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ABSTRACT 
Ferulic acid, a cinnamic acid derivative, is a well-known allelochemical that is widely distributed in plants. Stress on plant roots by ferulic 
acid affects several physiological and biochemical aspects, such as water utilization, foliar expansion, root elongation, photosynthesis, cell 
respiration, membrane integrity and nutrient uptake, among others. Moreover, ferulic acid may be esterified with cell wall polysaccharides, 
incorporated into the lignin structure or form bridges that connect lignin with wall polysaccharides, rigidifying the cell walls and 
restricting cell growth. This review describes general aspects of allelopathy and focuses on the role of ferulic acid as an allelochemical 
and its supposed mode of action in plants. 
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INTRODUCTION 
 
Allelopathy: A complex science 
 
For years, it has been known that plants release organic 
compounds into the environment from their aerial or sub-
aerial parts, as exudates, volatiles, and/or decomposition 
residues. These compounds may accumulate in the soil en-
vironment and affect the growth and development of neigh-
boring plants, an interaction called allelopathy (Weir et al. 
2004). A main characteristic of allelopathy is the plant-plant 
interaction. Of the approximately 400,000 secondary meta-
bolites assumed to exist in the plant kingdom, only about 
3% of them have been studied to date, and many secondary 
metabolites have been reported to show allelopathic proper-
ties. Secondary metabolites might be separated into three 
chemically distinct groups: terpenes, nitrogen-containing 
secondary products and phenolic compounds (Taiz and 
Zeiger 1998). The latter group is very heterogeneous, with a 
diverse set of chemicals playing a variety of roles in the 

plant. While many are defense compounds against herbi-
vores and pathogens, others have roles in mechanical sup-
port, in the attraction of pollinators and fruit dispersers, in 
the absorption of harmful ultraviolet radiation, or in allelo-
pathy (Croteau et al. 2000). 

Although there is growing evidence of the phenomenon 
of allelopathy, its existence is still debated by scientists 
since the mechanisms from production to release and the 
fate of allelochemicals are largely unknown. Responses to 
allelochemicals are also difficult to assess. This is further 
complicated by the wide range of chemicals of diverse 
molecular structures involved. Benzoic acid derivatives (e.g. 
p-hydroxybenzoic, vanillic and salicylic acids), cinnamic 
acid derivatives (e.g. p-coumaric and ferulic acids), non-
protein amino acids (e.g. L-3,4-dyhydroxyphenilalanine) 
and flavonoids (e.g. quercetin and naringenin) have been 
referred to as allelochemicals. 

Membrane perturbations are often reported to be the 
primary sites of action of many allelochemicals that trigger 
further modifications in the physiological processes of plant 
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cells. However, clear insight into the primary allelochemi-
cal action on plant physiology has not been obtained. Seve-
ral modes of action for allelochemicals are involved in the 
inhibition and modification of plant growth and develop-
ment (Fig. 1). There are several factors that may influence 
the effects of an allelochemical. Temperature, photoperiod, 
mineral composition of the soil and interactions with other 
allelopathic compounds may affect the chemical stability, 
availability and toxicity of an allelochemical (Inderjit 1996). 
It is thus rather difficult to examine how each factor influ-
ences the response of plants. Another issue is that experi-
ments with allelochemicals have been carried out under the 
restricted conditions of a laboratory, which controls tempe-
rature, light, nutrient solution and pH, among others. This is 
a relevant problem since laboratory conditions cannot be di-
rectly compared to natural conditions (Seigler 1996). How-
ever, many researchers are finding success in their compa-
rative studies, especially when the concentrations of allelo-
chemicals are similar in both systems (Sène et al. 2000). 
 
Ferulic acid: Yesterday and today 
 
Phenolic compounds contain aromatic substances formed 
via the shikimic acid pathway or the malonic acid pathway, 
including benzoic and cinnamic acid derivatives. These two 
pathways supply 60% and 40%, respectively, of carbon for 
the biosynthesis of phenolic compounds (Gross 1981). 
Linked to the shikimic acid pathway, the phenylpropanoid 
pathway starts with deamination of phenylalanine, by 
phenylalanine ammonia-lyase (PAL) or tyrosine ammonia-
lyase (TAL) to form cinnamic acid, its first metabolite. Cin-
namate is converted to monolignols by the subsequent ac-
tions of different enzymes (Fig. 2). 

