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ABSTRACT 
Vitamin K-like compounds are widely diffused in plants, but their role and function are still partially unknown. Vitamin K1, phylloqui-
none, is largely present in thylacoid membranes as an electron carrier inside the PSI redox chain. More recently, it has been found that 
Vitamins K1 and K3 may also affect the plasmalemma-bound H+-ATPase and some redox proteins including b-type cytochromes. The 
antioxidant role of Vitamin K is also discussed. 
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INTRODUCTION 
 
When the term “Vitamin K” is used, we generally refer to 
quite a wide group of naphthoquinonic compounds having 
antihaemorrhagic properties. Also for this reason, in fact, 
the letter “K” was chosen by Henrick Dam, winner of the 
Nobel prize for his discovery of this Vitamin together with 
Edward Doisy, discoverer of the chemical nature, as the 
abbreviation of the Danish/German word “Koagulation”. Of 
course, in plants Vitamin K does not govern any coagula-
tion process, and the generic term “Vitamin K” is generally 
referred to as Vitamin K1 (2-methyl-3-phytyl-1,4-naphtho-
quinone) or phylloquinone (Fig. 1). Vitamin K1 was iso-
lated for the first time in 1936 by Almquist from Medicago 
sativa (Almquist et al. 1936). Nevertheless other forms of 
Vitamin K, such as menaquinones (K2–Kn) and even mena-
dione or Vitamin K3 (erroneously thought to be only of syn-
thetic origin), have been isolated in tissues of fungi, crypto-
gamae and phanerogamae (Binder et al. 1989). However, 
their functions are frequently unclear as well as those of 
hundreds of other naphthoquinonic compounds isolated 
from tissues of plants, fungi and bacteria (Thomson 1971), 
of which juglone and plumbagin, are probably the most 
well known. 
 
BIOSYNTHESIS 
 
Phylloquinone is a metabolite of the shikimate pathway. 
The last represents an alternative route towards aromatic 

compounds, in particular the aromatic amino acids L-phe-
nylalanine, L-tyrosine and L-tryptophan, but also benzoic 
acid, cinnamic acids, flavonoids, benzoquinones, tocophe-
rols and, precisely, naphthoquinones (Bentley 1975). This 
pathway is widely used by plants and bacteria but not by 
animals, that, just for this reason, must get through the diet 
some of these essential compounds, Vitamin K included. 
Corismic acid is the “first” derivative of shikimic acid and 
intermediate in the synthesis of phylloquinone; from it, 
through a series of reactions, 1,4-dihydroxynaphthoic acid 
is obtained. This last compound is at first alkylated with a 
molecule of isophytol, and successively methylated in posi-
tion 2 (Fig. 2). Isophytol is a diterpene of primary impor-
tance coming from the mevalonate pathway. It can be found 
as a constituent of the chlorophyll molecule where it func-
tions to anchor the hydrophilic porphyrinic structure to the 
lipidic bilayer membranes of thylacoids and of other mem-
branes. Prenylation of 1,4-dihydroxynaphthoic acid with an 
isoprenic chain, other than isophytol, generates the group of 
menaquinones, widely spread in fungi and bacteria. Actu-
ally, the majority of Gram-positive and anaerobic Gram-
negative bacteria possess naphthoquinones of the K series 
rather then benzoquinones, like ubiquinones, and the fea-
tures of the side chain constitutes a taxonomic criterion 
(Collins et al. 1981). Among menaquinones, the most out-
standing is menaquinone 7 or Vitamin K2, widely investiga-
ted for its nutritional and pharmacological properties in 
humans. The synthesis of bacterial Vitamin K coincides 
only in part with the synthesis of phylloquinone in plants 
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because bacteria may follow several variations of the 
phylloquinone pathway, starting from corismic acid and 
also using other precursors (Bentley et al. 1982). Recent 
studies on Arabidopsis thaliana mutants, impaired in the 
biosynthesis of phylloquinone, show that Vitamin K1 is 
coded by a single gene that, most likely, evolved from the 
fusion of four previously individual genes required for the 
phylloquinone biosynthesis of cyanobacteria and respiratory 
menaquinones in eubacteria (Gross et al. 2006). Interes-
tingly, one of these four individual units codes for the iso-
chorismate synthases; these enzymes are involved in the 
biosynthesis of both phylloquinone and salicylic acid. This 
might implicate a sort of connection between phylloquinone 
synthesis and the resistance system of plants (Gross et al. 
2006). 
 
