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ABSTRACT 
Over the last 15 years a growing number of research groups worldwide have focused on plants as biofactories for the production of 
heterologous proteins. The reason is that plants provide a number of advantages over conventional recombinant systems including low 
cost, increased safety and scalable production, among others. The skepticism that received this technology when first envisaged has 
turned into a cautious optimism. A wide variety of proteins can be produced in plants and they are almost indistinguishable from their 
native counterparts. Even though there are still several issues that need refining such as boosting expression and ensuring correct post-
translational processing and protein stability in plant tissues, molecular farming can potentially provide unlimited quantities of 
recombinant proteins for use as diagnostic and therapeutic tools. The low cost of plant-based vaccines make them ideal for large-scale 
programs in poor countries. Vaccinating the nearly 33 million children that each year remain unvaccinated for vaccine-preventable 
diseases would have profound effects on leveling the health inequities all over the world (Thanavala et al. 2006). It is hoped that the issue 
of IP does not represent an insurmountable obstacle to this end. 
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INTRODUCTION 
 
Plants have become an accepted and suitable system for 
large-scale production of recombinant proteins due to tech-
nological developments at many levels, including transfec-
tion methods, control of gene expression, protein targeting, 
the use of different crops as production platforms and modi-
fications to alter the structural and functional properties of 
the recombinant product. Over the last few years, some of 
the limitations of plants as bioreactors such as low yields 
and inconsistent product quality have been overcome, 
which has allowed the commercial development of some 
plant-derived pharmaceuticals. Indeed, one of the most im-
portant driving factors has been yield improvement, as pro-
duct yield has a significant impact on economic feasibility. 

Attention is now shifting from basic research towards com-
mercial exploitation, and molecular farming is reaching the 
stage at which it may challenge established production tech-
nologies based on bacteria, yeast and cultured mammalian 
cells. In this review, recent progress in molecular farming 
will be examined. Since there have been several reviews re-
cently (dos Santos and Wigdorovitz 2005; Rice et al. 2005; 
Streatfield 2006; Thanavala et al. 2006), this review will 
focus on very recent advances in the field. 
 
EXPRESSION OF RECOMBINANT PROTEINS IN 
TRANSGENIC PLANTS 
 
There is a high demand for production of recombinant pro-
teins on an industrial scale because of their utility as diag-
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nostic reagents, vaccines and therapeutic agents. Recombi-
nant DNA technology has allowed expression of heterolo-
gous proteins in different systems (Frank 1998). Originally 
prokaryotic hosts were the system of choice mainly because 
of the low overall cost and short production timescale 
(Terpe 2006). However, prokaryotic systems are limited 
about the classes of proteins that can be produced and they 
do not perform posttranslational modifications. Conse-
quently, the focus turned to eukaryotic hosts: yeast, insect 
and mammalian cell cultures and transgenic animals. Al-
though mammalian cell cultures and yeast have been the 
main expression systems employed, they have some down-
sides in terms of cost, scalability, risk of pathogenicity and 
authenticity (Balen and Krsnik-Rasol 2007). Since cost is 
still one of the persistent barriers for development and dis-
tribution of safe and effective new vaccines and pharmaceu-
tical compounds to populations in dire need of them, plants 
represent a simple and inexpensive alternative allowing a 
scalable production system for recombinant proteins. Plant 
bioreactors have been estimated to yield over 10 kg of the-
rapeutic protein per acre in tobacco, maize, soybean and al-
falfa (Austin et al. 1994; Khoudi et al. 1999). In comparison 
with conventional bioreactors and mammalian cells or 
microorganisms, the cost of producing a protein under good 
manufacturing practice conditions is reduced to perhaps 
one-tenth (Larrick et al. 2001a; Daniell et al. 2001). 

Genetically engineered plants have many advantages as 
sources of recombinant proteins (Table 1). Depending upon 
the promoters used, the recombinant proteins can accumu-
late throughout the plant, in specific organs (e.g. in seeds) 
or in specific organelles (e.g. chloroplasts) within a plant 
cell. However, considering the high content of protein, 
seeds have been identified as a target for recombinant pro-
tein accumulation (Takaiwa et al. 2007). Expression in 
seeds is ideal because it assures adequate storage properties 
and flexibility in processing management and batch produc-
tion. 

Furthermore, proteins produced in seed exhibit high sta-
bility; for example, enzymes and antibodies expressed in 
seed and stored for more than three years in the refrigerator 
retain full enzymatic or binding activity (Larrick et al. 
2001a). 
 
METHODS FOR GENE TRANSFER INTO PLANTS 
 
There are three main approaches for expression of recombi-
nant proteins in plants: (1) nuclear transformation and rege-
neration of transgenic plant lines; (2) transfer and expres-
sion of transgenes into the chloroplast genome and (3) by 
the use of plant viral vectors (transient expression). Each 
will be examined in turn. 
 
Nuclear transformation 
 
Successful expression of transgenes in plants is possible 
thanks to the unique capability of single plant cells to rege-
nerate into whole plants while keeping all the genetic fea-
tures of the parent plant. In the transgenic plant, foreign 
genes are stably incorporated into the plant genome, trans-
cribed and inherited in a Mendelian fashion (Vain et al. 
2007). In addition, it was found that gene transfer into a 

plant could be mediated by a plant-infecting bacterium, 
Agrobacterium tumefaciens, which is able to transfer DNA 
into the plant genome (Gelvin 2003). Subsequently, ad-
ditional approaches such as microinjection, electroporation 
and microparticle bombardment were developed to deliver 
foreign genes into the plant genome (Vain et al. 2007). 
These procedures are based on the use of purified plasmid 
DNA. 

Microprojectile bombardment or biolistics (direct DNA 
transfer) has been a method for gene transfer into plants 
extensively employed (Altpeter et al. 2005). The method is 
so versatile that multiple genes (>10) coding for complex 
recombinant macromolecules can be transferred simultane-
ously into the plant genome. Interestingly, even though the 
genes may be delivered on different plasmids, such multiple 
transgenes are frequently inherited in a linked fashion 
(Chen et al. 1998). Nicholson et al. (2005) successfully 
introduced four genes coding for components of a secretory 
antibody into rice and approximately 20% of the resulting 
plants contained all four genes. This represents an advan-
tage over alternative gene transfer methods that involve the 
stepwise introduction of individual components, followed 
by successive rounds of crossing to generate plants contain-
ing the fully assembled molecule. 