Ferulic acid (FA) is a cinnamic acid derivative that was 
initially isolated as a yellow precipitate by alcoholic extrac-
tion from the commercial resin of Ferula foetida (Umbel-
liferae, Apiaceae) by Hlasiwetz and Barth (1866). They then 
determined its chemical composition as C10H10O4 and 
named it Ferulasäure or ferulic acid [3,(4-hydroxy-3-me-
thoxyphenyl)-2-propenoic acid]. Over the next 60 years, no 
additional information was reported on this compound. 
Then between 1925 and 1988, it was chemically synthe-
sized (Dutt 1925), its cis and trans isomers were separated 
(Comte et al. 1957), and stereochemistry was ascertained 
by NMR spectroscopy (Kelley et al. 1976) and unequivo-
cally confirmed by X-ray crystallographic analysis (Nethaji 
et al. 1988). FA is a strong dibasic acid in which the first 
proton dissociation generates the carboxylate anion, while 
the second produces a phenolate anion. The anion has a 
high degree of resonance stabilization, which increases its 
acidity in comparison with similar phenolic acids (Graf 
1992). 

Several reports have evaluated its occurrence, soil 
levels, metabolism in plants and microorganisms, industrial 
applications, its physiological role during lignification, and 
its role as an allelochemical. In soils, FA has been detected 
at level up to 10 mM (Macias 1995). Widely present in the 
plant kingdom, it has also been studied for its properties as 
an anti-oxidant, food conservant (Graf 1992; Walters et al. 
1997), co-adjuvant, anti-inflammatory, analgesic (de Cam-
pos et al. 1998) and anti-carcinogenic (Dobhal et al. 1999). 
Moreover, FA may be found as feruloyl-CoA in the phenyl-
propanoid pathway and as a component of cross-linked 
polymers in the cell wall (Smart and O’Brien 1979; Sán-
chez et al. 1996). As a metabolite of monolignols synthesis, 
FA is ester-linked to primary cell wall oligosaccharides, 

Fig. 1 Action model for allelochemicals in plants. 
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typically to arabino residue from glucuronoarabinoxylans. 
Smith and Harris (2000) reported that FA may be ester-
linked in monocotyledons (Arecales, Commelinales, Poales, 
Zingiberales, etc). In dicots, FA may be present in Caryo-
phyllales (Hartley and Harris 1981), Solanales (Keller et al. 
1996), Brassicaceae (Chen et al. 1998), and Apiales (Parr et 
al. 1997). In soils, FA has been considered to be a strong 
allelochemical with several effects on plants, such as reduc-
tion in water utilization, inhibition of foliar expansion and 
root elongation, reduction in the rates of photosynthesis and 
inhibition of nutrient uptake (Siqueira et al. 1991; Einhellig 
1995). Einhellig (2004) suggested that simple phenolic 
acids such as ferulic acid, coumarins and tannins appear to 
have similar modes of action that affect the growth of plants 
and microbes through multiple physiological effects that 
confer on them a general toxicity. More recently, Reigosa 

and Pazos-Malvido (2007) reported the potential phytotoxic 
effects of different allelochemicals on germination and root 
growth of Arabidopsis thaliana. The authors observed that 
eleven of the 21 molecules showed significant inhibitory ef-
fects on germination, and 17 inhibited root growth. Al-
though different physiological effects are known, its pri-
mary mode of action has not been conclusively established. 
 
Allelochemical-soil-microrganism interactions: A 
big hindrance 
 
With the elucidation of certain mechanisms by which allelo-
chemicals cause their effects, researchers have been forced 
to realize that it is rare for a single allelochemical to exist 
alone under field conditions in concentrations large enough 
to have significant effects (Einhellig 1995). As described 

