Abies Biotechnology - Research and Development of Tissue Culture Techniques for Vegetative Propagation

Božena Vooková • Andrej Kormuťák

Institute of Plant Genetics and Biotechnology, Slovak Academy of Science, Akademická 2, 950 07 Nitra, Slovak Republic
Corresponding author: * nrgvook@savba.sk

ABSTRACT

The genus Abies represents a large group of coniferous species growing in different parts of the world. This review is a compilation of the available literature referring to Abies in vitro cell, tissue and organ culture, micropropagation, somatic embryogenesis and transformation. Our data presented within this context cover such aspects of Abies biotechnology as initiation of callus, plantlet regeneration via axillary and adventitious buds development and subsequent rooting. Somatic embryogenesis has been regarded as a model for large-scale propagation of tree species through out the world. Also in Abies, the best results have been achieved using technics of somatic embryogenesis. The factors affecting induction of embryogenic tissue, somatic embryo maturation and germination are discussed. Emphasis has been given on comparison of soluble and insoluble protein profiles and enzyme activity during zygotic and somatic embryogenesis. Recent experiments concern cryopreservation of embryogenic cultures, genetic transformation and regeneration of transgenic plants.

Keywords: biochemical aspects, cryopreservation, organogenesis, somatic embryogenesis, transformation

Abbreviations: ABA, abscisic acid; BAP, 6-benzylaminopurine; GD medium, Gresshoff and Doy (1972) MCM medium, Bornman and Jansson 1981; MI, nyo-inositol; MS medium, Murashige and Skoog (1962); NAA, α-naphthaleneacetic acid; PEG, polyethylene glycol-4000; SE, somatic embryogenesis; SH medium, Schenck and Hildebrandt (1972); TDZ, thidiazuron

CONTENTS

INTRODUCTION .. 39
IN VITRO STUDIES, MICROPROPAGATION ... 39
Callus culture .. 39
Culture of vegetative buds ... 40
Embryonic explants .. 40
Somatic embryogenesis .. 40
Secondary somatic embryogenesis ... 42
Biochemical quality of somatic embryos ... 42
Cryopreservation .. 43
Genetic stability of in vitro cultures .. 43
Genetic transformation ... 44
ACKNOWLEDGEMENTS ... 44
REFERENCES .. 44

INTRODUCTION

The genus Abies includes about 40 species of trees widely scattered through the forests of North and Central America, Europe, Asia and Northern Africa (Harlow and Harrar 1958). Trees growing in southern latitudes are usually restricted to the upper slopes of mountains, those in boreal forests are largely confined to regions of relatively low elevations. With special references to the Mediterranean firs, they represent a group of species that are closely related genetically and which occupy disconnected and sometimes limited areas around the Mediterranean and in the central Europe. Their natural ranges may be found at the 400 m altitude already up to 2400 m. These may suffer from severe summer drought but receive abundant precipitation during the autumn and spring. They can be found on calcareous or non-calcareous soils, but develop best on deeper acid soils with high water reserves. In relation to a possible increase in drought linked to a temperature increase, there is a great risk that the present ranges of the Mediterranean firs will decrease in the lowest zones of their range, but also in other zones characterized by southerly aspects and shallow soils. There is also the risk of a possible increase in late frost damages and water stress effects. The replacement of more hydrophilous Abies species with those of higher aridity index seems to be necessary in case of climate change (Aussenac 2002). Artificial pollination approach based on interspecific hybridization of the Mediterranean firs is looked upon as a powerful means of extending their genetic variability and subsequent increasing of their adaptive potential (Greguss 1988). In combination with somatic embryogenesis it may provide solution for the large-scale propagation of these hybrids.

IN VITRO STUDIES, MICROPROPAGATION

Callus culture

The first study to induce callus culture in the genus Abies was published 73 years ago (Gautheret 1934). Cambial ex-
plants of *A. pectinata* were cultured on Knop’s medium with 1% glucose and 2% mannitol and formed callus cells which were described cytologically. Later, using medium supplemented with growth regulators, callus was initiated from the cambium and parenchyma of the branches of *A. sibirica*, *A. nephrolepis* mature trees (Bytechenkova 1963) and the cortex of one-year old shoots of *A. grandis* mature trees (Harvey and Grashman 1969). But callus cultures survived for several months. Data from several years cultivated *Abies* sp. calli were published much later. Callus cultures of *A. alba* and *A. concolor* × *A. grandis* were obtained from embryos as well as from hypocotyl and radicle segments of seedlings on SH medium (Schenk and Hildebrandt 1972) supplemented by casein hydrolysate (1000 mg/l), glutamine (500 mg/l) and with 1 mg/l each of 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA) (Gajdošová and Voková 1991). Explants were cultured in the dark or on the fluorescent light (110 μmol m⁻² s⁻¹ and 1 h photos-period) at 25 ± °C. Formation of green, yellow-green and pink calli with white areas of callus was observed when explants were cultured on the light. Cell cultured in the dark were yellow-white with more intensive growth. Recently, Tang and Newton (2005) published differentiation of adventitious shoots from *A. fraseri* and *A. nordmanniana* callus cultures but they could not succeed in regenerating plants.