Direct DNA transfer also allows the introduction into 
plants of minimal expression cassettes containing only the 
promoter, open reading frame and terminator sequences. As 
no vector backbone sequences are transferred, this approach 
increases transgene stability and expression levels consider-
ably by preventing the integration of potentially recombino-
genic sequences (Loc et al. 2002). The described methods 
are applicable to a wide range of species and this explains 
why the majority of plant-derived recombinant pharmaceu-
tical proteins have been produced by nuclear transformation 
and regeneration of transgenic plant lines. 
 
Transient expression 
 
Although nuclear gene transfer is now routine in many 
species, the main disadvantage is the production time-scale, 
which has prompted the development of alternative plant-
based production technologies. One consists in the vacuum 
infiltration of leaves with recombinant A. tumefaciens, re-
sulting in the transient transformation of many cells (Fis-
cher et al. 1999). High levels of protein expression can be 
obtained for a short time but then they decline sharply as a 
result of post-transcriptional gene silencing (Voinnet et al. 
2001). Co-expression inhibitor proteins of gene silencing 
can increase the expression levels of recombinant proteins 
at least 50-fold (Moissiard and Voinnet 2004). Researchers 
at Medicago Inc. have described how agroinfiltration of al-
falfa leaves can be scaled up to 7500 leaves per week, pro-
ducing micrograms of recombinant protein each week (Fis-
cher et al. 2004). 
 
Chloroplast transformation 
 
An alternative approach to express recombinant proteins in 
a stable manner is by gene transfer into the plant chloro-
plasts. Chloroplasts are plant cellular organelles with their 
own genome and transcription-translation machinery. The 
chloroplast genome is a highly polyploid, circular double-
stranded DNA 120 kb to 180 kb in size, encoding approxi-
mately 120 genes (Maliga 2004). Each chloroplast carries a 
number of identical genome copies, which are attached to 
membranes in clusters called nucleoids. A tobacco leaf cell 
may contain 100 chloroplasts, with 10-14 nucleoids each, 
and about 10,000 copies of the genome per cell (Bock and 
Khan 2004). A gene may be introduced into a spacer region 
between the functional genes of the chloroplast by homolo-
gous recombination, targeting the foreign gene to a precise 
location. Gene silencing has not been observed with chloro-
plast transformation, whereas it is a common phenomenon 
with nuclear transformation. Additionally, the presence of 
chaperones and enzymes within the chloroplast may help 

Table 1 Advantages of plant-based oral vaccines. 
Lower cost of raw material for production of recombinant proteins 
Rapid scale-up or down 
Polyvalent vaccines are quite feasible 
Plant cells provide protection for the antigen in the gut 
Raw material easy to store and transport without the need for a cold chain
Reduced concerns over contamination with human pathogens in vaccine 

preparations 
Eliminate syringes and needles and consequently medical assistance for 

administration 
Eliminate concern over blood borne diseases through needle reuse 
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assemble complex multi-subunit recombinant proteins and 
correctly fold proteins containing disulfide bonds, which 
should eliminate expensive in vitro processing of recombi-
nant proteins (Maliga 2004), thereby drastically reducing 
the costs of in vitro processing. Despite such significant 
progress in chloroplast transformation, this technology has 
not been extended to major crops. This obstacle emphasizes 
the need for chloroplast genome sequencing to increase the 
efficiency of transformation and conduct basic research in 
plastid biogenesis and function. 

Chloroplast transformation has been achieved in several 
plant species (for a review see Daniell et al. 2005) such as 
carrot, tomato, Brassica oleracea, petunia, soybean, lettuce, 
the liverwort Marchantia polymorpha and the green algae 
Chlamydomonas reinhardtii, but transformation is routine 
only in tobacco. Plastid transformation in Arabidopsis thali-
ana, Brassica napus and Lesquerella fendleri has been 
achieved but at low efficiency (Bock and Khan 2004). The 
ability to transform the chromoplasts of fruit and vegetable 
crops represent an interesting possibility for the expression 
of subunit vaccines (Ruf et al. 2001). 

There are several advantages of chloroplast transforma-
tion: high-level expression of the recombinant proteins, the 
recombinant proteins will accumulate within the chloroplast 
thus limiting toxicity to the host plant, multiple genes can 
be expressed in operons (Quesada-Vargas et al. 2005) and 
the absence of functional chloroplast DNA in pollen of most 
crops may provide natural transgene containment (Daniell 
2007). Transgene expression in tobacco plastids reprodu-
cibly yields protein levels in the 5% to 20% range, however, 
levels up to 47% of the total soluble protein, can be 
achieved (Daniell et al. 2005). 

Even though there is no protein glycosylation in chrolo-
plasts (Tregoning et al. 2003). The functionality of chloro-
plast-derived antigens and therapeutic proteins has been de-
monstrated by in vitro assays and animal protection studies 
(Koya et al. 2005). 
 
Expression based on plant viruses 
 
Another tobacco transient-expression technology is based 
on the use of plant viruses as expression vectors. Viruses 
can gain entry into a plant cell where they can accumulate 
and then spread throughout the entire plant. They remain in 
the cytoplasm throughout infection and do not incorporate 
into the genome of the susceptible host and, thus, are not 
inherited by the next generation. Several features make 
plant viruses well suited as transient expression vectors: 
high-level expression of the introduced genes (up to 2 g/kg 
of plant tissue) within a short period (1-2 weeks after inocu-
lation), rapid accumulation of the appropriate products and 
the fact that more than one vector can be used in the same 
plant, allowing multimeric proteins to be assembled (Verch 
et al. 1998) with the additional benefit of biological con-
tainment on the viral sequences. Post-transcriptional gene 
silencing, a natural mechanism of defense by the plant 
against viruses, can be avoided by expressing a replicase 
from some inducible promoters (Mori et al. 2001). Plant 
viruses have been used to produce a wide range of pharma-
ceutical proteins, including vaccine candidates and antibo-
dies. Some plant viruses have a wide host range and are 
easily transmissible by mechanical inoculation, spreading 
from plant to plant, making large-scale infections feasible. 

