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ABSTRACT 
Transformation systems are now available for all six of the main economic Brassica species; with a wealth of introduced traits reported 
(reviewed in Cardoza and Stewart 2004; Christey et al. in press). Agrobacterium-mediated transformation remains the method of choice 
for Brassica, yet despite the significant progress in enhancing efficiencies some genotypes remain recalcitrant to transformation. Recent 
advances in our understanding of the genetics behind transformation have enabled researchers to identify more readily transformable 
genotypes for use in routine high-throughput systems. These developments open up exciting new avenues to use model Brassica 
genotypes as powerful research tools for understanding gene function in complex genomes. In this paper advances in Brassica 
transformation methodologies and applications are reviewed. 
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INTRODUCTION 
 
The Brassica genus belongs to the family Brassicaceae and 
includes a group of six inter-related species of worldwide 
economic importance. Brassica rapa (genome AA, 2n = 20) 
is used both as a vegetable crop (turnip, Chinese cabbage) 
and as an oil crop (turnip rape). B. nigra (BB, 2n = 16) is 
grown as a condiment (black mustard) and B. oleracea (CC, 
2n = 18) contains numerous vegetable crops with a wide 
range of different morphologies including cabbage, cauli-
flower, kale, broccoli and Brussels sprouts. The hybrids B. 
juncea (AABB, 2n = 36, brown mustard) and B. napus 
(AACC, 2n = 38, oilseed rape) are important oilseed crops 
and B. carinata (BBCC, 2n = 34) is grown in Ethiopia as 
both a vegetable and oil crop (Ethiopian/Abyssinian mus-

tard). 
The diverse array of vegetable and oilseed crops out-

lined above has been the result of years of hybridization 
between and within the Brassica species, accompanied by 
intense selection for different morphologies. The applica-
tion of conventional breeding has led to the development of 
many superior cultivars within this genus. With increasing 
knowledge of the function of genes, and the development of 
techniques for plant transformation, the potential for further 
improvement of these species is considerable. To date, gen-
etically modified (GM) B. napus is the only Brassica spe-
cies to gain commercial regulatory approval; with herbicide 
tolerant B. napus being the fourth most planted GM crop in 
2006 (James 2006). Another ‘first generation’ trait to be in-
troduced into vegetable Brassicas is Bacillus thuringiensis 
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(Bt) resistance to alleviate insect attack. This work is being 
carried out by numerous groups, at both the contained and 
field trial stages e.g. the ‘Collaboration on Insect Manage-
ment for Brassicas in Asia and Africa (CIMBAA) (http:// 
www.cimbaa.org/); while field trials of Bt cabbage, cauli-
flower, broccoli and forage kale are currently being conduc-
ted in New Zealand (www.ermanz.govt.nz). 

However, poor public perception of GM technology 
continues to hinder advancement.  In the developed world 
it is likely to be the ‘next generation traits,’ offering in-
creased nutritional and health benefits to the consumers that 
will potentially help gain better public acceptance of this 
technology. Brassica transformation is now being used not 
only to introduce commercially attractive agronomic traits 
into elite cultivars, but is increasingly being exploited as a 
powerful research tool to test gene function. 

Despite the considerable advances in methodologies the 
routine transformation of Brassica is still hindered by geno-
type restrictions, with some genotypes remaining recalci-
trant to transformation. Recent advances in our understan-
ding of the genetics behind transformation have enabled 
researchers to develop simple screening methods to identify 
more readily transformable genotypes for use in routine 
high-throughput systems for testing gene function (Sparrow 
et al. 2004a, 2006a). However, routine high-throughput 
transformation is still likely to be limited to a number of 
key genotypes e.g. Westar is a commonly reported Spring 
variety for B. napus transformation (Moloney et al. 1989; 
Cardoza and Stewart 2006). 

There may however be occasions when a particular 
genotype needs to be transformed and where only a few 
transgenic plants are required. Under these circumstances, a 
high transformation efficiency is less critical. Lessons can 
be learnt from the range of published papers that have ad-
ded to our knowledge of tissue culture conditions favoured 
by different Brassica genotypes and species. In this paper 
we will review the advances made to Brassica transforma-
tion methods and discuss how this technology can be fur-
ther exploited to better understand gene function. 
 