Fig. 2 Simplified phenylpropanoid pathway. PAL, phenylalanine ammonia-lyase, C4H, cinnamate-4-hydroxylase, 4CL, 4-coumarate:CoA ligase, HCT, 
hydroxycinnamoyl CoA: quinate/shikimate hydroxycinnamoyl transferase, C3H, coumarate-3-hydroxylase, CCoAOMT, caffeoyl coenzyme A 3-O-
methyltransferase, CCR, cinnamoyl CoA reductase, F5H, ferulate 5-hydroxylase, COMT, caffeic acid O-methyltransferase, CAD, cinnamyl alcohol 
dehydrogenase, ALDH, aldehyde dehydrogenase (Chen et al. 2006). 
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earlier, an interfering factor in allelopathy is the interaction 
between the allelochemical and another chemical com-
pound in the soil. Mixtures of non-inhibitory concentrations 
of individual phenolic acids may inhibit plant growth in an 
additive (equal to the sum of the effects of each alleloche-
mical tested separately), synergistic (greater than the sum of 
the effects of each allelochemical) or antagonistic (lower 
than the sum of the effects of each allelochemical) manner 
(Rasmussen and Einhellig 1977). Blum et al. (1985) de-
monstrated that, in nutrient solutions, the leaf expansion 
and dry weight were reduced by single and multiple treat-
ments of FA, vannilic acid (VA) and p-coumaric acid (p-
CA). The effects of the mixture of allelochemicals were ad-
ditive (for 0.5 mM FA plus 0.5 mM p-CA mixture) and an-
tagonistic (for 0.5 mM FA plus 0.5 mM VA mixture). Using 
soil systems, Blum et al. (1985) and Gerig and Blum (1991) 
reported that the effects of FA plus VA, FA plus p-hydroxy-
benzoic (p-HBA) and p-CA plus p-HBA acid mixtures on 
leaf area expansion revealed additive effects. Similar ad-
ditive (FA plus VA) effects on lettuce root growth were ob-
served by Sampietro et al. (2006). Conducting split-root ex-
periments, Lehman et al. (1994) verified that the simultane-
ous effects of FA and p-CA on leaf expansion were additive. 
The inhibition of leaf expansion was directly related to the 
concentrations of the acid(s) and the proportion of roots 
treated with the acid(s). Soybean roots cultivated in nutrient 
solution containing FA or VA (0.5 mM; 1.0 mM and equi-
molar mixtures) for 48 h were affected (Suzuki et al. 2003). 
Acting by themselves, both compounds (at 0.5 or 1.0 mM) 
decreased root length, and fresh and dry weights, and in-
creased soluble and cell wall-bound peroxidase activities. 
At 1.0 mM, FA increased (but VA decreased) the phenylala-
nine ammonia-lyase (PAL) activity. Acting simultaneously, 
the effects of the allelochemical interaction were lower than 
the sum of the effects of each compound tested separately, 
an example of antagonism. 

Another complex issue involves soil interactions. Re-
versible sorption of phenolic acids by soils provides short-
term protection to FA and other phenolic acids from micro-
bial degradation, affecting the intensity and the duration of 
this intensity (Blum 1998). Introduction of microorganisms 
into the soil indicates rapid utilization of allelochemicals. 
Differential soil fixation, microbial production of benzoic 
acids (VA, p-HBA) from cinnamic acids (FA and p-CA, res-
pectively) and further differential utilization of cinnamic 
and benzoic acids by microorganisms reveal that these con-
ditions may influence the magnitude and duration of the 
phytoxicity of the individual allelochemical. Furthermore, 
the rhizosphere and bulk-soil bacteria may affect the access 
of phenolic acid toward the root. Phenolic acid-utilizing 
bacteria are induced/selected by less than 0.1 μmol g-1 of 
phenolic acid. For a 0.6 μmol g-1 soil, equimolar phenolic 
acid mixture composed of p-CA, FA, p-HBA and VA, 
modeling indicated that a 500% increase of phenolic acid in 
the rhizosphere, utilizing bacteria, would decrease the inhi-
bition of cucumber leaf expansion by about 5%. In some 
cases, there is an inverse relationship between the size of 
the microbial rhizosphere population and the intensity of 
the allelochemicals’ effects (Blum et al. 2000). 
 