Plant-virus genomes can be composed of DNA or RNA 
but the main virus systems from which efficient expression 
systems are being developed mainly consist of positive-
sense RNA genome, single-stranded DNA geminiviruses 
and double-stranded non-integrating DNA pararetroviruses 
(Porta and Lomonossoff 1996) but RNA viruses can multi-
ply to very high titres in infected plants, which makes them 
better suited vectors for protein expression vectors. For gen-
etic manipulation, viral RNA genomes are reverse trans-
cribed in vitro and cloned as full-length cDNAs. There are 
at least three approaches for insertion of foreign genes into 
plant viral genomes: (1) gene replacement, when non-

essential viral genes, like those coding for coat proteins, are 
replaced by the gene of interest. Since some viruses have 
limitations as to the size of the molecules than can be incor-
porated into their genomes this would be the best strategy. 
(2) gene insertion, where the gene of interest is placed 
under the control of an additional promoter; this approach 
would be advisable where large coding sequences have to 
be expressed and (3) gene fusion, when the gene of interest 
is translationally fused with a viral gene; the use of coat-
protein genes has allowed an efficient method for presenta-
tion of foreign peptide sequences on the surfaces of viral 
particles (Johnson et al. 1997). Even though the coat protein 
of Tobacco mosaic virus (TMV) has been the most utilized 
system for expression of antigenic epitopes, other viruses 
such as Alfalfa mosaic virus, Plum pox virus, Potato virus X 
and Tomato bushy stunt virus have also been extensively 
employed (Johnson et al. 1997). 

One of the reasons for the use of different plant viruses 
was to overcome the apparent size limitation (<1 kb) that 
prevented inclusion of large peptides and inhibited virus as-
sembly (Avesani et al. 2007). However, Werner et al. (2006) 
have recently shown that large inserts (>1 kb) can be fused 
to the coat protein and expressed, provided that suitable lin-
kers are included. Numerous reports have confirmed that 
plant viruses can be effective vectors for expression of anti-
gens and can provide complete protection in challenge trials 
(Dalsgaard et al. 1997). 

Based on the approach described above for gene replace-
ment, Icon Genetics (Halle, Germany) has developed viral 
replicons that can be delivered through infection with Agro-
bacterium, a process termed ‘magnifection’ (Gleba et al. 
2005). Using this system, foreign protein can be transiently 
expressed at up to 80% of total soluble protein, including 
oligomeric proteins (Giritch et al. 2006). 
 
PRODUCTION OF ANTIGENS IN PLANTS 
 
Vaccines, the most effective medical intervention to prevent 
disease, have been based on live, attenuated organisms, 
purified antigens (subunit vaccines) or DNA coding for spe-
cific antigens. Purified antigens are usually delivered at a 
set dose and have constituted a relatively simple and uni-
form material for administration, generally prepared from 
recombinant sources. Considerable progress has been made 
since Charles Arntzen first envisaged the idea of transgenic 
plant vaccines in the early 1990s. There are now a number 
of examples demonstrating the successful expression of 
subunit candidate vaccines both for humans and animals in 
transgenic plants (Table 2). These include antigens from 
bacterial and viral sources that infect humans, domestic or 
wild animals and representing secreted toxins and cell or 
viral surface antigens. 

All along, the main goal has been to attain high levels 
of expression but, usually, levels of expression vary greatly 
depending on the protein expressed and the species of plant 
used to achieve expression. Different approaches have re-
sulted in high levels of expression of several antigens but it 
is difficult to make comparisons since specific antigens 
have rarely been tested in multiple systems. Exceptions in-
clude the subunit B of the cholera toxin and the closely 
related heat-labile enterotoxin from E. coli, which have 
been expressed in multiple plant systems with a range of 
expression from 0.2% up to 12% of total soluble protein 
(Streatfield 2006). High level of antigen expression will, 
likely, result in downstream processing and purification at 
low cost. In the case of the heat-labile enterotoxin from E. 
coli expressed in corn, the plant tissue contained a suffici-
ently high concentration of the antigen such that a 1 mg 
dose, estimated to be the ideal oral dosing, corresponded to 
approximately 2 g of edible tissue (Lamphear et al. 2002). 
A reduction in the amount of material to be consumed is 
anticipated by increasing the yield, because usually, oral 
immunization requires higher doses of antigen than paren-
teral immunizations (Ogra 2003). 
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The importance of virus-like particles 
 
Antigen presentation to the mucosa associated lymphoid tis-
sue is a key element in the response of the mucosal immune 
system (Ogra et al. 2001). One major obstacle in the deve-
lopment of mucosal vaccines is to be able to induce syste-
mic as well as mucosal responses and one way to overcome 
it has been by the use of adjuvants, which can promote the 
generation of antibodies to an antigen following immuniza-
tion. However, many of these adjuvants do not enhance pri-
ming of cytotoxic T lymphocytes (Gilbert 2001). 

Recombinant virus-like particles (VLPs) represent an 
attractive alternative for antigen presentation since they are 
more immunogenic than recombinant proteins alone and are 

able to stimulate both the humoral and cellular arms of the 
immune system (Grgacic and Anderson 2006). These self-
assembling, non-replicating viral core structures consisting 
of one or more viral coat proteins, can act as an adjuvant by 
carrying peptide sequences inside the antigen presenting 
cells and feeding into the endogenous processing pathway 
(Schirmbeck et al. 1995), a phenomenon known as “cross-
priming” (Schwarz et al. 2005). The efficacy of immuni-
zation with VLPs is best illustrated by the success of the 
HBV-like particles produced in Saccharomyces cerevisiae, 
which was the first recombinant vaccine developed (Mac-
lean et al. 1984). 