Culture of vegetative buds

During the 1970s, research began to focus on morphogenesis and organogenesis in *vitro*. In 1973, Chalupa and Durzan studied growth and development of dormant buds of *A. balsamea* (15-20 years old) and some other conifer species in *vitro*. Modified Risser and White medium (1964) with 109 mg/l ammonium chloride promoted growth, while with *Abies* × *A. cephalonica* × *A. ciliicica* × *A. julipurpurea* × *A. concolor* × *A. grandis* × *A. sibirica* × *A. nephrolepis* × *A. fraseri* × *A. nordmanniana* cultures from which plantlets could not succeed in regenerating plants.

Somatic embryogenesis

Somatic embryogenesis (SE) seems to be a very convenient method for mass multiplication of conifers, including the genus *Abies*. The technology to initiate, maintain, and develop somatic embryos and embolings (regenerants from somatic embryos) of conifer species via SE is now well established. SE in *Abies* with limited success or successful regeneration was reported for nine pure species: *A. alba*, *A. balsamea*, *A. cephalonica*, *A. ciliicica*, *A. concolor*, *A. fraseri*, *A. nordmanniana*, *A. numidica* and *A. lasiocarpa*.

The first report about the initiation of SE in *Abies* dates back to 1988. In *A. alba* embryogenic tissue was initiated on SH medium contained 2% sucrose with 1 mg/l BAP from immature zygotic embryos (Gebhardt et al. 1988). To promote somatic embryo maturation, the influence of different media components on different developmental stages was studied and the technology to initiate, maintain, and develop somatic embryos and embolings (regenerants from somatic embryos) of conifer species via SE is now well established. SE in *Abies* with limited success or successful regeneration was reported for nine pure species: *A. alba*, *A. balsamea*, *A. cephalonica*, *A. ciliicica*, *A. concolor*, *A. fraseri*, *A. nordmanniana*, *A. numidica* and *A. lasiocarpa*. The most efficient cytokinin for adventitious bud induction was BAP at 5 mg/l. But buderud bud development was successful when BAP was used in combination with 0.01 mg/l NAA. Shoot growth was achieved on basal medium to which 14 mg/l spermidine was added.

Only limited information is available on organogenesis in the genus *Abies*. Initiation of adventitious buds was observed by Ėrdelský and Barančók (1986). They cultured mature zygotic embryos of *A. alba in vitro* on MS medium (Murashige and Skoog 1962) with 1 or 2 mg/l BAP and 0.01 mg/l NAA. Adventitious buds surrounded by callus were formed on embryos but their development stopped. Zygmont and Schwarz (1987) initiated induction of adventitious buds on *A. fraseri* zygotic embryos. In *vitro* propagation of *A. fra-seri* from embryonic explants was published by Saravitz and Blazich (1991). Adventitious buds developed on hypocotyl and on hypocotyls of cotyledon-hypocotyl explants of germinating seeds, but rarely on cotyledons. Elongated adventitious shoots were placed on media containing 0, 5, 10, 20, or 40 mg/l IBA. Forty-eight percent of shoots treated with 40 mg/l IBA rooted. Acclimation of the plantlets was unsuccessful. Histology of *in vitro* adventitious bud development was studied by Saravitz and Blazich (1995). In 1995, Kulchetski et al. described a protocol for the *in vitro* propagation of *A. amabilis*. Over 60% of cotyledonal explants from 5-day-old germinating embryos formed adventitious shoots cultured on SH medium with 2.2 mg/l BAP followed by another 7 days on SH medium containing 2 mg each of BAP and zeatin. Shoot multiplication was unsuccessful, but 17% rooting was obtained. Bud induction and shoot formation was successful on cotyledons of *A. sibirica* seedlings (Momot 1988).