Uptake of FA: More complexity 
 
One of the aims of investigating allelopathic interactions 
has been to develop means of predicting plant effects after 
their uptake. In this context, the uptake of FA (as radiotracer 
U-ring-14C ferulic acid) from solutions (0.1 to 1.0 mM, pH 
4.0 to 7.0) was monitored in intact and excised cucumber 
roots by Shann and Blum (1987). Results revealed that FA 
uptake was directly proportional to its concentration and in-
versely to the pH of the nutrient solution. The effects were 
more evident in relation to the concentration of FA than its 
net uptake (Lehman and Blum 1999). After uptake, the in-
tensity of the effects depended on the constant presence of 
the allelochemical surrounding the seedling roots. If re-
moved from the nutrient solution, effects may be reverted. 

Moreover, the proportion of the root system in direct con-
tact with FA directly affects the allelopathic responses, such 
as root growth, water utilization and nutrient uptake (Klein 
and Blum 1990). In fact, Lehman and Blum (1999) demons-
trated that the inhibition of net phosphorous uptake was re-
lated to the direct contact of the root system with FA rather 
than to its uptake. 

A significant interaction has been verified between en-
vironmental temperatures and FA treatments. At 0.4 mM, 
FA reduced the dry weight of soybean seedlings grown at 
34°C, while its effects were lower at 23°C. It may be plausi-
ble that temperature stress enhances allelochemical inhib-
ition, indicating that interactions with the environment 
should be taken into account in understanding allelopathy 
(Einhellig and Eckrich 1984). Similarly, exudation of some 
benzoic and cinnamic acid derivatives by cucumber roots 
also increased with the temperature and/or photoperiod (Pra-
manik et al. 2000). FA caused more damage in root growth, 
water utilization, and leaf transpiration than other cinnamic 
and benzoic acids derivatives (Rasmussen and Einhellig 
1977; Blum and Dalton 1985; Gerig and Blum 1991). In 
general, the main effects were associated with an increase in 
number of secondary roots and a reduction of the root/stem 
ratio (Blum and Rebbeck 1989; Vaughan and Ord 1990). 
 
EFFECTS OF FA ON METABOLISM: SEEKING 
ANSWERS 
 
There are several proposed modes of action for allelochemi-
cals. As pointed out by Einhellig (1995), “the phytotoxicity 
of many allelochemicals may be from a generalized cellular 
disruption rather than a specific mechanism”. Due to the 
diversity of compounds, a common allelochemical does not 
exist, nor is there a single mode of action for all alleloche-
micals. Therefore, the mode of action remains an open ques-
tion. Some FA effects on plant metabolism will be related 
below. 
 
Effects on carbon partition, carbohydrates and 
lipids 
 
It has been verified that FA reduces the conversion of glu-
cose to soluble amino acids, proteins and organic acids 
(Danks et al. 1975), and facilitates the incorporation of phe-
nylalanine in proteins (van Sumere et al. 1971). A plausible 
explanation is that carbohydrate partitioning in plants drives 
toward growth and synthesis of secondary metabolites, 
during differentiation or under stress (Matsuki 1996). Under 
FA stress, glucose may be released into the cytosol and, fur-
ther, used in the shikimic and phenylpropanoid pathways, 
reducing the carbon flux in the primary metabolism. In 
addition, FA decreases CO2 reduction by photosynthesis (Yu 
et al. 2003), which may be related to changes in chlorophyll 
content (Einhellig and Rasmussen 1979; Blum and Rebbeck 
1989), in glucose metabolism (Ferrarese et al. 2000). This 
might be associated with the conspicuous reduction in the 
starch stores of cap cells shown by ultrastructural assays 
(dos Santos et al. 2007). 

Utilization of energy necessary for cells to grow and 
multiply in response to FA has been affected in plants. FA 
reduced lipid mobilization followed by the accumulation of 
unsaturated fatty acids in canola (Brassica napus) seeds 
during germination (Baleroni et al. 2000). It also increased 
the contents of saturated and unsaturated fatty acids of the 
polar and non-polar lipid fractions and xylose, fructose and 
sucrose in soybean root (Ferrarese et al. 2001), as seen in 
Table 1. Consequently, cellular structure changes appear to 
be, at least partially, associated with alterations in lipid and 
carbohydrate metabolism (Ho 1988; Ohlrogge and Browse 
1995; Surjus and Durand 1996; Harwood 1997). Another 
fact is that malondialdehyde content, a product of lipid per-
oxidation, was strongly enhanced (152%) in cucumber roots 
by 0.5 mM FA. Moreover, the membrane injury, which 
indicates the integrity of the membrane, increased by 10% 
under FA action. It is well known that unsaturated fatty 
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acids are susceptible to free radicals. FA may then cause 
lipid peroxidation and membrane disruption leading to ion 
leakage, affecting nutrient uptake (Politycka 1996). In fact, 
the uptake of nutrients (Mg2+, Ca2+, K2+, PO4