VLPs are especially interesting from a mucosal vaccine 
point of view as they offer the opportunity to deliver the 

Table 2 Antigens recently expressed in transgenic plants. 
Antigen Plant system Expression levels Reference Protection 

assays 
Yersinia pestis F1, V, and F1-V antigens Nicotiana benthamiana 1 mg/g Santi et al. 2006 Yes 
Yersinia pestis F1 and LcrV antigens Nicotiana benthamiana 120-380 �g/g Mett et al. 2007 Yes 
Cholera toxin B subunit protein Tomato 0.081% Jiang et al. 2007 Yes 
Cholera toxin B subunit protein Rice 30 μg of CTB per seed Nochi et al. 2007 No 
Human secreted alkaline phosphatase Tobacco NT1 cell 27 mg/L Becerra-Arteaga et al. 2006 No 
Major structural protein VP60 of rabbit 

hemorrhagic disease virus 
Potato 0.30% Gil et al. 2006 No 

VP1 protein, an epitope and the coat protein of 
Enterovirus 71 

Tomato N.R. Chen et al. 2006 No 

ApxIIA, a bacterial exotoxin Actinobacillus 
pleuropneumoniae 

Tobacco 0.1% Lee et al. 2006 Yes 

Heat labile enterotoxin from E. coli Soybean 2.4% Moravec et al. 2007 No 
Heat labile enterotoxin from E. coli Lettuce  Kim et al. 2007  
Rotavirus VP7 protein Potato 3.6- 4.0 �g/mg Li et al. 2006a No 
M. tuberculosis ESAT6 antigen Nicotiana benthamiana 800 μg/g Dorokhov et al. 2007 No 
VP1 antigen from foot-and-mouth disease virus Tobacco, alfalfa 2-3% Li et al. 2006b No 
Hepatitis B virus surface antigen Nicotiana benthamiana 7.14% Huang et al. 2006 No 
Tetanus toxin C fragment-specific monoclonal 

antibody fused with the tetanus toxin C fragment 
Tobacco 0.8% Chargelegue et al. 2005 Yes 

Fusion protein of Newcastle disease virus Maize 0.95-3% Guerrero-Andrade et al. 2006 Yes 
Fimbrial FanC from E. coli Soybean 0.08%  Garg et al. 2007 No 
Fimbrial adhesin FaeG from E. coli Potato 1% Liang et al. 2006 No 
Protective antigen of Bacillus anthracis Tobacco 14.2% Koya et al. 2005 Yes 
HIV-Tat Tomato 1 μg/mg dry weigth Peña Ramirez et al. 2007 No 
HIV-ENV and GAG fused to the surface protein 

antigen of hepatitis B virus 
Tomato ~0.3 μg/g Shchelkunov et al. 2006 No 

HPV16 E7 Nicotiana benthamiana 0.4 μg/g Massa et al. 2007 Yes 
Rabies nucleoprotein Tomato 1-5% Perea et al. 2007 Yes 
Rotavirus VP2 and VP6 proteins Tomato 1% Saldaña et al. 2006 No 
AB5 toxin from E. coli Tobacco NT-1 cells 6.5- 8.2 μg/g Wen et al. 2006 Yes 
Fusion protein gene of Newcastle disease virus Potato 0.25-0.55 g/100 g of Yang et al. 2007 No 
Heat-shock protein A from H. pylori Tobacco <1% Zhang et al. 2006a No 
Gal/GalNAc lectin of Entamoeba histolytica Tobacco 6.3% Chebolu and Daniell 2007 No 
Two T-cell protective cancer epitopes Tobacco NR McCormick et al. 2006 Yes 
Multiple T-cell epitopes Rice NR Takaiwa 2007 Yes 
Human serum albumin Tobacco 8% Fernandez-San Millan et al. 2007 No 
Spike protein (S1) of the severe acute respiratory 

syndrome coronavirus 
Tobacco NR Li et al. 2006c No 

Sweet protein monellin Tobacco 2% Roh et al. 2006 No 
Human epidermal growth factor Tobacco NR Wirth et al. 2006 No 
Human alpha-L-iduronidase Tobacco 360 pmol/min/mg Kermode et al. 2007 No 
Core neutralizing epitope of porcine epidemic 

diarrhea virus 
Tobacco (Expression based 
on Tobacco mosaic virus) 

5.0% Kang et al. 2006 No 

15 amino acids of the poliovirus peptide (PVP) Tobacco (Expression based 
on Tobacco mosaic virus) 

0.05% Fujiyama et al. 2006 No 

Hep. B virus core antigen Potato and cowpea 
(Expression base on Potato 
virus X and cowpea Mosaic 
virus) 

10 μg/g Mechtcheriakova et al. 2006 No 

Norwalk 
virus capsid protein 

Tobacco NT1 cell 
(Expression based on Bean 
Yellow Dwarf Virus) 

up to 1.2% 
TSP 

Zhang et al. 2006b No 

Human cytotoxic T-lymphocyte antigen 4-
immunoglobulin 

Rice cell suspension culture 31.4 mg/L Lee et al. 2007 No 

Expression levels are as reported in the literature and indicate percentage of total soluble protein (TSP) unless indicated otherwise. NR, not reported. 
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virus employing the natural route of transmission (Gilbert et 
al. 2001). Oral delivery of VLP has been shown to induce 
both systemic and mucosal IgA responses both to the virus 
particles and to foreign epitopes expressed as chimeric pro-
teins on the VLP surface, without the need for external ad-
juvants (Niikura et al. 2002). VLPs have been produced 
from the capsid or envelope components of a wide variety 
of viruses to study virus assembly and for development of 
vaccines (Grgacic and Anderson 2006). Vaccines from HBV 
and HPV VLPs have been successful, but VLPs from patho-
gens affecting immune cells and those that successfully 
evade the immune system, such as HIV-1 and hepatitis C 
virus have proven to be more challenging. 

Production of properly folded VLPs in plants has been 
extensively reported. In most cases, they have been shown 
to mimic the immunological properties of native VLPs and 
stimulate antibody and T cell responses in mice (Santi et al. 
2006). Antigens having the ability to assemble into VLPs 
have been generally employed such as the surface (Sunil 
Kumar et al. 2003; Shchelkunov et al. 2006) and core anti-
gens of Hepatitis B virus (Huang et al. 2006), the capsid 
protein of Norwalk Virus (Huang et al. 2005), the L1 pro-
tein of human papillomavirus (Maclean et al. 2007), the 
haemagglutinin/neuraminidase of paramyxoviruses (Guer-
rero-Andrade et al. 2006), two capsid proteins from rota-
virus (Saldaña et al. 2006) and chimeric HIV (ENV and 
GAG). In fact Hepatitis B VLPs have been successfully ob-
tained in a variety of plants using the surface antigen (Ku-
mar et al. 2007). Many of these antigens as well as several 
capsid or core proteins from various plant viruses have also 
been employed as carriers to express a wide variety of anti-
genic peptides. However, not all antigens may form VLPs 
in plants. The hepatitis E virus capsid protein, which as-
semblies readily into VLPs in a baculovirus system, did not 
assembly adequately into VLPs in potato and this lead to a 
failure to elicit detectable antibodies in mice serum (Malo-
ney et al. 2005). Clearly formation of VLPs is essential for 
immune recognition. 