TRANSFORMATION METHODS 
 
The first reports of successful transformation emerged in 
the late 1980’s / early 90’s for all six of the major econo-
mically important Brassica species (B. juncea (Barfield and 
Pua 1991), B. napus (Moloney et al. 1989), B. rapa (Radke 
et al. 1992), B. oleracea (de Block et al. 1989), B. nigra 
(Gupta et al. 1993) and B. carinata (Narasimhulu et al. 
1992). Several publications followed, reporting improve-
ments and developments to culture conditions and the use 
of reporter genes to determine transformation efficiencies 
(discussed later). The first major reviews of Brassica trans-
formation were published more than 10 years ago (Pudde-
phat et al. 1996; Poulsen et al. 1996). In these reviews the 
basic methodologies were evaluated; use of Agrobacterium-
mediated transformation (both A. tumefaciens, A. rhizoge-
nes), biolistics and PEG-mediated transformation. They 
highlighted the species, genotype and explant-dependent 
nature of Brassica transformation success and reviewed the 
range of Agrobacterium strains; selectable markers and re-
porter genes, and possible clean gene technologies that 
could be employed. Since these reviews were published fur-
ther advances have been reported leading to increased trans-
formation efficiencies and the introduction of trait genes. 
These developments are outlined below. 
 
Agrobacterium-mediated methods 
 
Agrobacterium-mediated transformation still remains the 
favoured delivery approach for the introduction of trans-
genes into most dicotyledonous plant species, as well as an 
expanding range of monocots (Smith and Hood 1995; Opa-
bode 2006). Two Agrobacterium species (A. tumefaciens 
and A. rhizogenes) have been widely exploited to transform 
a vast array of plant species. Both approaches involve the 

transfer and incorporation of T-DNA from an engineered 
plasmid, previously introduced into the Agrobacterium, into 
a host plant cell. Early research to improve plant transfor-
mation efficiencies focused on screening a range of Agro-
bacterium strains against plant genotypes of interest (see 
section Bacterial strains and plasmids). It subsequently be-
came clear that susceptibility to Agrobacterium was highly 
genotype dependent, and thus critical for transformation 
success. The target then moved to screening Brassica popu-
lations to identify genotypes susceptible to these virulent 
strains (Sparrow et al. 2004a, 2004b; Zhang and Bhalla 
2004; Sparrow et al. 2006a). 
 
The genetic basis behind Agrobacterium 
susceptibility 
 
Knowledge of the genetics behind the attraction, attachment, 
and transfer of genes from Agrobacterium into a host cell 
has also developed over recent years (Gelvin et al. 2003; 
Tzfira and Citovsky 2003), with an increased understanding 
of both the bacterial and plant genes involved in the transfer 
of T-DNA. Genetic variation for in vivo A. tumefaciens sus-
ceptibility has been observed in a wide range of plant spe-
cies including Prunus (Bliss et al. 1999), soybean (Bailey et 
al. 1994; Mauro et al. 1995) and grape (Vitis sp.) (Szegedi 
and Kozma 1984). In B. oleracea, mapping populations 
have been screened and quantitative trait loci (QTL) associ-
ated with susceptibility to A. rhizogenes and A. tumefaciens 
identified (Cogan et al. 2004; Sparrow et al. 2004b). 
Screening substitution lines associated with these mapping 
populations confirmed the significance of these QTL and 
also demonstrated that susceptibility to Agrobacterium was 
a heritable trait and could be introduced into recalcitrant 
lines. Crossing genotypes with low Agrobacterium suscepti-
bility to genotypes with high susceptibility resulted in an 
intermediate response in the hybrid plants (Sparrow et al. 
2004b). 
 
A. rhizogenes 
 
A. rhizogenes is a soil bacterium responsible for the deve-
lopment of hairy root disease of dicotyledonous plants. In 
its modified form it has been used to transform over 79 
plant species (reviewed in Christey 2001). It has been suc-
cessfully used to transform Brassica where the focus has 
been on B. oleracea and B. napus (Christey and Sinclair 
1992; David and Temp 1988; Puddephat et al. 2001). Over-
all, transformation rates were low, but in some cases, trans-
genic Brassicas were more efficiently obtained via A. rhizo-
genes-mediated transformation than A. tumefaciens (Chris-
tey et al. 1997). The main disadvantage of using A. rhizo-
genes was rol genes were often transferred and expressed in 
plants regenerated from hairy roots, often exhibiting an as-
sociated altered phenotype, such as wrinkled leaves, shor-
tened internodes, reduced fertility and plagiotropic roots. 
However, these traits often segregated in the next genera-
tion facilitating the recovery of normal transgenic plants 
(Christey et al. 1999; Puddephat et al. 2001). 
 