2-, Fe3+, Mn2+, 
NO3

- and NH4
+) has been reduced by FA treatments in 

several plant species (Glass 1973, 1974; Danks et al. 1975; 
McClure et al. 1978; Kobza and Einhellig 1987; Lyu and 
Blum 1990; Bergmark et al. 1992; Booker et al. 1992). 
 
Effects on enzymes 
 
FA, as other allelochemicals, may be �-glucosylated by phe-
nol �-glucosyltransferase and affect the activities of several 
enzymes, including amylase, catalase and IAA oxidase 
(Einhellig 1995; Devi and Prasad 1996; Politycka 1996, 
1998). Special mention is made here regarding the effects of 
FA on phenylalanine ammonia-lyase (PAL) and peroxi-
dases, enzymes of the lignin pathway, which are involved in 
the synthesis of phenolic compounds in plants. 
 
Phenylalanine ammonia-lyase (PAL) 
 
As noted in Fig. 2, PAL is the first rate-limiting enzyme of 
the phenylpropanoid pathway, leading to the synthesis of 
the phenolic acids and, later, to monolignols. Similar to 
POD, increased activity of PAL may be a response of plants 
to various biotic and abiotic stresses. Few studies have been 
carried out on the effects of exogenous FA on PAL, and re-
sults are contradictory. For example, Sato et al. (1982) 
pointed out that FA was ineffective on the PAL of sweet 
potato (Ipomea batatas) and pea (Pisum sativus). FA was 
unable to affect PAL activity in cucumber (Cucumis sativus) 
roots (Shann and Blum 1987). In contrast, increased PAL 
activities were associated with a decrease in cucumber (Cu-
cumis sativus) roots after 24 and 48 h of FA treatment (Poli-
tycka 1998). In agreement with this author, dos Santos et al. 
(2004) demonstrated that PAL activities increase in soybean 
roots after 24 to 72 h of FA treatment. In addition, Politycka 
(1999) reported that an increase in the PAL activity induced 
by the action of FA and associated with reduced root growth 
of cucumber depended on ethylene synthesis. Application 
of an ethylene synthesis inhibitor (aminooxyacetic acid, 
AOA) cancelled out the effect of FA on PAL activity (Poli-
tycka and Mielcarz 2007). According to these authors, ethy-
lene participates in the retardation of cucumber root growth 
by FA. 
 

Peroxidases 
 
Some researchers have reported alterations in POD activity 
under FA action. For example, in cucumber root treated 
with FA (0.5 or 1.0 mM), the soluble and bound form of 
POD increased significantly (Shann and Blum 1987; Poli-
tycka 1996; Politycka et al. 2004). Application of 1.0 mM 
FA also caused a significant increase in both soluble and 
bound POD in maize roots and correlated with a pro-
nounced decrease in root growth (Devi and Prasad 1996). 
At 1.0 mM, FA also increased POD activity in soybean 
roots (dos Santos et al. 2004). Increase of soluble POD acti-
vity was accompanied by a decrease in root growth. Based 
on these results, the researchers above attributed FA effects 
to the production of free radicals. It is well known that solu-
ble POD catalyzes the oxidation of diverse phenolic sub-
strates and is often regarded as an antioxidant enzyme that 
protects cells from the destructive influence of oxygen radi-
cals. However, if the cells ability to scavenger oxygen radi-
cals is exceeded, phenolic acid oxidation by soluble POD 
leads to the production of quinones, which increase depola-
rization of the cell membrane and changes in lipid composi-
tion (Politycka 1996, 1998; Ferrarese et al. 2001; Doblinski 
et al. 2003). Moreover, cell wall-bound POD is associated 
with cell wall stiffening and growth-restriction (Passardi et 
al. 2005). POD is able to convert phenolic compounds, such 
as ferulic, p-coumaric and caffeic acids, into free radicals, 
which spontaneously polymerize. This essential role for 
POD in the stiffening of cell walls through the formation of 
biphenyl bridges between wall polymers and, thus, the re-
duction of the cell wall extensibility have been proposed by 
some researchers (Fry et al. 1992; Sánchez et al. 1996; dos 
Santos et al. 2004). 
 