Chimeric VLPs offer enormous potential in specific, 
multi-epitope presentation but their success will be depen-
dent on a judicious selection of the most relevant epitopes 
for vaccine efficacy. Although research has mainly focused 
on oral delivery of minimally processed plant material, 
purification of VLPs for parenteral delivery is also a highly 
realistic approach. 
 
Human clinical trials with oral plant-based 
vaccines 
 
The functionality of plant-based antigens has been tested in 
a number of experiments in mice and other animals. In the 
vast majority of the cases, plant-based antigens have been 
able to elicit a strong immune response and to confer pro-
tection against challenge with the pathogen. These results 
have paved the way for several clinical trials aimed to as-
sessing human immune responses to plant-produced recom-
binant proteins. So far, three plant-produced antigens have 
been tested in Phase I human clinical trials, the heat-labile 
enterotoxin from E. coli, the capsid protein from Norwalk 
virus and the surface antigen from the Hepatitis B virus. 

The heat-labile enterotoxin from E. coli has been tested 
twice in human clinical trials, in the first trial, 14 adult vol-
unteers ingested three doses of transgenic potatoes (contain-
ing 3.7-15.7 μg/g of antigen) or control wild-type potato. 
Serum antibody responses were detected in 10 out of the 11 
volunteers and eight out of the 11 developed neutralization 
titers of more than 1:100 (Tacket et al. 1998). This trial was 
the proof-of-principle that humans could develop serum and 
mucosal immune response to antigen delivered in trans-
genic plants. Recently, the same antigen was delivered to 
volunteers in transgenic corn with seven out of the nine 
volunteers developing increases in serum IgG and four of 
the volunteers also developing stool IgA (Tacket et al. 2004). 

In another trial, 20 human volunteers ate two or three 
doses of transgenic potatoes expressing 215-751 μg of the 

Norwalk virus capsid protein (Tacket et al. 2000). Out of 
the 20 volunteers, 19 developed significant increases in the 
numbers of specific IgA antibody-secreting cells, four deve-
loped serum IgG and six developed specific stool IgA, al-
though the levels of serum antibody were not high. This 
variation in immune response was probably due to the in-
consistent assembly of the antigen into virus-like particles 
and to the possible presence of pre-existing antibodies to 
the antigen, which might have had an effect. 

The surface antigen from the Hepatitis B virus was uti-
lized in a randomized, placebo-controlled, double-blind trial 
conducted in volunteers previously immunized, 1-15 years 
earlier, with the licensed hepatitis B vaccine (Thanavala et 
al. 2005). A total of 42 subjects were enrolled in the study 
and received either three doses of placebo potatoes or trans-
genic potatoes (two or three doses). None of the volunteers 
who ingested control potatoes had any change in their anti-
body titers during the study. On the other hand, 63% of vol-
unteers (10 out of 16) who consumed three doses of HBs 
Ag-containing transgenic potatoes showed marked increa-
ses in antibody titers compared with titers at day 0 (Thana-
vala et al. 2005). Thus, an antigen from a nonenteric patho-
gen, was capable to elicit a immune response with no buf-
fering of stomach pH and without the presence of a mucosal 
adjuvant. The same antigen had been expressed in lettuce 
and fed to three seronegative volunteers (Kapusta et al. 
1999). The volunteers received about 0.2-1 μg of antigen in 
a 200 g dose of lettuce. In comparison, the commercial 
Hepatitis B vaccine contains 10 μg of antigen per adult dose 
(Tacket 2004). Two of the three volunteers produced short-
lived anti-HBs antibody titers, which were detectable 2 
weeks after the second immunization and were no longer 
detectable after the additional 2 weeks. 

Mucosal immunologists recognize that the heat-labile 
enterotoxin from E. coli and its relative the B subunit of 
cholera toxin are particular antigens with highly immuno-
genic properties. The fact that two different antigens were 
also immunogenic in humans after oral administration was 
rather encouraging. 
 
PRODUCTION OF BIOPHARMACEUTICAL 
PROTEINS IN PLANTS 
 
The large demand for many pharmaceutical proteins poses a 
burden on any transgenic production system to meet the de-
mand. Transgenic plants could be rapidly scaled up to field 
scale cultivation. For example, the worldwide demand for 
human serum albumin (about 550 metric tons per year) 
could be met by 30,000 hectares of land (assuming an ex-
pression level of 1% TSP in tobacco), which is less than one 
thousandth of the total cultivated soil in the USA (Fischer 
and Emans 2000). On the other hand, transgenic animals are 
limited by the time needed to raise a herd of animals 
producing the recombinant protein. 

A number of proteins of pharmaceutical and industrial 
importance have been produced in transgenic plants, inclu-
ding glucocerebrosidase and granulocyte–macrophage co-
lony stimulating factor two of the world’s most expensive 
drugs (Giddings et al. 2000). 

Various proteins of industrial interest such as the human 
milk proteins lactoferrin (Chong et al. 2000) and �-casein 
(Philip et al. 2001) have been produced in transgenic plants 
to be employed as a supplement for infant formulas to en-
hance nutrition, digestibility and antimicrobial properties. 

Recently, tobacco was modified with the human col-
lagen I gene pro1�(I) (Ruggiero et al. 2000). Collagens are 
very important molecules employed in the cosmetics, medi-
cal and food industries. They are generally extracted from 
animal tissues and may represent a contamination risk if the 
tissue is infected. Several expression systems have been de-
veloped that produce procollagens, but these have to be 
chemically modified ex vivo to produce mature collagens 
(Ruggiero et al. 2000). The procollagen produced in tobac-
co cells was spontaneously processed into mature collagen 
during extraction, which represented a significant advantage 
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for large-scale, low-cost production of collagen. 
Plants are also being increasingly seen as a source for 

biofuels, a highly controversial approach, of which metha-
nol is currently the most popular (Wyman 2007). There 
have been several biodegradable polymers such as poly-
hydroxyalkanoates as well as a protein-based polymers pro-
duced in tobacco (Poirier 1999). One of them is a polymer 
similar to elastin, one of the strongest natural fibres (Guda 
et al. 2000). These polymers might be used as transducers, 
super-absorbents and biodegradable plastics, or in various 
medical applications such as tissue reconstruction surgery 
(Staub et al. 2000). 

