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ABSTRACT 
Under natural conditions, plants are frequently exposed to transient or permanent soil waterlogging. Flooding drastically influences the 
soil physico-chemical properties, most notably soil redox potential, pH and O2 level. Thus, conditions of hypoxia or anoxia are commonly 
encountered by plant root systems. These O2 restrictive conditions dramatically affect plant growth, development and survival. One of the 
best characterised plant responses to soil waterlogging is the metabolic switch from aerobic respiration to anaerobic fermentation. In fact, 
most proteins induced during hypoxic conditions are enzymes involved in the establishment of this fermentative pathway. Because the 
plant cells need to keep a continuous ATP supply, the use of alternative electron acceptors and/or alternative pathways may be key 
elements of survival under soil waterlogging. The plant response may also include a reduction in stomatal conductance and 
photosynthesis, as well as root hydraulic conductivity. These physiological modifications may in turn affect carbohydrate reserves and 
translocation. In fact, efficient use of carbohydrates may discriminate between tolerant and intolerant species. Other observed adaptations 
include morphological changes which comprise the formation of hypertrophied lenticels, the initiation of adventitious roots and/or the 
development of aerenchyma. Our knowledge of the basic adaptive mechanisms of plants to soil waterlogging has benefited from large 
scale genomic and proteomic approaches, however, the diversity of the adaptive responses involved underlines the difficulty when 
studying this stress. This update reviews our current comprehension of the metabolic, physiological and morphological responses and 
adaptations of plants to soil waterlogging. 
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INTRODUCTION 
 
Soil waterlogging has long been identified as a major abi-
otic stress and the constraints it imposes on roots have mar-
ked effects on plant growth and development. When such 
events take place in the spring, they can greatly reduce seed 
germination and seedling establishment. Thus, soil water-
logging is an important factor affecting the growth, deve-
lopment and survival of numerous plant species, not only in 
natural ecosystems but also in agricultural and horticultural 
systems (Dat et al. 2006). 

Rapid changes in soil properties take place following 
soil waterlogging. As water saturates the soil pores, gases 
are displaced, a reduction in gas diffusion occurs and phyto-
toxic compounds accumulate as anaerobic conditions pre-
vail. All these changes greatly affect the capacity of a plant 
to survive such conditions. In response, the stomatal resis-
tance increases, photosynthesis and root hydraulic conduc-
tivity decline, and the translocation of photoassimilates is 
reduced. 

However, one of the best characterised plant adapta-
tions to hypoxia/anoxia includes a switch in biochemical 
and metabolic processes commonly observed when O2 
availability becomes limiting (Dat et al. 2004). The selec-
tive synthesis of a set of about 20 anaerobic stress proteins 
(ANPs) enables oxygen-independent energy generating me-
tabolic processes under conditions unfavourable for aerobic 
energy production (Subbaiah and Sachs 2003). Other ob-
served adaptations include morphological and anatomical 
changes which comprise the formation of hypertrophied 
lenticels, the initiation of adventitious roots and the deve-
lopment of aerenchyma (Vartapetian and Jackson 1997; 
Jackson and Colmer 2005; Folzer et al. 2006). 

This review details the different plant stress responses 
to hypoxia/anoxia, induced by soil waterlogging/flooding 
and examines some of the key metabolic, physiological and 
morphological adaptive features. 
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CHANGES IN THE ROOT ENVIRONMENT DURING 
SOIL WATERLOGGING 
 
As water saturates the soil, air spaces are filled, leading to 
the modification of several soil physico-chemical character-
istics (Kirk et al. 2003; Dat et al. 2004). The first event that 
takes place is in fact the increased presence of H2O: soil 
water saturation characterises flooding. Nevertheless, the 
mechanisms which trigger a plant response are often pre-
sumed by-products of root zone flooding (i.e. changes in 
soil redox and pH; a decline in O2 level …). 

Soil redox potential (Eh) is often considered the most 
appropriate indicator of the chemical changes taking place 
during soil flooding (Pezeshki and DeLaune 1998). Eh 
generally declines during soil waterlogging (Pezeshki and 
DeLaune 1998; Pezeshki 2001; Boivin et al. 2002; Lu et al. 
2004). It is not only an indicator of O2 level (Eh around 
+350 mV under anaerobic conditions) (Pezeshki and De-
Laune 1998) as reducing conditions lead to a high compe-
titive demand for O2, it also critically affects the availability 
and concentration of different plant nutrients (Pezeshki 
2001). However, changes in Eh are influenced by the pre-
sence of organic matter as well as Fe and Mn (Lu et al. 
2004). Soil reduction induces the release of cations and 
phosphorous through adsorption of ferrous ion and disso-
lution of oxides (Boivin et al. 2002). Soil reducing condi-
tions also favour the production of ethanol, lactic acid, 
acetaldehyde and acetic and formic acid. 