Effects on mitochondrial respiration 
 
Several allelochemicals, such as sorgoleone, juglone, quer-
cetin, umbelliferon, gramine and cineole, have been found 
to perturb respiratory metabolism. In general, the produc-
tion of ATP in mitochondria was inhibited by a variety of 
flavonoids (Einhellig 1995). Sert et al. (1998) demonstrated 
the effects of FA on L-malate oxidation in mitochondria 
isolated from soybean seedlings. FA inhibited basal and 
coupled respiration during L-malate oxidation, depleting the 
amounts of pyruvate or oxaloacetate produced. The authors 
suggest that the site of FA is situated at some step that pre-
cedes the respiratory chain, although this action occurred at 

Table 1 Changes in some physiological and biochemical indicators in plants submitted to the FA treatment. 
Function Indicator Change 
 CO2 fixation (–) 

Glucose (–) 
Fructose (+) 

Energy carbohydrate 

Sucrose (+) 
Rhamnose (–) Structural carbohydrate 
Xylose (+) 
 Polar Apolar 
Palmitic acid (+) (+) 
Stearic acid (+) (+) 
Behenic acid (+) (+) 
Oleic acid (=) (+) 
Linoleic acid (+) (+) 

 
Fatty acids 

Linolenic acid (+) (–) 

Lipid metabolism 

Lipid peroxidation Malondialdehyde (+) (+) 
PAL (+) 
CAD/SAD (–) 
POD (+) 
ICL (–) 
ATPases (–) 
�-GT (+) 

Enzyme activities 

�-GL (+) 
Symbols: (–), decreased; (+), increased; (=): unchanged. CO2, carbon dioxide; PAL, phenylalanine ammonia-lyase; CAD/SAD, coniferyl/sinapyl alcohol dehydrogenase; 
POD, peroxidase; ICL, isocitrate-lyase; �-GT, �-glucosyltransferase; �-GL, �-glycosidase. 
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a high allelochemical concentration. 
 
CELL WALL, FA AND LIGNIFICATION: PERFECT 
LINKS 
 
Integrated with the cytoplasm, the cell wall performs a role 
of exoskeleton, conferring to the cell its form, mechanical 
resistance, pathogen protection, adherence to vicinal cells, 
and limiting the influx of water and macromolecules. Poly-
saccharides as cellulose, hemicelluloses and pectins consti-
tute its basic structure. Lignin is an important component of 
secondarily thickened plant cell walls. The biosynthesis of 
lignins proceeds through a long sequence of reactions that 
involve the cytosolic shikimate pathway. It supplies phenyl-
alanine and tyrosine. Subsequently, the general phenylpro-
panoid pathway converts phenylalanine (or, in lesser extent, 
tyrosine) into p-hydroxycinnamoyl-CoA esters. The lignin-
specific pathway starts with p-hydroxycinnamoyl-CoA es-
ters and converts them into free cinnamic acids and mono-
lignols (Fig. 2, Boerjan et al. 2003). FA and other cinnamic 
acids may covalently cross-link cell wall polymers (Fry 
1986; Ramakrishna et al. 1989), hardening the cell wall. 
This process is important in stopping elongation (Fry 1986; 

Iiyama et al. 1990) and blocking access of pathogens (As-
sabgui et al. 1993) into the cytoplasm. Apoplastic peroxide-
ses (ionic and covalently bound to the cell wall) are thought 
to catalyze the oxidation of both hydroxycinnamate cross-
linkage and monolignol polymerization, which may be 
regulated by the supply of H2O2 and ascorbic acid (Cór-
doba-Pedregosa et al. 1996; Mehlhorn et al. 1996; Sánchez 
et al. 1996; Vianello et al. 1997). 