There are a number of proteins with important roles in 
the stimulation or modulation of the immune responses 
such as cytokines, chemokines, etc. Many of these com-
pounds have been synthesized successfully in plants such as 
the human granulocyte-macrophage colony-stimulating fac-
tor (Lee et al. 1997), human interferon � and � (Kusnadi et 
al. 1997), interleukin 12 both human (Gutierrez-Ortega et al. 
2004) and murine (Gutierrez-Ortega et al. 2005), etc. Simi-
larly, some human hormones such as the growth hormone 

(Leite et al. 2000), erythropoietin (Cramer et al. 1996) and 
insulin (Arakawa et al. 1998) have been produced in plants. 

One area where plant-based recombinant proteins are 
having a dramatic impact is in the area of diagnostics rea-
gents and avidin is a case study. Avidin is normally found in 
egg white, from which it is purified. The cDNA was ex-
pressed in maize and could be reproducibly produced at 230 
mg per kg of maize seed, which was, in the authors’ esti-
mation, 10-fold less expensive than avidin extracted from 
eggs (Hood et al. 1997). The maize avidin is fully func-
tional and now commercially available (Sigma-Aldrich pro-
duct #A8706). Similarly, plant-based �-glucuronidase and 
aprotinin are now also commercially available (Witcher et 
al. 1998; Zhong et al. 1999). It is estimated that the costs of 
producing aprotinin in plants are comparable with extrac-
ting it from its natural source, bovine lung. 
 
PRODUCTION OF ANTIBODIES IN PLANTS 
(PLANTIBODIES) 
 
Antibodies were the first bioactive molecules expressed in 
transgenic plants (Hiatt et al. 1989). Since then, numerous 
antibodies have been produced in a variety of plants, and 
expressed in different tissues and different sub-cellular 
compartments. This is not surprising, considering the wide 
range of uses for antibodies in the diagnostic, industrial, 
medical and research fields. 

Plants were first envisaged as systems to produce anti-
bodies for one reason: cost. Transgenic plants represent the 
most productive and economical system for making recom-
binant antibodies (Wycoff 2005). The cost of producing 
monoclonal antibodies in plants is significantly less than by 
traditional fermentation methods. Smith and Glick (2000) 
have made an estimate that assuming a best-case yield of 
two grams of recoverable protein/L of bacteria, the mini-
mum cost of production (assuming $2/L for the growth 
medium and purification costs) would be approximately 
$1000/kg, not including salaries. Since multimeric proteins, 
such as antibodies, are assembled with very low efficiency 
in bacteria, the yield could be much lower which would 
have a direct impact on costs. It is not surprising, then, that 
the cost of antibodies produced using traditional microbial 
fermentation can be as high as $1000/g (Potera 1999). Pro-
duction in plants is expected to reduce the cost of antibodies 
dramatically. The land, infrastructure, and expertise neces-
sary for harvesting and processing large volumes of plant 
material already exist, which would result in drastically re-
duced capital costs. 

The costs of producing an IgG from alfalfa grown in a 
250 m2 greenhouse are estimated to be within US$500-
600/g, compared with US$5000 per gram for the hybridoma 
produced antibody (Khoudi et al. 1999). In another study, 
the cost of producing one gram of purified IgA in plants 
was estimated to be well below US$50/g, which compares 

favorably with the costs of cell culture (US$1000/g) or 
transgenic animal production systems (US$100/g) (Larrick 
et al. 2001b). 

Corn has been the system of choice for production of 
many recombinant proteins including antibodies. The main 
reason is the high protein content of the corn kernel, which 
accounts for approximately 10% of the dry weight. Even if 
the antibodies accounted for only 0.5% of the total grain 
protein, it would cost less than US$200 to produce one kilo-
gram of antibody in corn kernels. However, it has already 
been shown that corn can produce recombinant proteins up 
to 5.7% of the total protein (Kusnadi et al. 1998). An ad-
ditional advantage is that plantibody production could be 
scaled up or down depending on the demand by increasing 
or decreasing the acreage of the antibody-producing plants. 
Plant-produced antibodies are predicted to cost as little as 
$10–100/g, approximately 10-100 times less expensive than 
antibodies produced in bacteria (Potera 1999). 

In all likelihood, the biggest component of cost of anti-
bodies will be purification. In theory, purification of planti-
bodies should be straightforward, using standard procedures. 
Protein degradation that may occur during extraction can be 
minimized by the addition of protein stabilizers and protein-
ase inhibitors, although proteolysis in planta represents a 
challenge (Sharp and Doran 2001). Stevens et al. (2000) 
had suggested that proteolytic degradation in leaves is, in 
part, linked to the natural process of senescence. This indi-
cates that the physiological state of the plant may have an 
impact on antibody integrity. 

On the other hand, it is conceivable that for some uses 
the plantibody would not even need to be purified. Delivery 
of the antibody could be achieved by direct consumption of 
the plant tissue containing the plantibody (Ma and Hein 
1995). This is very important from the standpoint of safety 
as plants do not serve as hosts for human viruses or prions, 
unlike hybridomas. 

There are no plantibodies yet in commercial production, 
however there are several candidates that are potentially 
useful as human therapeutics. The most advanced is a chime-
ric secretory IgG–IgA antibody called CaroRxTM, against a 
surface antigen of Streptococcus mutans, the bacteria that 
causes tooth decay, which prevents it from binding to teeth, 
thereby reducing cavities (Ma et al. 1998). Unexpectedly, 
application protects from recolonization and this may last 
for up to 2 years, although the antibody was applied for 
only 3 weeks and functional antibody was detected on the 
teeth for only 3 days following the final application of the 
antibody. This antibody has reached a pilot Phase II trial. 
Phase I/II confirmatory clinical trials are underway. 