A. tumefaciens 
 
The favoured Agrobacterium-based transformation systems 
use A. tumefaciens (Fig. 1). The simplest approaches are 
those described by Moloney et al. (1989) for B. napus cv. 
‘Westar’ (efficiency 55%); Babic et al. (1998) for B. cari-
nata breeding line C90-1163 (efficiency 30-50%); and 
Sparrow et al. (2004a, 2006b) for B. oleracea genotype 
AGDH 1012 (efficiency 15-25 %; see also www.bract.org 
for a tutorial guide to this method). All these methods use 
cotyledonary petioles dipped into a suspension of A. tume-
faciens and co-cultivated for 72 hours on selection free 
media, before transferring to a basic MS basal medium sup-
plemented with between 2 and 4 mg/l 6-benzyl-aminopu-
rine (BAP). Explants are then subcultured to fresh media 
after approximately 3 weeks. Emerging shoots are isolated 
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and rooted on a hormone-free medium. 
Hypocotyl methods have also been applied to B. napus 

at a reported efficiency of 25% (for an updated method see 
Stewart et al. 2006) and B. juncea with an efficiency of 
16%1 (Gasic and Korban 2006). These approaches use ei-
ther pre-cultured hypocotyl segments (following a short cal-
                                                   
1 N.B. The efficiencies reported in this section are based either on the 
percentage of explants giving rise to viable transgenic shoots, or the 
percentage explants giving rise to transgenic rooted plants. All methods 
successfully generated fertile transgenic plants. 

lus induction period) or newly isolated hypocotyl segments, 
emersed in a suspension of A. tumefaciens for 30-60 min-
utes. Explants are then washed and transferred to co-culti-
vation medium for 48 hours, before transferring to selection 
medium. Both methods employ different media for callus 
induction, shoot induction, shoot elongation and rooting sta-
ges (see also section Shoot regeneration). 

Brassica rapa remains the most recalcitrant of the Bras-
sica species to transform. However, a limited number of 
successes have been reported; Radke et al. (1992) using 
hypocotyl sections; Zang et al. (2000) and Wahlroos et al. 

Fig. 1 General overview of Agrobacterium-mediated transformation. 
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(2003) using cotyledonary petioles; Yang et al. unpublished, 
using cotyledonary leaf sections (as described in the rege-
neration paper Yang et al. 2004); Kuvshinov et al. 1999 
using internodes from glasshouse grown B. rapa; and Agro-
bacterium infiltration of whole plants by Qing et al. 2000 
(see also section FLORAL DIPPING/MICRO-INJECTION). 

With the sequencing of the B. rapa genome currently 
underway (www.brassica.info.org) it is likely that efforts 
and interest in B. rapa transformation will rise over the next 
few years. Current studies to develop B. rapa transformation 
include those of the AdVaB consortium (http://www. 
brassica.info/ukbrc/advab/) where the focus is a rapid cyc-
ling genotype (RO18) which is also being used to develop a 
TILLING population. This will provide excellent resources 
to optimise the information arising from the Multinational B. 
rapa Genome sequencing project for Brassica functional 
genomics as it becomes available. 
 
Bacterial strains and plasmids 
 
A number of different strains of A. tumefaciens have been 
successfully used to transform Brassica. The most fre-
quently used are LBA4404 (Hoekema et al. 1983) an octo-
pine strain, and the nopaline strains C58 (Sciaky et al. 
1978) and derivatives AGL1 (Lazo et al. 1991), EHA101 
and EHA105 (Hood et al. 1986) which have all been used 
successfully and routinely. The use of GV3101 (Koncz and 
Schell 1986), a favourite for Arabidopsis transformation, 
has also been reported for Brassica (DeBlock et al. 1989; 
Mehra et al. 2000). It is likely that over the next few years 
the ability to use plasmids and Agrobacterium strains rou-
tinely used for Arabidopsis transformation will be highly 
desirable as researchers move findings from the model spe-
cies into crops such as Brassica. 

The type of plasmid used is thought to be less critical 
than bacterial strain, although choice of promoters and 
selectable markers is more important (see section FLORAL 
DIPPING/MICRO-INJECTION). Commonly used plasmids 
have been the modified pBIN19 (Bevan 1984) and its deri-
vatives; the SLJ vectors (Jones et al. 1992) in particular 
SLJ1714 and SLJ1711; the pCAMBIA vectors (www. 
cambia.org/daisy/cambia/materials/overview) in particular 
pCAM2200; and pGreen (Hellens et al. 2000; www.pgreen. 
ac.uk). The above examples are based on the 35S promoter 
driving nptII as the selectable marker gene, but other selec-
table markers are available (see section SELECTION OF 
TRANSGENICS). 
 
Direct uptake methods 
 
The first reports of direct uptake transformation methods, 
such as electroporation or PEG-mediated transfer, in Bras-
sica were for cauliflower protoplasts by Mukhophyay et al. 
(1991) (hypocotyls protoplasts); and Eimert and Siegemund 
(1992) (mesophyl protplasts). Recently, Radchuk et al. 
(2002) studied a range of factors effecting PEG mediated 
transformation in Brassica using both kanamycin and hyg-
romycin selection. Nugent et al. (2006) demonstrated suc-
cessful transformation in cauliflower mesophyll protoplasts 
using a gus reporter gene and hygromycin selection (see 
also section Chloroplast transformation). Regeneration 
from protoplasts remains the main limitation of this ap-
proach. Another direct approach is biolistics or micropar-
ticle bombardment where DNA-coated beads are fired at 
high speed into plant cells. These approaches again offer an 
alternative transformation method for genotypes that are not 
susceptible to Agrobacterium infection and are a useful ap-
proach for transient expression studies (Puddephat et al. 
1999). 
 