As reported earlier (Ferrarese et al. 2001), a decrease in 
rhamnose and an increase in xylose contents were verified 
in soybean roots treated with FA. Rhamnose is a component 
of pectin and is related to the number of pectin gel ramifica-
tions and to reinforcement of the cell wall. It is thus possi-
ble that exogenous FA, esterified to polysaccharides, dec-
reases free rhamnose content by reducing pectin hydrolysis. 
On the other hand, the increased content of xylose suggests 
an activation of cell wall hydrolases and esterases, which 
release oligosaccharides (Grant Reid 1997). In brief, FA 
might directly affect the structure of the cell wall. During 
treatment, root cells may accumulate FA in the apoplast 
(Akin et al. 1992) and peroxidases may catalyze the link of 
FA in the polysaccharides, lignin (Chakraborty et al. 1993; 
Politycka 1996; Wallace and Fry 1999) and other FA. Dehy-
drodiferulic acid may form diester, ester-ether or diester-
ether cross-linkages between cell wall polymers, which may 
reinforce the cell wall against cellulases, pectinases (Akin et 
al. 1993; Wojtaszek 1997), laccase (Sterjiads et al. 1993) 
produced by pathogens, and involved in the cessation of 
cell elongation. In addition to free FA, FA-oligosaccharides 
also show biological activity as inhibitors of cell growth 
(Ishi 1997) and are involved in signal transduction between 
plants and microorganism (Peters and Verma 1990). 

Exogenously applied FA incorporates into the lignin re-
sidues (Shann and Blum 1987), inducing lignification and 
related enzymes associated with the reduced root growth of 
treated plants (Devi and Prasad 1996; Politycka 1999; dos 
Santos et al. 2004). Shann and Blum (1987) verified an 
increase in lignin contents associated with a decrease in root 
growth. In maize (Zea mays) roots, FA increased the acti-
vity of cell wall-bound POD correlated to a significant in-
crease in lignin content and a reduction in root growth 
(Devi and Prasad 1996). Politycka (1999) also verified that 
cucumber (Cucumis sativus) seedlings treated with FA sti-
mulated lignin production, coupled to a decrease in root 
growth. 
 
IS THE CELL WALL AN ACTION SITE OF FA? 
 
Recent data obtained by dos Santos (2007) revealed that FA 
affects soybean root growth due to the incorporation of FA 
into the phenylpropanoid pathway. Using phenylpropanoid 
enzyme inhibitors, the authors concluded that 4CL catalyzes 

the conversion of exogenously applied FA into feruloyl-
CoA (Fig. 2). The feruloyl-CoA formed is then converted 
into coniferal- and sinapaldehydes, which must circumvent 
the inhibited CAD reaction by polymerizing toward lignin 
in the aldehyde state. Based on this fact, and linking the 
information available in the literature for FA, these authors 
suggested a mode of action for FA (Fig. 3) considering an 
elegant model for plant response throughout biotic stress 
proposed by Wojtaszek (1997). 

In the model, the contact of exogenous FA with the root 
cell inactivates sulfhydryl groups of carrier proteins, cau-
sing an ionic disturbance and affecting nutrient uptake by 
the cell membrane (Baziramakenga et al. 1995). In the Woj-
taszek’s model, the pathogen infection generates a cascade 
of signaling events – including Ca2+ influx and proton ef-
flux – that actives the NADPH-oxidase complex (genera-
ting .O2

-) and pH-sensible cell wall POD (producing H2O2), 
which produces an oxidative burst. To date, there are no 
data on signaling events caused by FA stress. However, the 
general disturbance caused by FA must be enough to in-
crease the Ca2+ influx since its concentration is kept lower 
inside the cytoplasm by the action of ATPases. Short-time 
experiments revealed that the absence of Ca2+ in nutrient 
solution reduces FA effects on soybean roots (unpublished 
data). In addition, Converso and Fernandez (1996) found 
evidence that Ca2+ modulates POD isozymes. 

The reduced linoleic acid content after FA treatment 
(Ferrarese et al. 2001) may also be related to signaling 
events. Linoleic acid is a precursor to oxylipins, such as 
traumatin, jasmonic acid, etc. (van der Selt et al. 2000), 
which are involved in the plant defense signaling mecha-
nisms (Trawatha et al. 1995). The oxylipins pathway starts 
with the oxidation of linolenic acid by lipoxigenases, which 
are activated under stress/defense circumstances such as an 
increase of H2O2 (Fornaroli et al. 1999). On the other hand, 
jasmonic acid may inhibit plant growth and may be associ-
ated with the inhibition of root growth caused by FA (Creel-
man et al. 1992). Jasmonic acid is also related to the expres-
sion of specific POD isozymes during stress (Allison and 
Schultz 2004). 