Another antibody, a humanized anti-herpes-simplex 
virus (HSV) antibody prepared in soybean, was effective in 
the prevention of vaginal HSV-2 transmission in mouse 
(Zeitlin et al. 1998). A third antibody was developed in rice 
and wheat against a carcinoembryonic antigen (Stoger et al. 
2000). This antigen, a cell-surface glycoprotein, is one of 
the best-characterized tumor-associated antigens and anti-
bodies against it are usually employed for diagnostic and 
therapy. Levels of the antibody in seeds did not show a sig-
nificant decline after storage at room temperature for six 
months (Stoger et al. 2000). 

Finally, a tumor-specific vaccine was prepared in to-
bacco for the treatment of lymphoma using a modified plant 
virus (Savelyeva et al. 2001). The antibody genes for ex-
pression of an scFv were derived from a mouse B-cell lym-
phoma. Mice were immunized with the plant-produced 
scFv and anti-idiotypic antibodies (antibodies against the 
binding portion of the antibody) were generated. The mice 
were protected against infection by the lymphoma that pro-
duced the original antibody (Savelyeva et al. 2001). 

Plant viral vectors have also been employed to produce 
therapeutically useful antibodies in plants, including an 
antibody against the colorectal cancer-associated antigen 
GA733-2 (Verch et al. 1998), which upon immunization in 
mice elicited a comparable humoral response to that using 
antigen produced in insect cell culture (Verch et al. 2004). 
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Although plant antibodies are normally found to be 
properly folded and functional (Ma and Hein 1995), differ-
ential glycosylation by the plant still remains a major con-
straint for applications in human healthcare. There is still 
concern over the potential immunogenicity of plant-specific 
complex N-glycans, which are present on the heavy chain 
of plant-derived antibodies (see section 8). There have been 
several approaches to prevent addition of complex N-gly-
cans to recombinant antibodies when glycosylation-depen-
dent effector functions are not needed. One approach is the 
removal of peptide recognition sequences for N-glycosyla-
tion; Another is the addition of a ER retention C-terminal 
(KDEL in amino acid code) sequence which avoids Golgi-
mediated modifications (Stoger et al. 2002). A final ap-
proach is the humanization of plant glycans, and to this end, 
human �-1,4-galactosyltransferase was stably expressed in 
tobacco plants which were crossed with plants expressing a 
murine antibody which resulted in a plantibody with par-
tially galactosylated N-glycans (Bakker et al. 2001). Inter-
estingly, the glycosylation profile of endogenous proteins 
and of a recombinant immunoglobulin in tobacco leaves 
also seems to be affected by senescence (Stevens et al. 
2000). 

Recently a novel strategy was reported involving the 
plant-based production of a fusion molecule of an antigen 
and the corresponding antibody (Obregon et al. 2006). The 
HIV HIV-p24 antigen was expressed as a genetic fusion 
with two constant region sequences from human Ig��-chain 
and targeted to the endomembrane system. This allowed to 
increase the expression approximately 13-fold higher than 
with HIV p24 expressed alone and to enhance the immuno-
logical properties. The fusion elicited T-cell and antibody 
responses in immunized mice (Obregon et al. 2006). 
 
ISSUES REGARDING PROTEIN PRODUCTION IN 
PLANTS 
 
Even though plant-based compounds present a number of 
benefits, some potential issues of concern have been iden-
tified. These issues differ depending on whether the vaccine 
candidate is to be purified from plant tissues prior to formu-
lation and delivery or whether it is to be administered orally 
as recombinant plant material. 
 
Downprocessing 
 
If purification is involved there are several approaches that 
could be implemented; One is to engineer the protein, to be 
secreted into the culture medium. Secretion systems are 
convenient because no disruption of plant cells is necessary 
during protein recovery, hence, release of phenolic com-
pounds is avoided. Nevertheless, the recombinant proteins 
might be unstable in the culture medium. Another approach 
is the use of affinity tags to facilitate the recovery of pro-
teins as long as long as the tag be removed after purification 
to restore the native structure of the protein. In either case, 
good manufacturing practices will be needed and possible 
lot-to-lot variability will need to be closely monitored. By 
contrast, if the recombinant antigen is to be delivered in a 
processed plant product as an oral vaccine, production 
would be based on food processing technology rather than 
protein purification schemes, but good manufacturing prac-
tices will still apply. 

Consistency of product (homogeneity) is very important 
for plant-based vaccines as well as for purified antigens. 
Therefore, rather than administering whole plant organs 
(fruits, or grains) directly, as it was originally envisaged, it 
may be better to process the plant material into a uniform 
state and to be stable to the food processing technology. 
This has been assessed using recombinant corn expressing 
the B subunit of the heat labile toxin, and the antigen has 
been shown to be stable to milling and modified extrusion 
conditions and to be evenly distributed in the products 
(Streatfield 2006). This will be very important is the pro-
duct is to be combined with non-transgenic material or with 

transgenic material expressing different antigens, or even 
protein adjuvants, for even dosing. 

Stability of antigens over time in processed food pro-
ducts stored at different temperatures will also need to be 
assessed. The B subunit of the heat labile toxin and the S 
glycoprotein of transmissible gastroenteritis virus have been 
shown to be stable for at least a year, even when stored at 
ambient temperatures (Lamphear et al. 2002). This empha-
sizes the redundancy of a cold chain during storage and dis-
tribution of plant-based products. This feature is particularly 
important in poor countries with limited resources to pro-
vide a cold chain and the equipment and personnel needed 
for injections. The low cost of plant-based vaccines make 
them ideal for large-scale programs in poor countries. 
 
Oral tolerance 
 
Since oral tolerance is the usual result when the mucosal 
system encounters food proteins, there is some concern that 
oral tolerance may be induced by consumption of the re-
combinant protein contained in a transgenic plant. Although 
the mechanisms of oral tolerance remain unclear, it is likely 
that this concern is more relevant for pathogens transmitted 
by the parenteral route (for instance Hepatitis B and mala-
ria) than pathogens whose natural route of transmission is 
via the gastrointestinal tract (Tacket 2004). Immune toler-
ance to parenterally administered proteins can occur after 
multiple small oral doses of the protein (Tacket 2004), 
therefore it is unlikely that oral vaccination with plant-
based antigens would result in tolerance to parenterally ad-
ministered protein since the number of doses of the oral 
vaccine would be very small. As the Phase I studies have 
demonstrated, the plant-based antigen is recognized and 
processed as an antigen and elicits an immune response. 
The possibility of incorporating mucosal adjuvants may 
considerably improve the immune response (Lavelle and 
O’Hagan 2006). 
 