Chloroplast transformation 
 
Plastid transformation offers a number of potential advanta-
ges over nuclear transformation (Maliga 2004). The high 
number of plastids per plant cell (approx. 105 copies per 

plant cell (compared to a single nucleus)) means higher ex-
pression levels can potentially be achieved. This is particu-
larly desirable for product based transformation, where high 
protein yields are desirable (Dhingra et al. 2004). Inheri-
tance of the introduced transgene(s) will also be maternal 
and therefore offers containment of the transgene, due to 
lack of gene flow through pollen (Daniell 2002); although 
observation of gene transfer from chloroplast to nuclear ge-
nomes have been reported (Stegemann et al. 2003) frequen-
cies are extremely low. The successful transformation of 
Brassica chloroplasts by particle bombardment have been 
reported for B. oleracea (Hou et al. 2003) and for B. napus 
(Liu et al. 2007), both; and by Nugent et al. (2006) using a 
PEG-mediated approach. 
 
SHOOT REGENERATION 
 
Many factors affect the successful regeneration of shoots in 
vitro; namely genotype, media conditions and explant type 
and age. With the exception of the floral dip method (dis-
cussed below) the above transformation methods all rely on 
having a robust regeneration system in place for transfor-
mation success (recovery of transgenic plants). In this sec-
tion we will focus on factors effecting in vitro regeneration 
systems for A. tumefaciens-mediated transformation. How-
ever, a number of the points discussed also apply to other 
methods. 
 
The genetic basis of in vitro shoot regeneration 
 
Extensive screening of genotypes and tissue culture condi-
tions has improved the frequency of shoot regeneration for 
most Brassica species. Despite these advances, some geno-
types remain highly recalcitrant to in vitro regeneration. The 
genotype dependent nature of in vitro shoot regeneration, 
both within and among the Brassica species, was first re-
ported by Murata and Orton (1987). They observed that B. 
napus (AACC) had a higher regeneration response than B. 
rapa (AA) thereby suggesting that genes from the C ge-
nome may influence its greater regeneration response. Nara-
simhulu et al. (1988a, 1988b) studied shoot regeneration in 
the three diploid Brassica species and their synthetic am-
phidiploid hybrids. They found no significant difference 
between the B and C genomes in terms of regeneration pot-
ential, but concluded that the A genome was the most recal-
citrant genome for regeneration under the conditions used. 
The synthetic hybrids B. napus (AACC) and B. juncea 
(AABB) both had lower regeneration responses than their 
better parent response, B. oleracea (CC) and B. nigra (BB) 
respectively, suggesting an inhibitory effect of the A ge-
nome. These studies suggest shoot regeneration to be a her-
itable trait. Hansen et al. (1999) reported a genetic analysis 
of shoot regeneration from protoplasts of B. oleracea by 
crossing a high and a low regenerating line and measuring 
the regeneration response in the F2 generation. The fre-
quency distributions observed suggested that at least three 
independent loci were responsible for regeneration. The fin-
ding that two or three genes control regeneration is consis-
tent with other reports for crops such as rice (Peng and 
Hodes 1989; Taguchi-Shiobara et al. 1997) barley (Komat-
suda et al. 1989) and tomato (Koorneef et al. 1987). Ono et 
al. (2000) looked at the genetic control of shoot regenera-
tion from cotyledonary petioles in B. napus using a 5 × 5 
diallel cross. They showed that shoot regeneration was as-
sociated with additive and dominant gene effects, with ad-
ditive gene effects accounting for the majority of the varia-
tion. These findings were consistent with the findings of 
Sparrow et al. (2004c) for B. oleracea who screened a 12 × 
12 diallel of genotypes with varying regeneration response, 
and also observed that in vitro regeneration was under 
strong genetic control. Genetic factors accounted for 85% 
of the variation, with the remainder a result of non-heritable 
or environmental influences. In the same study high shoot 
regeneration was observed to be dominant over low shoot 
regeneration. The production of multiple shoots (in favour 
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of just a few shoots) from regenerating cotyledonary peti-
oles was also demonstrated to be heritable with additive 
gene effects accounting for the majority of the variation 
(77%) observed within the diallel. The similarity of the in-
heritance patterns observed for both B. napus and B. olera-
cea would suggest conservation of genes for shoot regene-
ration within the same genome (CC). The ability to intro-
duce or increase the in vitro shoot regeneration potential of 
a genotype, by conventional breeding, may help overcome 
restrictions to routine transformation programmes, where 
efficient shoot regeneration is a critical pre-requisite. 