In our laboratory, adventitious shoots have been induced on embryos and on the cotyledons of 7 d-old seedlings of the hybrid *A. concolor* × *A. grandis* (Voková et al. 1989; Voková and Gajdošová 1992). The most efficient cytokinin for adventitious bud induction was BAP at 5 mg/l. But buderud bud development was successful when BAP was used in combination with 0.01 mg/l NAA. Shoot growth was achieved on basal medium to which 14 mg/l spermidine was added.
and Krogstrup 1991) and mature (Nørgaard and Krogstrup 1995) zygotic embryos. Embryogenic tissue and plantlet regeneration has been achieved in A. cephalonica by culture of megagametophytes containing immature zygotic embryos (Krajňákův and Haggman 1997).

SE was also studied in American species of Abies. In A. balsamea, SE was initiated from mature zygotic embryos. Somatic embryos were readily germinated on medium lacking plant growth regulators (Guevin et al. 1994). Initiation and limited proliferation of A. fraseri embryogenic tissue was achieved using immature zygotic embryos (Rajbhandari and Stomp 1997). Induction of SE from mature zygotic embryos of A. fraseri was reported by Guevin and Kirby (1997) who could obtain mature and germinate somatic embryos at a low percentage (1%). Immature zygotic embryos were used for initiation of SE in A. concolor resulting in 71.1% plantlet regeneration (Vooková and Kormuťák 2004).

In our laboratory, regenerants of A. numidica (Vooková and Kormuťák 2002) and A. cilicica (Vooková and Kormuťák 2003) were obtained from embryogenic tissue initiated from immature zygotic embryos. In 2005, Kvaalen et al. published a study on SE initiated from immature zygotic embryos of subalpine fir A. lasiocarpa. The study resulted in a proficient system for production of plants from somatic embryos.

Embryogenic cultures of hybrid firs have been derived from immature (A. alba x A. alba, A. alba x A. nordmanniana, Gajdošová et al. 1995; A. alba x A. cephalonica, A. alba x A. numidica, Salajová et al. 1996; A. ciliicica x A. nordmanniana, Vooková and Kormuťák 2003) and mature (A. Alba x A. cephalonica, Salajová and Salaj 2003/2004) zygotic embryos. After maturation on medium with 10 or 20 mg/l ABA cotyledonary embryos developed and germinated into small plantlets. Embryogenic tissue was also initiated on cotyledon explants dissected from seedlings of hybrid fir A. alba x A. cephalonica (Salajová and Salaj 2001).

Most of the experimental conditions favouring SE can be generalised and used for most Abies species but sometimes optimization for individual species is necessary (Vooková and Kormuťák 2004). A schematic illustration of the SE pathway in Abies based on our experiences and results is given in Fig. 1. Developmental stage of zygotic embryo used as an explant is important for the induction of SE. In most cases, the initiation frequencies of embryogenic tissue were higher when zygotic embryos were in the precotyledony or early cotyledony stage. For induction of SE, proliferation of embryogenic tissue, somatic embryo maturation and desiccation the cultures are incubated in darkness at temperature 21-23ºC (Nørgaard and Krogstrup 1991; Salajová et al. 1996; Vooková and Kormuťák 2003; Kvaalen et al. 2005). Unlike other genera of the Pinaceae, Abies requires only cytokinin for induction of embryogenic tissue from zygotic embryos (Schuller et al. 1989; Nørgaard and Krogstrup 1991). The culture media did not significantly affect initiation frequencies of A. lasiocarpa embryogenic tissue but subsequent growth and culture survival was dependent on the culture medium. Large loss of cultures on the SH medium was possibly related to the lower concentration of one or more microelements or low concentration of Ni (Kvaalen et al. 2005). Organic supplement (1000 mg/l caseine and 500 mg/l glutamine) improved the proliferation rate as well as the maturation and vitality of somatic embryos. Culture of A. balsamea embryogenic tissue at 85% (24 subsequent growth and culture survival) on medium containing 1 mg/l BAP combined with 1.86 mg/l NAA (Guevin et al. 1994). A low sucrose concentration (1%) in the proliferation SH medium also favoured the formation of cotyledonary somatic embryos of A. alba in the maturation SH medium with ABA supplemented with 6.8% lactose and 0.9% sucrose (Schuller et al. 2000). Maturation of fir somatic embryos is promoted by both ABA and carbohydrates in the maturation medium. Maturation medium with 10 mg/l ABA is the most frequently used for obtaining cotyledonary embryos (Nørgaard, 1997; Salajová and Salaj 2003/2004). The production of A. ciliicica and A. ciliicica x A. nordmanniana mature embryos was influenced by ABA concentration, 20 mg/l being the most effective (Vooková and Kormuťák 2003). Lactose and sorbitol, both at concentration 6.8% favoured somatic embryo maturation up to an early cotyledony stage (Schuller et al. 2000). A few A. alba hybrid plantlets were regenerated after maturation on medium with 6% lactose (Vooková et al. 1997/1998). A. alba plantlets with a root, primary needles and terminal bud development could form on maturation medium with 3.8% maltose after preculture of embryogenic tissue on basal medium with 1% sucrose and 1.8% maltose during 1 week (Hristoforou et al. 1995). 3.4-4.3% maltose gave a better maturation response and the addition of 7.5% polyethylene glycol-4000 (PEG) to maturation medium promoted the maturation of somatic embryos in A. nordmanniana and A. alba x A. numidica (Nørgaard 1997; Salaj et al. 2004). Maturation of A. numidica somatic embryos was promoted by 7.5-10% PEG. Three to 6% maltose significantly enhanced the yield of mature embryos (from 3 embryos in control treatment to 23 embryos per g of embryogenic tissue). The most effective maturation occurred when embryogenic tissue was transferred to maturation medium after 14-21 days cultivation on proliferation medium (Vooková and Kormuťák 2002). It seems that the choice of basal medium for somatic embryo maturation is also important. Embryogenic tissues of A. ciliicica, A. numidica, A. concolor and A. ciliicica x A. concolor were successfully matured on MS medium supplemented with 10 mg/l ABA, 4% maltose, 10% PEG and 1 mg/l NAA. Maturation in darkness promoted somatic embryo maturation, so the 8-week dark period in the cultivation system gave the best results.
nordmanniana hybrid were cultured on SH, modified MS and Gresshoff and Doy (1972) maturation media with 4% maltose and 10% PEG. The tendency for better maturation on SH and modified MS medium was general for all tested cultures (Voková and Kormuřák 2003). The relative concentration of most macromolecules and microelements in GD medium is lower than in other media. One of the most beneficial MS medium was enriched with vitamins. Contrary, in P. taeda, the yield of cotyledonary embryos was increased when the concentration of B, K and Ca were reduced and concentration of Fe was increased (Pullman et al. 2003).