DISTRIBUTION 
 
The distribution of Vitamin K among plant tissues forecasts, 
at least in part, its importance in physiological functioning. 
Phylloquinone is mostly present in green tissues of plants, 
in particular in the leaves where its level may range bet-
ween 75 and 300 μg/100 g fresh weight; in fruit, the content 
progressively decreases to about 5-20 μg/100 g, while in 
hypogeous organs the level of Vitamin K is about 1-3 μg/ 
100 g fresh weight (Koivu et al. 1997; Damon et al. 2005). 
Generally speaking, it has always been believed that chloro-
plasts, where Vitamin K is located inside Photosystem I – 
analogously to antenna pigments – are the main storage or-
gans of phylloquinone; however, the involvement of Vita-
min K1 in other membrane enzymatic systems, that we will 
discuss later, might lead us to reconsider this assumption. 
The presence of Vitamin K inside the plasmalemma of 
maize roots was first demonstrated by Lüthje (Lüthje et al. 
1995) and successively confirmed (Lüthje et al. 1998). 

The few studies carried out on Vitamin K distribution 
show that its content is higher in fully grown leaves that 
have been exposed to sunlight. On the contrary, it is lower 
in young tissues and/or partially etiolated leaves (Lichten-
thaler 1962; Ferland et al. 1992). 

 
 
 
 

 

PHYSIOLOGICAL FUNCTION IN PLANTS 
 
Redox properties of Vitamin K 
 
The physiological function of Vitamin K in plants is di-
rectly linked to its redox properties deriving from the pre-
sence on the naphthalenic ring of a double quinonic func-
tion. In fact, as many other quinones and naphthoquinones, 
Vitamin K can be reduced and reoxidised in a cyclical way 
by several substances and enzymatic pools. 

Depending on the type of enzymes and, of course, on 
the environmental conditions, Vitamin K may react either as 
a single electron donor or as a two-electron donor. In the 
first case Vitamin K is reduced to the semi-quinonic form, in 
the second one it is reduced in the hydro-quinonic form as 
schematically shown in Fig. 3. The one electron reduction 
of phylloquinone is supposed to be the “preferential” pro-
cess that Vitamin K1 undergoes in normal physiological 
plant conditions because its semi-quinonic form is easily 
subject to spontaneous re-oxidation and it is suitable to 
exert cyclic redox reactions inside electron transfer chains. 
This cycle allows the molecule to be used several times. 

On the other hand, the one electron reduction of benzo- 
and naphthoquinones and the successive spontaneous auto-
oxidation of the semi-quinonic forms, may induce an endo-
genous over production of reactive oxygen species (ROS) 
which, in the absence of an adequate enzymatic pool and of 
antioxidant compounds responsible for their scavenging, 
will cause damage to the cell membranes. This mechanism 
along with the direct alkylation of SH groups of important 
proteins are at the origin of the toxicological and pharma-
cological effects that many quinones exert and for which 
they have been investigated thoroughly (O’Brien 1991). 
Phylloquinone does not seem to represent an inducer of oxi-
dative stress like other vitamin K moieties, in particular Vita-
min K3, although some recent works on spinach (Spinacia 
oleracea) indicate that under light saturation conditions 
Vitamin K1 may induce oxidative stress (Kruk et al. 2003). 

In animal cells the two electron reduction of Vitamin K 
and of Menadione is performed by the enzyme DT-diapho-
rase which is a flavoenzyme with primary function on the 
detoxification processes. Plants do not posses this enzyme 
but it has been shown that a similar two-electron reduction 
is operated by a NADH-quinone reductase having a differ-
ent structure (Trost et al. 1995; Sparla et al. 1998). More 
likely plants possess more than one NADH-quinone reduc-
tase enzyme having different locations, but their precise 
function is still uncertain (Bérczi et al. 2000). 

The two main electron transport chains where Vitamin 
K is involved are the photosynthetic electron transfer from 
Photosystem I to NADP+ and the membrane-bound electron 
transfer chain involved in the oxidative phosphorylation of 
bacteria. This last one involves Vitamin Kn, not phylloqui-
none and since it is not typical of plants we will not con-
sider it, addressing the reader to the review of Søballe (Sø-
balle et al. 1999). 

The existence of a third, shorter electron transport chain 
where Vitamin K is supposed to be involved has been inves-
tigated more recently; this is the plasmalemma redox chain 
(Lüthje et al. 1997). 