In theory all cells that contain a nucleus are totipotent 
and retain the genetic information required to regenerate a 
whole plant. However, some genotypes are simply unable to 
tolerate in vitro conditions, and thus regenerate shoots. Into-
lerance to in vitro conditions has been observed in B. olera-
cea and B. napus (Sparrow et al. 2004a, 2004c, 2006b). In 
these papers, cotyledonary petioles from a range of geno-
types were screened for regeneration potential in the ab-
sence of Agrobacterium. A number of genotypes exhibited 
extreme tissue culture blackening to the petiole base (Fig. 
2A, 2B). Genotypes that demonstrated tissue culture black-
ening failed to regenerate shoots, or regenerated a low num-
ber of small shoots direct from the petiole base (without a 
callus phase). These shoots were often non viable as they 
failed to develop further and could not be isolated. These 
genotypes made poor candidates for transformation success. 
By contrast, genotypes that regenerated multiple shoots, a 
response associated with a small callus phase, and no black-
ening (Fig. 2C) were considerably more favourable to 
Agrobacterium-mediated transformation, than genotypes 
that regenerated a small number of shoots direct from the 
petiole base. 
 
Choice of explant 
 
In vitro shoot regeneration of Brassica has been achieved 
from an array of different explant types: cotyledonary peti-
oles (Moloney et al. 1989; Ono et al. 1994), cotyledonary 
sections (Yang et al. 2004), hypocotyls (Yang et al. 1991), 
peduncles (Christey et al. 1991), leaf sections (Akaska-
Kennedy et al. 2005), anthers, microspores (Keller and 
Armstrong 1977; Litchter 1982), thin cell layers of epider-
mal and subepidemal cells (Klimaszewska and Keller 1985), 
roots (Xu et al. 1982) and protoplasts (Glimelius 1984; 
Barsby et al. 1986). However, it is the seedling explants 
(cotyledons and hypocotyls) that remain favourites for 
transformation. Seeds can be surfaced sterilised and germi-
nated in vitro to achieve sterile explant tissue. The age of 
the explant is also critical, with many researchers finding 3-
4-day-old seedlings give optimal results (discussed below). 
While it is often the age of the explant that is referred to, it 
is actually the size of the explant that is more critical. A 3-
day-old seedling in one culture room, under one light re-
gime may be different (bigger or smaller) than the same 
seedling grown under different growth room conditions. For 
cotyledonary petioles, the optimum age/size can usually be 
determined by ease of isolation (see Fig. 3) – too early and 
it becomes difficult to isolate the cotyledons whilst avoiding 
the meristematic bundle. If left too late cotyledons will 
simply expand on regeneration medium rather than regene-
rating shoots. For hypocotyl sections, older explants (8-10 
days) have also been used (Cardoza and Stewart 2006) for B. 

napus, allowing a larger number of explants to be obtained 
per seedling. Gasic and Korban (2006) on the other hand 
found hypocotyls from 3-4 day old seedlings gave optimal 
results in B. juncea. What appears critical in both these sys-
tems however, is the length of the hypocotyl section. Small 
sections were optimal, i.e. 5-10 mm sections (where smaller 
explants did better). Long hypocotyl sections had the ten-
dency to curl and therefore loose contact with the culture 
media. 
 
Media conditions 
 
Not only is in vitro shoot regeneration genotype dependent, 
but regeneration success will also be affected by the choice 
of transformation protocol, hormone and other media ad-
ditive levels used. The ability to regenerate from one tissue 
type does not guarantee regeneration success from another 

Figs 2A-C Cotyledonary petioles from 3 genotypes 
of B. napus photographed in vitro after 16 days in 
culture. Genotype (A) shows slight swelling to petiole 
base and the presence of tissue culture blackening; in 
(B) shoot regeneration is via a direct mode and asso-
ciated with tissue culture blackening and genotype (C) 
regeneration is via an indirect callus mode and in the 
absence of tissue culture blackening. 

A B C

A B 

C D 

E
Fig. 3 Isolation of cotyledonary petioles from B. oleracea. (A) Four-
day-old seedlings; (B) excision site (dotted line); (C) explant isolation; 
(D) cotyledonary petiole (arrow); (E) explants on co-cultivation medium. 
NB: Petri-dish lids not shown in photographs. 
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explant source, and indeed it is always advisable to carry 
out a regeneration study with the genotype and explant of 
choice before selecting the transformation approach. Hypo-
cotyl and leaf sections often require a callus phase prior to 
shoot regeneration (Yang et al. 2004; Gasic and Korban 
2006) using cotyledonary leaf sections). This is normally 
achieved using a high cytokinin (usually BAP) to low auxin 
(e.g. naphthalene acetic acid (NAA)) ratio. Some transfor-
mation protocols also exploit a short callus induction phase 
prior to transformation, a so called preconditioning stage 
(Cardoza and Stewart 2006). 
 