Exogenously applied myo-inositol (MI, 100 mg/l) influenced somatic embryogenesis of A. numidica although this process occurred on media with and without MI. Maturation on medium containing MI negatively affected somatic embryo germination (Voková et al. 2001). Omitting MI in maturation medium resulted in 68.3% germination of somatic embryos. Maturation and germination on media with MI decreased the yield of regenerants to 30%. The results of Find et al. (2002) suggest that endogenously produced auxin may be one reason for low or failing maturation of embryogenic cultures of Nordmanns fir, but also imply that auxin may play a critical role for proper development of cotedyledons during later stages of embryo maturation.

Prior to germination, well-developed cotedyledonary somatic embryos were selected and subjected to a partial desiccation treatment at high relative humidity according to Roberts et al. (1990) for three weeks at 24°C in the dark. Embryos were maintained in open glass petri dish (Ø 60 mm) which was placed on a moist filter paper (with 4 ml water per dish) in other petri dishes (Ø 90 mm) (Voková et al. 1997/1998). Kvaalen et al. (2005) used Petri dishes with two compartments, one compartment was filled with solidified MgSO₄ and embryos were placed in the other compartment. Media for germination are routinely used with sucrose at 2% with (Nørgaard 1997) or without 1% activated charcoal (Guevin and Kirby 1997). Sixty one percent of A. alba plantlets with roots and primary needles developed on basal medium when a combination of 1% sucrose and 2% maltose and 1% activated charcoal (Guevin and Kirby 1997). Sixty one percent of A. alba plantlets with roots and primary needles developed on basal medium when a combination of 1% sucrose and 2% maltose was provided as a carbon source (Hristoforoglu et al. 1995). Results of Nørgaard (1997) indicated that charcoal but not the gelling agent was important for radicle protrusion. The reduction of sucrose concentration to 1% had a positive influence on A. numidica embryo germination (Voková and Kormuřák 2001). The high rooting percentage (85%) was recorded on half SH medium with 1% sucrose and 1% activated charcoal and cultivation on the fluorescent light intensity 30 μmol m⁻² s⁻¹ at 25 ± 2°C. It seems that this medium and culture condition are widely applicable, and we used it successfully for germination of other Abies sp. and hybrids as well. Different culture conditions were used during germination but effect was not very expressive. A. alba somatic embryos were gradually adapted to increasing light levels and than germinated 4 weeks at fluorescent light (70 μmol m⁻² s⁻¹) and temperature 24°C (Hristoforoglu et al. 1995). Incubation of germinated A. lasiocarpa embryos was under red light intensity 30 μmol m⁻² s⁻¹ at 22°C (Kvaalen et al. 2005). Plants with epicotyls were transferred to pots containing mixture of peat and perlite (2:1, v/v). Micropropagated plantlets of Nordmanns fir, required a period of low temperatures and short days before growth was resumed (Nørgaard 1997).