Interestingly, in the animal cell Vitamin K does not 
seem to be involved in any electron transport chain as in 
plants, although its physiological function is still related to 
a redox reaction where the oxidation of reduced Vitamin K 
to the epoxide form is coupled with the �-carboxylation of 
glutamic acid residues of some specific proteins. Due to this 
site-specific carboxylation, these proteins achieve a strong 
calcium-chelating activity which is at the base of their 
physiological functions (Suttie 1985; Vermeer 1990). Vita-
min K1 epoxide is then reduced to the quinonic form by a 
dithiol-dependent Vitamin K epoxide reductase; subse-
quently the re-cycle of the quinone moiety is completed 
through a further reduction. This last step can be catalyzed 
by either a dithiol-dependent, and warfarin-sensitive, reduc-
tase, or by a NADH-dependent reductase (Fig. 4). This small 

Fig. 1 Vitamin K forms. The basic structure of the K serie is Menadione -
Vitamin K3. 

O

O

CH3

1.1 Menadione - Vitamin K3

O

O

CH3

CH3

CH3 CH3

3

1.2 Phylloquinone - Vitamin K1

O

O

CH3

CH3

CH3 CH3

6

1.3 Menaquinone 7 - Vitamin K2

O

O

CH3

1.1 Menadione - Vitamin K3

O

O

CH3

CH3

CH3 CH3

3

1.2 Phylloquinone - Vitamin K1

O

O

CH3

CH3

CH3 CH3

6

1.3 Menaquinone 7 - Vitamin K2

30



Vitamin K in plants. Manzotti et al. 

 

Vitamin K cycle has been studied in depth because it is the 
target of many common anticoagulants of medical rele-
vance; they interfere with the activity of Vitamin K1 epo-
xide reductase uncoupling the redox cycle of Vitamin K and 
causing a quick depletion of reduced Vitamin K (Suttie 
1991). 

To the best of our knowledge there are no investigations 

and consequently no information, on the existence of simi-
lar �-carboxylation reactions and Vitamin K-dependent pro-
teins in plant cells. 
 
The electron transport chain of PSI 
 
We shall now focus briefly on the electron transport chain 
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of Photosystem I (PSI) and on the plasmalemma redox 
chain. Photosystem I consists of a complex of pigments and 
proteins embedded in the chloroplast thylacoids. This com-
plex allows the one electron flow from the primary donor to 
the NADP+ molecules in the stroma, thus generating the re-
ducing power necessary for the assimilatory CO2 reduction 
in the Calvin cycle. The electron flow is induced by the 
energy of light captured by the Light Harvesting Complex 
(LHC) and transferred to the reaction centre of P700, which 
is composed of a dimer of a special type of chlorophyll a. It 
is already acknowledged that there are six electron convey-
ors involved in PSI; the primary donor P700 and five accep-
tors. These are the primary chlorophyll acceptor A0, the sec-
ondary acceptor phylloquinone (the A1 acceptor), and the 
three Fe-S proteins FX, FA, FB (Snyder et al. 1991; Brettel 
1997). Some studies report that several substances can res-
tore the electrons’ flow in membranes where phylloquinone 
has been extracted (Itoh et al. 1991; Iwaki et al. 1991). 
Most likely this fact may be correlated with the extraction 
method or to a sort of low specificity of the quinone binding 
site (Golbeck et al. 1991; Brettel 1997) rather than to the 
real involvement of other substances different from phyllo-
quinone. Vitamin K1 turns out to be present with two mole-
cules associated  with the PSI reaction centre and bound to 
protein PsaA and possibly also to PsaB (Golbeck 1992); one 
of the two molecules of phylloquinone is more easily ex-
tractable while the other one is more tightly bound to its 
hydrophobic matrix. Since the removal of the more easily 
extractable molecule does not involve the block of the elec-
tron flow (Malkin 1986; Biggins et al. 1988), these authors 
believe that the two molecules represent two different ways 
through which electrons can flow (Golbeck 1992). This pe-
culiarity has been the theme of more recent studies confir-
ming the existence of two active branches for the electron 
transfer (Guergova-Kuras et al. 2001). 

As mentioned before, Vitamin K can act as a massive 
inducer of superoxide anions inside the thylacoids when 
light saturation conditions occur. This is the consequence of 
the persisting process of spontaneous autoxidation that does 
not allow to stop the excessive electron flow, ultimately re-
ducing molecular oxygen. It is interesting to note that a me-
chanism of photoinhibition of PSI based on the two-elec-
tron reduction of phylloquinone is supposed to be present 
under conditions of light saturation (Inoue et al. 1989). 
 