Shoot elongation and rooting in vitro 
 
Once shoot regeneration has been achieved from the desired 
genotype, another stumbling block can be the isolation of 
viable shoots. This is partially true for B. rapa one of the 
more recalcitrant Brassica species (Sparrow and Goldsack, 
pers. unpublished data). Small shoots are often prone to 
undesirable morphology, hyperhydricity and fail to elongate 
and root in vitro. A shoot elongation step, where cytokinin 
levels are lowered but not removed, can often help shoots to 
elongate (Cardoza and Stewart 2006). Often hyperhydricity 
is overcome once shoots have elongated, but occasionally 
other supplements need to be explored (see section Hyper-
hydricity and tissue necrosis). Rooting is often achieved by 
simply removing the cytokinin, however in some also it 
may also require the addition of an auxin (such as NAA or 
indole-3-butyric acid (IBA)). 
 
Hyperhydricity and tissue necrosis: Use of 
ethylene inhibitors 
 
Hyperhydricity (formerly vitrification) and tissue necrosis 
can present a serious problem for plant tissue culturists. 
However, a better understanding of the underlying mecha-
nism of hyperhydricity and its control in vitro can signifi-
cantly contribute to improved tissue culture success (Meira 
1991). In B. rapa and B. juncea, Chi and Pua (1989) and 
Chi et al. (1990) demonstrated that higher regeneration fre-
quencies could be achieved if explants were given the ap-
propriate media and environmental conditions. 

Factors found to effect hyperhydricity and tissue necro-
sis are: accumulation of ethylene and high humidity in cul-
ture vessels (de Block et al. 1989), excessively rich media, 
Agrobacterium overgrowth/sensitivity (Jin et al. 2000), and 
high doses of exogenous cytokinin and/or auxin (Ketaeva et 
al. 1991; Kamal et al. 2007). In B. napus Cardoza and 
Stewart (2003) observed that increasing the percentage of 
gelling agent in the shoot elongation medium, and thus 
reducing the relative humidity of the culture vessel, allowed 
shoots to overcome hyperhydricity and resume normal 
growth within 2 weeks of transfer. 

Ethylene is another key factor in optimising tissue cul-
ture conditions for some Brassica species (Cardoza and 
Stewart 2004). Silver nitrate has been used to reduce hyper-
hydricity in a range of Brassica species such as B. rapa 
(Kuvshinov 1999; Xiang et al. 2000; Yang et al. 2004) and 
B. napus (Tang et al. 2003). In particular B. rapa, one of the 
most recalcitrant Brassica species to in vitro culture res-
ponds positively to the addition of silver nitrate (Palmer 
1992; Radke et al. 1992). It has also been reported that ex-
cluding silver nitrate from tissue culture media can dras-
tically reduce regeneration frequency in some genotypes of 
B. napus (Phogat et al. 2000). Other ethylene inhibitors 
which can be used in combination, or as an alternative, in-
clude silver thiosulfate (Eapen and George 1996, 1997) and 
aminoethoxyvinylglycine used by Chi et al. (1990) for B. 
rapa and B. juncea; Pua and Chi (1993) for B. juncea and 
Burnett et al. (1994) again for B. rapa in vitro culture. 
 
FLORAL DIPPING/MICRO-INJECTION 
 
The ability to bypass the tissue culture phase associated 
with the above methods could overcome some of barriers to 

transformation success observed in Brassica. In planta 
transformation of Arabidopsis is now common practice, and 
involves immersing intact inflorescences in A. tumefaciens 
suspensions (Bechtold et al. 1993; Clough and Bent 1998; 
Kojima et al. 2006). The Agrobacterium targets the ovules 
for the transformation event (Ye et al. 1999), and therefore 
species in which the ovary remains open for an extended 
developmental period may be good candidates for success-
ful in planta transformation (Desfeux et al. 2000). Transfor-
mation by infiltration of adult Brassica plants with Agro-
bacterium was reported for B. rapa (Pakchoi) by Liu et al. 
(1998); and Qing et al. (2000). In the latter study two trans-
genic plants were obtained from 20 000 seed arising from 
the dipping of 30-50 plants. While this efficiency is low, it 
does demonstrate the potential to apply the method to Bras-
sica. In B. napus, Wang et al. (2003) reported a success rate 
of 0.18% (approximately 11 putative transgenics arising 
from 4 dipped plants) using a double infiltration approach. 