Secondary somatic embryogenesis

Salajová and Salaj (2001) reported repetitive SE from cotyledon explants of hybrid firs (A. alba x A. cephalonica, A. alba x A. numidica) emblings. They observed a similar development pattern of somatic embryos as in the primary process. The induction of secondary SE in A. numidica was achieved when cotyledonary and desiccated cotedyledonary embryos were used as explants (Voková et al. 2003). Pre-cotedyledonary embryos were not able to produce embryogenic tissue. Cotedyledonary embryos before desiccation were the most suitable. The most beneficial was SH induction medium with 1 mg/l TDZ (thidiazuron) and 1000 mg/l MI. Initiation frequency ranged from 1 to 34%. Efficiency of this method for improving repetitive SE and plant recovery of Algerian fir was investigated by evaluating the induction frequency, maturation capacity and germination (Voková and Kormuřák 2006).

Biochemical quality of somatic embryos

A comparative study on zygotic and somatic embryogenesis in conifers has shown that except for morphological similarity there exists also a high degree of biochemical homology between zygotic and somatic embryos (Hakman et al. 1990). In particular, it is true of the storage proteins exhibiting similar developmental patterns in both types of embryos (Finn et al. 1991; Hakman 1993). The greater biochemical similarity of somatic embryos with their zygotic counterparts is believed to improve the conversion of somatic embryos to plants (Klimaszewska et al. 2004). However, in spite of this generally acknowledged qualitative similarity, the quantitative differences in storage proteins were also postulated to exist between zygotic and somatic embryos. Bornman et al. (2001) have for example revealed significantly reduced content of proteins in a dry mass of Picea abies somatic embryos as compared with the zygotic embryo-megagametophyte complex. This may be caused by the cellular organization of somatic embryos which were shown to differ in this respect from zygotic embryos of P. abies (Salajová et al. 1996; Bornman et al. 2001). At the enzyme level, considerable differences in peroxidase, esterase and invertase activities were observed in Picea mariana, P. abies and A. alba indicating different metabolic potentials of their zygotic and somatic embryos (Iraqi and Tremblay 2001; Konrádova et al. 2002; Kormuřák and Vooová 2006). All these findings refer predominantly to the genus Picea, to a lesser degree also to the genera Pseudotsuga and Cupressus. As far as the genus Abies is concerned, we have characterized the processes of zygotic and somatic embryogenesis in terms of storage protein dynamics and enzyme activity in A. alba, A. concolor and A. numidica.

Altogether 9 major protein components with molecular masses of 14, 16, 22, 24, 27, 30, 35, 38 and 43 kDa along with numerous minor protein components were detected in female gametophyte and embryos of A. alba and A. concolor based on soluble protein extraction procedure (Kormuřák and Voková 2006). However, extraction of soluble and insoluble proteins revealed the presence of 4 additional soluble protein components in zygotic embryos of A. numidica with molecular masses of 97, 80, 55 and 6 kDa as well as 7 insoluble fractions of 57, 55, 42, 40, 30, 18 and 14 kDa size (Kormuřák et al. 2005). In the light of these findings, a species-specific profile of zygotic embryo proteins may be assumed in Abies. Parallelized cytological investigations revealed a dramatic increase of protein synthesis at the stage of cellularized female gametophyte and in embryos with differentiated cotyledons. The nutritive function of individual fractions has been suggested according to their rapid degradation upon the onset of germination. All 9 proteins of interest were found to be mobilized in the female gametophytes of A. concolor sharing the function of storage proteins. The same was true of the protein components of A. concolor embryos. The only exceptions were the 24 kDa protein of the female gametophyte and the 16 kDa protein of embryos which were synthesized at a constant rate during the early stages of seed germination. It is worth mentioning that the soluble protein profiles described above differ from those reported for Abies seed by Jensen and Liule (1991) who were able to distinguish only 4 components in the entire female gametophyte-embryo complex.