The plasmalemma redox chain 
 
The supposed relevance of the plasmalemma redox chain 
for the maintenance of a proper electrochemical gradient, in 
combination with the proton pump, as well as for the 
absorption of iron (Rabotti et al. 1994), for the elongation 
and growth of the cell (Morré et al. 1988) or for the acti-
vation of the cell’s defence mechanism, is well known and 
has been discussed in depth by Lüthje et al. (1997). Never-
theless, to date there is not an univocal acceptance about 
which are the constituents of this chain, their number and in 
which sequence they transfer electrons in the plasmalemma 
In particular the main area of the uncertainty is related to 
the compounds which are more deeply embedded inside the 
plasma membrane (Döring et al. 1996). 

Barr et al. (1992) working on carrot cell plasma mem-
brane showed that the destruction of phylloquinone nega-
tively affected the plasma membrane electron transport  
and subsequently  the same group of researchers showed 
that the plasma membrane NADH oxidase of soybean pos-
sesses Vitamin K1 hydroquinone oxidase activity suggesting 
that the electron transfer from cytosolic NAD(P)H to accep-
tors at the cell surface might proceed via reduced Vitamin 
K1 located inside the plant cell membrane (Bridge et al. 
2000; see also Fig. 5). 

Studies by several Authors (Döring et al. 1992a; Lüthje 
et al. 1992; Lüthje et al. 1994; Baroja-Manzo et al. 2004) 
showed that the treatment of root plasmalemma fractions 
with Vitamin K3 was able to increase the reduction rate of 
external electron acceptor, while well known anti-coagu-
lants like warfarin or dicumarol, had an inhibitory effect on 
the reduction of external electron acceptors. Presumably, 
most of the experiments done with Vitamin K3 on plants 
were performed with menadione sodium bisulphite, its 
water soluble derivative, and the conclusion that phylloqui-
none would have given the same results is argued. Further-
more the antagonistic mechanism of coumarins on the Vita-
min K function in animal cells could be different in plants, 
since its activity in the former is strictly linked to K1 epo-
xide reductase, as mentioned before. 

In any case a sonication pre-treatment of root plasma-
lemma fractions for five seconds at 50 kHz and in the pre-
sence of Vitamin K3, resulted in a sharp increase of the re-
dox activities in both mono- and dicotyledonous root plas-
malemma fractions (De Nisi et al. 2006). This would induce 
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the belief that the probable involvement of the naphthoqui-
nonic component in the redox chain is actually occurring in-
side the cell membrane. Furthermore, measurements on the 
redox activities of plasma membranes of plants grown in 
hydroponic solutions containing Vitamin K3, showed grea-
ter H+-ATPase and plasmalemma redox activities compared 
to untreated plants (De Nisi et al. 2006). Although the plant 
metabolization of Vitamin K3 into K1 has not been proved, 
these effects were further confirmed on both root and leaves 
after the application of Vitamin K3 through foliar spray on 
growing plants (De Nisi et al., unpublished data). Also 
these data increase the indirect evidence of the involvement 
of Vitamin K in the plasmalemma electron transport chain 
in both mono- and dicotyledonous plants. 

As already mentioned, the plasmalemma redox activi-
ties may generate ROS which are at the origin of plant 
defence mechanisms. These compounds trigger the cascade 
of antipathogenic substances, leading also to the oxidative 
burst (Lamb et al. 1997). Interestingly Borges and co-wor-
kers found that MSB, a water soluble derivative of Vitamin 
K3, is able to induce a systemic resistance to some common 
diseases (Borges et al. 2003, 2004). In those circumstances 
the authors hypothesized that the effect might depend on 
mechanisms related to increased generation of ROS, al-
though the results should induce more in-depth investiga-
tion about the possible role of Vitamin K in plant defence 
systems. 
 
Antioxidant properties 
 
The antioxidant properties of quinones have been tho-
roughly discussed and accepted (Sies et al. 2004). Also 
Vitamin K moieties have been the object of several investi-
gations in the past, sometimes with contradictory results; in 
fact, it should never be forgotten that the same quinonic 
substance might exert an anti-oxidant but also a pro-oxidant 
effect, depending on the environmental conditions and on 
the chemical features of the other molecules they react with. 
As a general consideration, many compounds of the K se-
ries have a strong affinity with sulphidrilic groups, and the 
Vitamin K1 cycle itself in animal cells is driven by redox 
reactions with dithiols (Suttie 1985; Soute et al. 1992). In 
an animal cell model Vitamin K1 exert antioxidant proper-
ties against microsomal lipid peroxidation (Vervoot et al. 
1997); studies with artificial models support the hypothesis 
of a protective role of phylloquinone as a possible radical 
scavenger (Mukai et al. 1993; Ortiz et al. 1999), although in 