Recently, Zhandong et al. (2007) have reported a trans-
formation rate of 2.35% for Chinese cabbage (B. rapa), 
using the method of Liu et al. (1998). The gene of interest 
was a Turnip mosaic virus (TuMV) resistance gene, and in-
fection with TuMV was used to identify 43 transgenic 
plants out of 1831 seeds. At present reports of in planta 
transformation of Brassica are limited, and further studies 
on the parameters of the system will be necessary, before it 
can be exploited as a routine transformation method. It 
should be noted that the efficiencies reported to date for 
Brassica are not dramatically different to early reports in 
the model plant Arabidopsis. However floral dipping may 
be more amenable to Arabidopsis, due to its size and thus 
ease of handling, faster life cycle and smaller seed, which 
lends itself better to subsequent downstream screening for 
positive transgenics. 

As an alternative to floral dipping, micro-injection of 
the bacteria directly into the ovary of flower buds before 
fertilisation has been investigated. This technique has been 
successfully applied in B. rapa (Chinese cabbage) by Ji-
Yong et al. (2003, 2004). Efficiencies of up to 0.56% were 
obtained when the floral stage at which the micro-injection 
was carried out, as well as the concentration of Agrobacte-
rium, sucrose and surfactant used was optimised. This ef-
ficiency was based on injecting approximately 50 flower 
buds with a size of 2-3 mm, from which they obtained 500-
800 seeds yielding on average 3-4 transgenics. Therefore, 
micro-injection also provides an alternative method for 
Brassica transformation, especially where facilities for tis-
sue culture-based techniques are unavailable. 
 
SELECTION OF TRANSGENICS 
 
Approximately fifty marker genes used for transgenic and 
transplastomic plant research or crop development have 
been assessed for efficiency, biosafety, scientific applica-
tions and commercialization (Miki and McHugh 2004). Se-
lectable marker genes can be exploited by either positive or 
negative selection systems. Positive selectable marker genes 
are defined as those that promote the growth of transformed 
tissue, in contrast to negative selectable marker genes that 
result in the death of the untransformed tissue. 

The majority of work with positive selection systems 
has centred on the use of modified sugars such as phospho-
mannose (for example, the PMI system – used in Brassica 
by Sonntag et al. 2004) or disaccharide cellobiouronic acid 
(CbA) (developed by the CAMBIA group (www.cambia. 
org)). 

Negative selection systems were the first to be deve-
loped and exploited using toxic agents, such as antibiotics, 
herbicides or drugs. Kanamycin is the most commonly used 
negative selectable marker gene used for most plant trans-
formation work (Miki and McHugh 2004). The level of 
antibiotic used will depend on both the genotype and the 
transformation method used, and has been reported in the 
range of 5 mg/l to over 200 mg/l. Moloney et al. (1989) 
used 15 mg/l kanamycin for the selection of transgenic 
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shoots arising from cotyledonary explants of Westar, while 
Cordoza and Stuart used 200 mg/l kanamycin when Westar 
hypocotyl explants were used. Hygromycin has also been 
successfully used in Brassica. Cao et al. (1999) and Lee et 
al. (2004) found hygromycin to be a more effective selec-
tion agent than kanamycin in the Brassica genotypes they 
tested, with very few escapes coming through the system. 
However, as hygromycin is a much harsher selective agent 
than kanamycin it may not be suitable for all genotypes. 
From a regulatory point of view, hygromcin as a selectable 
marker is unlikely to gain approval for field release, unlike 
Kanamycin which has now achieved GRAS status (gene-
rally regarded as safe) (EU directive 2001/18). In such cases 
the ability to produce marker-free transgenics is desirable 
(i.e. where the selectable marker is later removed). Basta or 
glufosinate (herbicide resistance) has also been successfully 
used in Brassica (de Block et al. 1989), although less desi-
rable for cotyledonary based transformation methods, due 
to Basta’s mode of action targeting photosynthetic material. 
Basta is likely to be a useful selectable marker for floral 
dipping or micro-injection transformation methods, as 
larger numbers of seeds can be soil sown and seedlings 
sprayed with Basta to select for positive transgenics. 
 
TRANSFORMATION AS A RESEARCH TOOL 
 
The Arabidopsis/Brassica relationship 
 
Brassica is closely related to the widely used model plant 
Arabidopsis thaliana and both belong to the Brassicaceae 
family. The divergence of Arabidopsis and Brassica are 
reported to have occurred 14-24 million years ago (Yang et 
al. 1999; Koch et al. 2000; Parkin et al. 2005). From com-
parative genetic analysis Brassicas are believed to be an-
cient polyploid relatives of the model species Arabidopsis 
thaliana (Osborn et al. 1997; Lagercrantz 1998; Parkin et al. 
2002; Parkin et al. 2005). B. rapa (AA genome) and B. 
oleracea (CC genome) are allopolyploids; their genomes 
are thought to have arisen from triplication of an ancestral 
genome similar to that of Arabidopsis. It is therefore often 
the case that there are three paralogous genes in a diploid 
Brassica genome for each gene in Arabidopsis (and up to 
six in the amphidiploid Brassicas where genomes are com-
bined). 