As for somatic embryos of A. concolor, their soluble
protein profiles resemble very closely those of zygotic embryo. In contrast, soluble proteins of somatic embryos in *A. numidica* are similar but not identical with the corresponding profiles of zygotic embryos. In comparison with zygotic embryos the lack of 10, 24 and 34 kDa proteins was registered in mature somatic embryos of the species. Like in zygotic embryos, the 43 kDa protein is the most prominent component of the storage proteins in mature somatic embryos. In both somatic embryos and zygotic embryos the amount is apparent since the globular state is a characteristic of somatic embryo formation. All the developmental stages are characterized by an identical protein pattern whose individual components may be traced as early as the non-cotyledonary stage of zygotic embryos. These findings were confirmed also in 3-year old calli of *Picea abies* (Tsušová et al. 1991). All these findings enhanced considerably the breeding of firs, identification and control of the origin of forest individuals (Pullmann et al. 2000). At the population level, it was the fin

eference lines were able to resume growth at same rate as before cryopreservation. Aronen et al. (1999) applied cryopreservation for the embryogenic cultures of open-pollinated *A. cephalonica* and tested the genetic fidelity to the cryopreserved cell lines using random amplified polymorphic DNAs i.e. RAPD markers. DMSO, two mixtures of polyethylene glycol, glucose and DMSO (PGD I or PGD II) were used as cryopreservation treatment with slow cooling. Fast thawing proved to be applicable for embryogenic tissue. The best results, measured as survival percentage and mean growth ratio were achieved using PGD I treatment. Their results show that cryoprotectants may cause a risk for genetic fidelity of plant material and thus, its continual monitoring is of importance. The RAPD assay performed revealed considerable genetic variation in background variation in the DMSO treated but non-frozen samples, i.e. 16.8% of the produced RAPD profiles showed intraclonal variation while background variation was seen in 1.7% of the control amplifications.

Genetic stability of *in vitro* cultures

To be genetically stable is very important for successful mass cloning. But some cases of somaclonal variation have been reported for embryogenic cultures of *Larix* sp. (de Verno et al. 1994), *Picea abies* (Föurer 1985) and *Picea glauca* (Isabel et al. 1995). Karyological analysis of 5-10 month cultured callus of *A. concolor* x *A. grandis* induced from seeds of *A. alba* and *A. concolor* x *A. grandis* on MS medium containing 2 mg/l BAP and 2 mg/l NAA showed that cells contained predominantly diploid chromosome number. Karyological changes occurred in a maximum of 10.8% of mitotic cells. The most frequent change was polyploidy. Polyploid cells occurred isolated, the tissue showed no tendency towards polyploidization. Less frequently observed deviation were anaphases with lagged chromosome and haploidy (Gajdšová and Vooková 1991). Stable diploid chromosome number was observed also in 3-year old calli of *A. alba*, *A. concolor* x *A. grandis* and *A. grandis* x *A. concolor* and 1-year old calli *A. grandis*, *A. concolor* obtained from hypocotyl segments cultured on SH medium with 1 mg/l BAP and 1 mg/l NAA (Libiaková and Gajdšová 1993). Karyological changes ranged from 2 to 7%. The deviations which occurred in mitotic cells were polyploidy and haploidy. The tissues showed no tendency towards polyploidization. Less frequently observed deviation were anaphases with lagged chromosome and haploidy. Genetic variability and the age of calli did not influence the changes in chromosome number. The extend of somaclonal variation and its frequency was assessed in great number of species and their × species. The best results, measured as survival percentage and mean growth ratio were achieved using PGD I treatment. Their results show that cryoprotectants may cause a risk for genetic fidelity of plant material and thus, its continual monitoring is of importance. The RAPD assay performed revealed considerable genetic variation in background variation in the DMSO treated but non-frozen samples, i.e. 16.8% of the produced RAPD profiles showed intraclonal variation while background variation was seen in 1.7% of the control amplifications.