animal cells the membrane protective role is played pri-
marily by tocoferols (Vitamin E) and ubiquinones (coen-
zyme Q). Since the presence of ubiquinones in the plant 
plasmalemma is highly uncertain, some authors hypothe-
sized that phylloquinone may exert the function of coen-
zyme Q in plants (Döring et al. 1996; Bridge et al. 2000; 
Lochner et al. 2003), and this seems to be feasible, since 
naphoquinones and benzoquinones frequently and alterna-
tively exert the same roles in different bacterial strains. 

On the contrary and as already mentioned, in conditions 
of light saturation, phylloquinone may play a pro-oxidative 
effect inside thylacoid membranes in connection to an ele-
vated rate of electron transfer from A0, but this cannot be 
considered as a normal physiological situation, and further-
more not related to the plasmalemma. 

Many authors reported that a frequent effect of the treat-
ment of plasmalemma fractions with Vitamin K3 and K1 is 
an increase of the acidification rate of the external apoplast 
(Barr et al. 1990; Döring et al. 1992b; Lüthje et al. 1992; 
Taylor et al. 2001; Baroja-Manzo et al. 2004; De Nisi et al. 
2006). Many of them explained these findings as a straight 
consequence of the simultaneous shuttle of electrons and H+ 
across the plasmalemma by phylloquinone. However, inves-
tigations on the electron- and proton-transferring properties 
of Vitamin K1 in artificial model membranes lead to the 
belief that phylloquinone is a poor proton carrier across bio-
membranes (Herrero et al. 1998). Therefore, a different or 
at least concomitant reason, explaining the apoplast acidifi-
cation, might be a direct antioxidant action of Vitamin K on 
the redox state of the sulphidrilic groups of the H+-ATPase 
(proton pump). Interestingly, in fact, the efficiency of the 
H+-ATPase in plants was shown to be dependent on the oxi-
dation state of its thiol groups and on the NADH/NAD+ 
ratio (Katz et al. 1987; Elzenga et al. 1989). Some authors 
even suggested that the so-called “standard” redox activity 
of the root plasmalemma might be explained with the need 
to maintain a proper oxidation state and a high efficiency of 
the H+-ATPase (Bienfait et al. 1988). Recently we found 
that, as a result of Vitamin K3 addition to the hydroponic 
solution of growing plants, the activity of H+-ATPase of 
root plasmalemma fractions was greatly stimulated. This ef-
fect was particularly impressive compared to the results we 
could achieve with simple preincubation of plasmalemma 
fractions with Vitamin K (De Nisi et al. 2006). We could 
not ascertain whether the higher H+-ATPase activity was di-
rectly related to an increased availability of naphthoquino-
nic compounds in the cytosol, or indirectly related to the 
plasmalemma reductase activity which also increased, but 
the effect on the H+-ATPase was definitely consistent and in 
line with previous findings of other authors (Barr et al. 
1990; Döring et al. 1992b; Lüthje et al. 1992; Taylor et al. 
2001; Baroja-Manzo et al. 2004). 
 
CONCLUSIONS 
 
In the last decades interest in the physiological function of 
Vitamin K in plant metabolism has grown considerably. 
Furthermore, in addition to its well known relevance in the 
photosynthetic process, it seems more and more likely that 
phylloquinone may play an important role also in other 
compartments of the plant. Several studies, for instance, 
suggest the involvement of Vitamin K in the transport chain 
transferring electrons across the plasma membranes, but 
also the possibility that this molecule contributes to the 
maintenance of a proper oxidation state of some important 
proteins embedded in the cell membrane. The presence of 
different kinds of quinone reductases in the cytosol might 
also lead to argue the possibility that Vitamin K may be con-
nected with other enzymatic pools out of the plasmalemma. 
Studies on bacterial nitrate reductase seem to support this 
hypothesis (Brito et al. 1995; Giordani et al. 1997). New 
and deeper investigations are still needed to understand and 
clarify the whole mechanisms in which phylloquinone looks 
to be involved. 
 

Fig. 5 Vitamin K related activities inside plasmalemma (modified 
from Bridge et al. 2000). Vitamin K is supposed to transfer electrons 
from the membrane bound quinone reductase to external electron accep-
tors. 
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