The control of pH in H2O2 production has been demons-
trated. In beans, H2O2 is generated from .O2

- by a pH-sensi-
ble cell wall POD that requires a reductant group (Wojtas-
zek 1997). FA oxidation by POD might produce H2O2 and 
the resulting phenoxy radical may undergo dimerization. 
These dimers are, eventually, esterified to hemicelluloses, 
linking the cell wall polymers, stiffening the cell wall and 
decreasing the root growth (Zimmerlin et al. 1994; Bolwell 
et al. 1995; Vianello et al. 1997; Blee et al. 2001; Bolwell 
et al. 2002; Stobiecki 2002). Furthermore, an increase in 
H2O2 contents enhances activities of cell wall POD and lig-
nification (Whetten et al. 1998; dos Santos et al. 2004; Poli-
tycka et al. 2004). As cited earlier, FA cross-linkages are the 
initial steps of lignification (Boerjan et al. 2003). 

Experiments using inhibitors of this pathway revealed 
that FA might be channeled into the phenylpropanoid path-
way and, later on, may increase the lignin production (dos 
Santos 2007). In addition, FA-induced lipid peroxidation 
(Polyticka 1996; Doblinski et al. 2003) has been related to 
an oxidative burst (Baziramakenga et al. 1995; Devi and 
Prasad 1996). When the oxygen radicals exceed the scaven-
ger capacity of the cells, phenolic acid oxidation by PODs 
will lead to accumulation of quinones (Appel 1993; Poli-
tycka 1998). These compounds may act as proton carriers, 
intensifying depolarization of the root cell membrane. In 
summary, excessive cross-linkages, lignification and chan-
ges in the membrane permeability may cause reduced root 
growth (Lee et al. 1982; Devi and Prasad 1996). 
 
FERULIC ACID TOMORROW: WHAT HAPPENS 
NEXT? 
 
Available data related to the effects of FA on plants indicate 
plausible action sites during FA stress, especially the puta-
tive starting effects on sulfhydryl groups of carrier proteins 
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and the irreversible reduction of cell wall extensibility. Root 
responses to the FA action include activation of POD, cross-
links between cell wall polymers and reduction in cell wall 
extensibility. Moreover, exogenous FA activates cell wall 
POD, increases apoplastic H2O2 content, and may be incor-
porated into the metabolic pathway that leads to lignin pro-
duction. 

In spite of related findings, further studies are required 
to elucidate some of the possibilities suggested. These in-
clude: (1) identification of reactive oxygen species (ROS), 
such H2O2 and .O2

-, possibly involved in these responses; 
(2) determination of activities of the enzymes involved in 

H2O2 production, for example, NADH-oxidase and pH-de-
pendent cell wall POD; (3) verification of the involvement 
of other phenylpropanoid pathway enzymes (e.g. treatment 
of cell wall POD with specific inhibitors); (4) comparison 
of plants with CAD-deficient responses with non-deficient 
plants treated with FA and (5) identification of the alde-
hydes in induced lignin. Further data must strengthen the 
role of FA and other compounds in plant allelopathy. 
 
 
 
 

Fig. 3 Proposed mode of action for ferulic acid on lignification of soybean roots. PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 
4CL, 4-coumarate:CoA ligase; HCT, hydroxycinnamoyl-CoA: quinate/shikimate hydroxycinnamoyltransferase; C3H, p-coumarate 3-hydroxylase; 
CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl-CoA reductase; F5H, ferulate 5-hydroxylase; COMT, caffeic acid/5-hydroxy ferulic 
acid O-methyltransferase; CAD, cinnamyl alcohol dehydrogenase; peroxidase (POD); ferulic acid (FA); piperonylic acid (PIP); 3,4-(methylenedioxy) 
cinnamic acid (MDCA). (1), Chen et al. (2006); (2), dos Santos et al. (2004); (3), Shann and Blum (1987); (4); Baziramakenga et al. (1995); (5), 
Wojtaszek (1997); (6), Boerjan et al. (2003). 
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