Cryopreservation

Over the past decades, plant cryopreservation technologies have been evolving rapidly, opening the door to the possibility of long-term storage of valuable genetic resources of many crop and forest species (Panis and Lambardi 2005). Embryogenic cultures are cryopreserved to maintain their juvenility and regeneration ability. Variation among *A. nordmanniana* cell lines to survive freezing has been documented by Nørgaard et al. (1993). Embryogenic cultures were cryopreserved after preculture in 7.3% sorbitol and pretreatment with 5% dimethyl sulfoxide (DMSO). Only a few meristematic cells in the embryo heads survived. Following an initial lag-phase, growth of the globular embryos was resumed by surviving cells. There was apparent relation between cryotolerance and good regeneration ability of embryogenic masses. Only one of five genotypes resumed growth at same rate as before cryopreservation. Misson et al. (2006) developed simplified cryopreservation technique for *A. nordmanniana* somatic embryos. Chemical treatment (sucrose and sucrose/DMSO/cold +4°C) did not affect the growth of the lines tested. The cold-treated embryos of the reference lines were able to regenerate after this treatment. Aronen et al. (1999) applied cryopreservation for the embryogenic cultures of open-pollinated *A. cephalonica* and tested the genetic fidelity to the cryopreserved cell lines using random amplified polymorphic DNAs i.e. RAPD markers. DMSO, two mixtures of polyethylene glycol, glucose and DMSO (PGD I or PGD II) were used as cryopreservation treatment with slow cooling. Fast thawing proved to be applicable for embryogenic tissue. The best results, measured as survival percentage and mean growth ratio were achieved using PGD I treatment. Their results show that cryoprotectants may cause a risk for genetic fidelity of plant material and thus, its continual monitoring is of importance. The RAPD assay performed revealed considerable genetic variation in background variation in the DMSO treated but non-frozen samples, i.e. 16.8% of the produced RAPD profiles showed intraclonal variation while background variation was seen in 1.7% of the control amplifications.

Genetic stability of *in vitro* cultures

To be genetically stable is very important for successful mass cloning. But some cases of somaclonal variation have been reported for embryogenic cultures of *Larix* sp. (de Verno et al. 1994), *Picea abies* (Föurer 1985) and *Picea glauca* (Isabel et al. 1995). Karyological analysis of 5-10 month cultured callus of *A. concolor* x *A. grandis* induced from seeds of *A. alba* and *A. concolor* x *A. grandis* on MS medium containing 2 mg/l BAP and 2 mg/l NAA showed that cells contained predominantly diploid chromosome number. Karyological changes occurred in a maximum of 10.8% of mitotic cells. The most frequent change was polyploidy. Polyploid cells occurred isolated, the tissue showed no tendency towards polyploidization. Less frequently observed deviation were anaphases with lagged chromosome and haploidy (Gajdšová and Vooková 1991). Stable diploid chromosome number was observed also in 3-year old calli of *A. alba*, *A. concolor* x *A. grandis* and *A. grandis* x *A. concolor* and 1-year old calli *A. grandis*, *A. concolor* obtained from hypocotyl segments cultured on SH medium with 1 mg/l BAP and 1 mg/l NAA (Libiaková and Gajdšová 1993). Karyological changes ranged from 2 to 7%. The deviations which occurred in mitotic cells were polyploidy and haploidy. The tissues showed no tendency towards polyploidization. Less frequently observed deviation were anaphases with lagged chromosome and haploidy. Genetic variability and the age of calli did not influence the changes in chromosome number. The extend of somaclonal variability in adventitious and axillary shoots regenerated from mature embryos and cotyledons of seedling and in 3-year old calli of *A. concolor* x *A. grandis* was studied (Libiaková et al. 1995). The results of karyological analysis demonstrated remarkable stability of regenerated shoots mainly of axillary shoots where no deviations from the normal number were found. Among the cells observed in adventitious shoots only 1.4% cells were tetraploid. Stable diploid (2n = 24) chromosome number was found in 97% of dividing cells. These results were confirmed also by
flow cytometry analysis of nuclear DNA content.

Embryogenic cultures of Abies sp. seems to be genetic stable but organic supplement in the medium can affect this stability during long term cultivation. Genetic stability of embryogenic cultures of A. alba induced from immature zygotic embryos was documented by Schuller et al. (1989). Chromosome counts in 25 young somatic embryos of A. alba revealed all being as diploid (2n=2x=24). The flow cytometric analysis of single embryogenic line suggests that no changes in ploidy levels occurred during induction and 2 years’ cultivation of A. alba embryogenic tissue initiated from immature zygotic embryos on SH medium with 1 mg/l BAP supplemented with 1000 mg/l casein hydrolysate and 500 mg/l L-glutamine (Gajdošová et al. 1995). Karyological studies of 6-year old embryogenic cell line of A. alba obtained from mature zygotic embryo revealed that all cells cultivated 3 years on medium without organic nitrogen, then 3 years with supplement of organic nitrogen (500 or 1000 mg/l casein hydrolysate and 500 mg/l L-glutamine) were trisomic and morphological changes such as malformation of the suspensor cells and loss of maturation capacity occurred (Roth et al. 1997). Florescent-banding methods and comparison with aneuploid cell line showed that the additional chromosome belonged to the group of long, metacentric chromosomes of A. alba without secondary constriction. Those cells cultured on medium not supplemented with organic nitrogen retained stable chromosome number of 2n=24. The emergence of aneuploidy within one cell line could be consequence of high selection pressure caused by the different culture conditions.