Comparative analysis has revealed a high degree of ge-
netic conservation between Arabidopsis and Brassica, with 
an average of 86% sequence identity in the coding regions 
of homologous genes (Parkin et al. 2005). These character-
istics make Brassica an attractive system for model-to-crop 
approaches, where knowledge on gene function obtained in 
Arabidopsis can be tested in Brassica for crop improvement 
or to address fundamental scientific question (King et al. 
2006; Trick et al. 2007). In either case, advances in this area 
will be facilitated by efficient and reliable transformation 
methods. 
 
Exploring gene function 
 
The function of a particular gene is often elucidated by cre-
ating a loss-of-function mutation and then analysing the 
resultant phenotype compared to the wild type (Østergaard 
et al. 2004). Traditionally, forward genetic screens have 
been employed to create individuals with abnormal pheno-
types followed by the often tedious and lengthy process of 
mapping the mutated gene. With the large amount of se-
quence information for Arabidopsis and increasingly for 
Brassicas it is now possible to apply reverse genetics tech-
nology. Several of the most common reverse genetics ap-
proaches are based on transformation techniques such as T-
DNA insertion (Alonso et al. 2003), RNAi (Horiguchi 
2004), artificial miRNA (Schwab et al. 2006), antisense 
(Ecker and Davies, 1986) or the newly developed “Target 
mimicry” technique (for knocking down miRNA function) 
(Franco-Zorrilla et al. 2007). All of these techniques have 
been shown to work in Arabidopsis and it should be pos-

sible to apply them in Brassica. 
To data a number of examples have been published. 

Byzova et al. (2004) used an RNAi approach to modify 
petals into sepaloid organs in Arabidopsis and oilseed rape. 
Silencing of the BPI gene family resulted in transgenic 
plants producing male fertile flowers in which the petals 
were converted into sepals (in Arabidopsis) or into sepaloid 
petals (in B. napus). These novel flower phenotypes were 
shown to be both stable and heritable in both species. Eason 
et al. (2005) down regulated BoCP5, a cysteine protease up-
regulated during harvest-induced senescence, in broccoli. 
Post harvest floret senescence (yellowing) was delayed in 
the transgenic lines produced. In addition the florets were 
found to contain significantly greater levels of chlorophyll 
during post harvest storage at 20°C when compared to wild 
type plants. 
 
CONCLUDING REMARKS 
 
A range of transformation techniques has been used to in-
troduce a wealth of agronomically useful traits into Bras-
sica (reviewed by Christey in press) and we can expect to 
see this continue at an even higher rate in the years to come. 
The knowledge that has now been obtained in Arabidopsis 
and other plant species creates exciting opportunities for 
testing out in crop plants such as Brassica whether this 
knowledge can usefully be exploited for improving yield. 

There have already been reports to suggest that transfer-
ring knowledge and technology from Arabidopsis to Bras-
sica will be feasible in many cases (Chandler et al. 2005; 
Østergaard et al. 2006; Lee et al. 2007). For example, pod 
shattering is a major problem for oilseed rape farmers with 
average annual losses of 11-25% experienced due to unsyn-
chronised seed dispersal (Price et al. 1996). The extensive 
knowledge on how fruit development in Arabidopsis is 
regulated showed that it is possible to produce pod shatter 
resistant Brassica fruits by over-expressing the MADS box 
gene FRUITFULL from Arabidopsis in B. juncea (Øster-
gaard et al. 2006, 2007). This manipulation resulted in loss 
of the highly specified valve margin tissue in fruits and 
consequently to pod shatter-resistance as was also observed 
in Arabidopsis (Ferrándiz et al. 2000). 

Pod shattering is just one example of an important trait 
that can be manipulated based on previous knowledge from 
Arabidopsis. Since oilseed rape is a relatively young crop, 
in comparison to wheat, barley, rice and maize, there is 
plenty of room for improvement of other traits. These in-
clude flowering time, branching, canopy architecture, fatty 
acid composition, overall seed oil production and disease 
resistance just to name a few. Transformation of Brassica is 
likely to play a prominent role in obtaining the goals for 
crop improvement, and it is therefore important to keep op-
timising and refining the current protocols as well as deve-
loping new approaches. 

In this review, we have attempted to cover the recent 
advances and developments made in the transformation of 
Brassica species. The idea here has been to provide a gene-
ral description of the available techniques based on own 
experience and examples from the literature. We hope this 
review provides potential users with useful guidelines on 
which direction to choose. 
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