 2001, 2003). 

Other organic compounds, such as atrazine, pentachlor-
phenol (PCP), bisphenol A (BPA) and PCBs have also 
become targets for genetic engineering in the field of phyto-
remediation. 

The biodegradation of atrazine in transgenic N. tabacum 
expressing a modified bacterial atrazine chlorohydrolase 
(atzA) gene was increased, and was accompanied by an in-
creased atrazine tolerance compared to the control plants 
(Wang et al. 2005). In 2002 Iimura et al. reported that man-
ganese peroxidase-expressing transgenic tobacco was able 
to remove PCP effectively. In a study by Sonoki et al. 
(2005) the laccase of Coriolus versicolor, an extracellular 
fungal enzyme, was introduced into N. tabacum cv. ‘Sam-
sun NN’ and the transgenic plants were able to remove BPA 
and PCP from an aqueous solution, by secreting laccase into 
rhizosphere. Tobacco plants expressing the barterial enzyme 
responsible for cleaving PCBs, coded by the gene bphC 
from the bacterial biphenyl operon, displayed a higher PCB 
tolerance than the control plants (Macek et al. 2005). 

As in the case for genetic engineering in the field of 
heavy metal phytoextraction the effect of a transformation 
is correlated to the over expression of the construct intro-
duced. In a study by Uchida et al. (2005), crude leaf ex-
tracts of transgenic plants expressing tobacco expressing 
haloalkane dehalogenase, which catalyses hydrolytic de-
chlorination of 1-chlorobutane, cytoplasmic enzymes 
showed 76.4-fold higher xenobiotic-degrading activity than 
did leaves expressing apoplast-targeted enzymes. 
 
ROOTS AND DEPTH OF CONTAMINATION 
 
Before selecting the plant to be applied on the contaminated 
field different parameters have to be taken into account. 
These include the initial level of contamination, the type 
and the use of the soil to remediate, the area and depth of 
soil concerned. Indeed, plants have to be able to reach the 
metal to be removed, which means that their root system 
must develop within the contaminated zone. According to 
Keller et al. (2003) N. tabacum is able to extract metals 
only from the upper part of the contaminated layer (0.2 m) 
unlike Z. mays and S. viminalis which could extract metals 
from depths up to 0.75 m). Consequently, tobacco is sui-
table only for the phytoextraction of areas where the conta-
minated soil does not have a great depth. 
 
FUTURE OF TRANSGENIC AND WILD TYPE 
TOBACCO IN THE FIELD OF 
PHYTOREMEDIATION 
 
In the last decades transgenic tobacco plants with enhanced 
capacities to chelate or metabolise toxic metals have been 
tested in the field (Yeargan et al. 1992; Brandle et al. 1993). 
Although the future is promising for transgenic plants, there 
is much concern about their use. Questions not dissimilar to 
those surrounding genetically modified food plants have 
been raised: Will they spread uncontrollably? Will they dec-
rease genetic variability by interbreeding with wild plants? 
Will they rob the soil of its nutrients as well the toxin? Will 

they somehow find their way into the food chain and harm 
human and animal health (Watanabe 2001)? The last ques-
tion, though, is not applicable to tobacco, as it is a non-
food/non-feed crop. However, transgenic plants will prob-
ably not be applicable in the near future owing to restrictive 
laws and low public acceptance in several countries. 

Tobacco is a self pollinating plant; however it produces 
extensive amounts of pollen which could be distributed by 
wind. In order to avoid the transfer of transgenic pollen to 
wild populations various legislation organs have adopted 
several laws. In the case of transgenic tobacco in the field 
of phytoremediation, harvesting before bloom would mini-
mize the risk of hybridisation. During bloom tobacco bio-
mass increases only very slowly, thus it does not extract 
high amounts of various elements from the soil as a conse-
quence the most effective part for phytoremediation has 
been completed. Harvesting in that point in time would 
therefore, not significantly reduce the phytoremediation ef-
ficiency. 

Therefore, the use of the less efficient wild type tobacco 
plants could be combined with profit making operations, 
such as bioenergy. Depending on the family of N. tabacum 
30-40% of the seed is in average oil (Umarov et al. 1991; 
Giannelos et al. 2002) and is composed of linoleic acid 
(71.63%), oleic acid (13.46%) and palmitic acid (8.72%) 
(Mukhtar et al. 2007). Although tobacco seed oil is a non-
edible vegetable oil, it can be utilised for biodiesel produc-
tion as a new renewable alternative diesel engine fuel (Usta 
2005; Veljkovic et al. 2006). For this purpose research has 
to focus on the amounts of inorganic and organic pollutants 
accumulated in the seeds during the phytoremediation pro-
cess. Tobacco is a plant, which fulfils all the characteristics 
for a suitable phytoremediation plant and combined with 
the production of bioenergy it could become one of the 
main plants used in the field of phytoremediation. 
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