Genetic transformation

Genetic transformation can be defined as a controlled introduction of exogenous genetic material into the nuclear or cytoplasmic genome of an organism in stable and inheritable manner (Diouf 2003). Summary of various studies conducted on transformation of Abies sp. is recorded in Table 1. Seventeen-day old seedlings of A. alba and A. concolor x A. grandis were inoculated by Agrobacterium tumefaciens strain A281 which contains Ti plasmid (T-DNA) from wild strain A. tumefaciens Bo 542 with chromosome background of strain C58 (Gajdošová et al. 1993). Infected seedling were cultured on MS medium with 500 mg/l cefotaxime to prevent growth of bacterium. Tumors formed on hypocotyls of 25.7% of hybrid fir and 4.3% of silver fir. After 4 months of culture the tumors were separated from plants and cultured on MS medium without growth regulators. Some of the tumors necrotized but 9.9% tumors from A. concolor x A. grandis and 1.4% from A. alba showed intensive growth on medium without growth regulators during 2 years. The presence of agropine in tumors was proved by opine analysis according to Otten and Schilperoot (1978). In recent years the embryogenic tissue of several conifer species have been included in genetic transformation experiments. Stable genetic transformation of A. nordmanniana embryogenic cultures was achieved using Biolistic™ transformation followed by regeneration of transgenic plants (Find et al. 2005). Selection of the transgenic tissue was based on the antibiotic resistance induced by the neomycin phosphotransferase II gene (nptII) in combination with anti-biotic geneticin. Six transclones were recovered from a total of 215 bombardments. Expression of the β-glucuronidase gene (uidA) was confirmed by histological analysis. Both genes were still expressed in the embryogenic tissue after 5 yr of in vitro culture and mature somatic embryos and plants produced from these cultures. The integration of npt II was not observed in embryogenic tissue from any of the six transclones after 5 yr cultivation.

Genetic transformation of embryogenic tissues of hybrid firs by 48 h co-cultivation with A. tumefaciens strain AGL0 was presented by Salaj et al. (2007). Expression of uidA gene in the embryogenic tissues of A. alba x A. cephalonica and A. alba x A. numidica was achieved. Plasmid the binary vector pTS2 was used in experiments, which is binary vector pBinPLUS. Histochemical GUS assay conducted according to Jefferson (1987) and PCR analysis were used for determination of expression. Mature cotyledonal somatic embryos were GUS-positive and regeneration of plantlets was achieved.

ACKNOWLEDGEMENTS

The study was financially supported by the VEGA project No. 2/3192/25.

REFERENCES

Bonga JM (1977) Organogenesis in in vitro cultures of embryonic shoots of Abies balsamea (Balsam fir). In Vitro 13, 41-48

Büchtenkova EA (1963) The study of proliferation of cambium and parenchyma of branches from trees in cultures in vitro. Biologia Plantarum 5, 302-309

Find J, Charity JA, Grace LJ, Kristensen M, Krogstrup P, Walter Ch

Table 1 Summary of various studies conducted on transformation of Abies sp.

<table>
<thead>
<tr>
<th>Author</th>
<th>Species/explant or culture</th>
<th>Strain, used plasmid/method used</th>
<th>Marker genes</th>
<th>Selective agent concentration</th>
<th>Transformation frequency</th>
<th>Detection method of transgene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gajdošová et al 1993</td>
<td>A. concolor x A. grandis</td>
<td>A. tumefaciens strain A281 infection</td>
<td>uidA</td>
<td>cefotaxime/ 500 mg/l</td>
<td>25.7% in A concolor x A. grandis, 4.3% in A alba</td>
<td>opine analysis (Ottenand Schilperoot 1978)</td>
</tr>
<tr>
<td>Jens et al. 2005</td>
<td>A. nordmanniana/embryogenic tissue</td>
<td>pcW122 bombardment</td>
<td>uidA</td>
<td>geneticin/ 15 mg/l</td>
<td>4.7%</td>
<td>histochemical assay (Jefferson 1987)/ELISA test/southernhybridization histochemical assay (Jefferson 1987)/PCR analysis</td>
</tr>
<tr>
<td>Salaj et al. 2007</td>
<td>A. alba x A. numidica</td>
<td>A. tumefaciens strain AGL0/ cocultivation</td>
<td>uidA</td>
<td>geneticin/ 10 mg/l</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