Glycosylation 
 
Since the general eukaryotic protein synthesis pathway is 
conserved between plants and animals, folding and assem-
bly, as well as transfer of an oligosaccharide precursor to N-
glycosylation sites can be correctly accomplished in trans-
genic plant systems (Rayon et al. 1998). However, addition 
of plant-specific residues �-1,3-fucose and �-1,2-xylose, 
might pose problems for the production of fully functional 
therapeutic proteins, even though this may not seem not to 
occur with all plant-based recombinant proteins (Sriraman 
et al. 2004). 

Both full-sized antibodies and various functional anti-
body derivatives have been produced successfully in plants, 
including Fab fragments, scFvs, bispecific scFvs, single 
domain antibodies and antibody fusion proteins. Some stu-
dies have shown that while there were some differences in 
the glycan groups present on plant-based recombinant anti-
bodies, neither the antibody nor the glycans were immuno-
genic (Balen and Krsnik-Rasol 2007). In an elegant study, 
Chargelegue et al. (2005) tested the immunogenic effect in 
mice of plant glycans of transgenic murine monoclonal IgG 
antibodies and horseradish peroxidase. Because the same 
mouse strain was used for generating the original mAb, the 
study specifically compared the immunogenicity of a self-
protein and a plant protein displaying foreign plant glycans, 
with the self-protein displaying mammalian glycans. En-
couragingly, the plant glycans of both the self and foreign 
(horseradish peroxidase) proteins were poorly immunogenic 
even when parenterally administered with alum adjuvant. 
 
Boosting levels of expression 
 
Production costs are the key issues for recombinant protein 
production and they include the generation, growing and 
harvesting of the recombinant material and downstream 
processing and purification, which tend to increase with tis-
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sue complexity. If the recombinant product is obtained in 
high levels, the amounts of biomass required and the pro-
cessing and purification of the product can be greatly re-
duced. Thus, the achievement of high expression levels is a 
major goal in all systems. Expression levels for several pro-
teins are already sufficiently high for economic production 
but further improvements in expression are necessary 
before other vaccine candidates can be considered practical. 
Several strategies have been developed to increase the 
levels of recombinant proteins and they have focused on 
transcription, transcript stability and translation. To this end, 
strong, tissue-specific promoters, matrix attachment regions, 
plant or viral 5� non-translated regions, plant intron sequen-
ces, codon-optimization, removal of predicted mRNA sec-
ondary structures that might hinder translation and fusion to 
proteins that have been shown to be stably expressed at 
high levels in plants, have all been employed to enhance the 
levels of expression (Streatfield 2007). Probably stacking of 
several of the available tools discussed above will probably 
be required to produce commercial products, although this 
can be limited by access to the necessary intellectual pro-
perty (IP). This is an issue that sooner or later will have to 
be resolved. However, when implementing new strategies 
and combining currently available approaches, care must be 
taken to minimize potential negative influences, in particu-
lar gene silencing (Yu et al. 2003). 
 
Commercial aspects 
 
Considering that a wide variety of recombinant proteins can 
be produced in a safe and inexpensive manner, it comes as 
no surprise the interest that the technology has generated 
from a commercial standpoint. Several companies have 
been founded based on this technology and others are ac-
tively engaged investigating the potential. There are already 
on the market several plant-produced proteins employed in 
the area of diagnostics (Witcher et al. 1998; Zhong et al. 
1999) including one at large scale (Hood et al. 1997). Seve-
ral plant-derived recombinant pharmaceutical proteins are 
reaching the final stages of clinical evaluation, and more are 
in the development pipeline. However, there is some regula-
tory uncertainty, particularly for proteins requiring approval 
for human use (Kirk and Webb 2005). It is important that 
these regulatory issues be resolved before pursuing product 
licensure. So far, only one plant-derived vaccine targeting a 
viral disease of poultry has reached licensure (Dow Agro-
sciences, USA). Although vaccines intended for use in 
humans will probably require a more laborious path to li-
censure, this milestone establishes a credible foothold for 
plant-derived vaccines (Thanavala et al. 2006). 
 
FUTURE PROSPECTS 
 
Plants as bioreactors for the production of foreign proteins 
in plants with a view to commercial production have at-
tracted considerable attention over the past decade. Even 
though only a few products have reached the market so far, 
there are more approaching commercialization, after meet-
ing the technological challenges and clearing the regulatory 
hurdles. In the short term, enzymes for large-scale industrial 
processes and antigens for oral animal vaccines are the most 
likely plant-expressed products to be commercially viable 
as the first ever licensure of a plant-derived vaccine target-
ing a viral disease of poultry described before has con-
firmed. Attention will be required to ensure correct post-
translational processing and protein stability in plant tissues. 
Advances are required to boost expression further and 
stacking of many of the available tools discussed above will 
probably be required to produce commercial products. 

As with all biotechnological developments, the techno-
logy for plant-derived vaccines has been patented in indus-
trialized countries. Poor countries, which usually have a 
high disease burden, often have poor or inexistent IP protec-
tion rules and lack of adequate knowledge and infrastruc-
ture to protect and commercialize a biotechnological pro-

duct. It has been postulated that plant-derived vaccines may 
be approved in an industrialized country and then be more 
broadly used in poor countries (Thanavala et al. 2006). It 
remains to be seen how this approach would be implemen-
ted. 

In many reviews and articles on plant made-pharma-
ceuticals a point is made about the need (some authors have 
even called it a ¨moral imperative¨ (Ma et al. 2005) to pro-
vide low-cost medicines and vaccines to poor countries. 
This need is used as an important justification for the deve-
lopment of plant-based vaccines. Plant-based pharmaceu-
ticals may offer a new model for vaccine development, 
which may allow a wider participation, beyond the well-
established multinational pharmaceutical companies (Ma et 
al. 2005). Poor countries would potentially be involved, al-
though it is still not well defined how, and the focus could 
be on specific regional diseases that do not feature in cur-
rent drug development programs. It is hoped that this tech-
nology will eventually help those who needed it the most 
and that the issue of IP does not represent an insurmoun-
table obstacle. Putting the collective benefit ahead of the 
personal gains, will be the key for the full realization of this 
technology. 
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