Another soil chemical characteristic which is strongly 

affected by soil waterlogging conditions is soil pH, which is 
negatively correlated with Eh (Singh 2001; Zarate-Valde et 
al. 2006). The soil pH generally tends to increase towards 
neutrality upon waterlogging (Lu et al. 2004). The increase 
in pH may be explained by the dissolution of carbonate and 
bicarbonate early during waterlogging (Lu et al. 2004). Soil 
pH also affects the turnover of soil organic matter and pro-
cesses such as mineralization, nitrification and urea hydro-
lysis (Probert and Keating 2000). 

Overall, however, one of the main effects of flooding is 
a lower pool of available O2 in the submerged plant part, as 
gases diffuse 10,000 faster in air than in water. The effect of 
O2 limitation on cellular metabolism is concentration de-
pendent and the gradual decline in O2 availability in the 
root environment has varying effects on plant metabolism: 
i) normoxia allows aerobic respiration and metabolism to 
proceed normally and most of the ATP is generated via oxi-
dative phosphorylation, ii) hypoxia occurs when the reduc-
tion in available O2 starts to be a limiting factor for ATP 
production through oxidative phosphorylation and, iii) ano-
xia when ATP is only produced through fermentative gly-
colysis, as no more O2 is available. Thus, as anaerobic con-
ditions develop in the waterlogged soil, there is an in-
creasing amount of by-products of fermentative metabolism 
accumulating in the root environment and the levels of CO2, 
methane and volatile fatty acids increase (Pezeshki 2001). 
The decline in available energy has dramatic consequences 
on cellular processes, leading to water and nutrient imba-
lances and/or deficiency (Dat et al. 2006). In addition, these 

Fig. 1 Schematic diagram of the main metabolic pathways proposed during plant flooding stress. Hypoxia causes a decrease in mitochondrial res-
piration, which is partly compensated by increases in both the glycolytic flux and fermentation pathways. Nitrate has been proposed as an intermediate 
electron acceptor under low O2 tensions and may participate in NAD(P)H oxidation during hypoxia (Igamberdiev et al. 2005). NO can be oxygenated to 
nitrate with the tightly bound O2 of class-1 hemoglobin [Hb(Fe2+)O2], which is oxidized to metHb [Hb(Fe3+)]. The alanine aminotransferase enzyme 
which converts pyruvate to alanine is strongly induced in hypoxic conditions. However, unlike ethanol formation, there is no consumption of NAD(P)H in 
the process (Gibbs and Greenway 2003). MetHb-R: methemoglobin reductase; NO: nitric oxide. 
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environmental changes may also make the plant more prone 
to other stresses, more particularly to pathogen infection 
(Munkvold and Yang 1995; Yanar et al. 1997; Balerdi et al. 
2003). 
 
METABOLIC RESPONSES AND ADAPTATIONS TO 
HYPOXIA AND ANOXIA 
 
The immediate consequence of soil waterlogging is a period 
of hypoxia, followed by a strong decline in O2 leading to 
anoxic conditions (Blom and Voesenek 1996). Indeed, cel-
lular oxygen deficiency is termed “hypoxic” as soon as oxy-
gen levels limit mitochondrial respiration and “anoxic” 
when respiration is completely inhibited. As respiration de-
clines, the electron flow through the respiratory pathway is 
reduced, thus diminishing ATP production. Consequently, 
chemical oxidising power (i.e nicotinamide adenine dinuc-
leotide, NAD+) must be generated via alternative pathways 
that do not use O2 as terminal electron acceptor (Roberts et 
al. 1984; Drew et al. 1994; Drew 1997; Summers et al. 
2000). As adenosine diphosphate (ADP) oxidative phospho-
rylation becomes limiting, plants shift their metabolism 
from aerobic respiration to anaerobic fermentation (Fig. 1) 
(Peng et al. 2001; Fukao and Bailey-Serres 2004). The fer-
mentative pathway serves as a metabolic safe route and  
includes two steps: carboxylation of pyruvate to acetalde-
hyde (catalysed by pyruvate decarboxylase, PDC) and the 
subsequent reduction of acetaldehyde to ethanol with con-
comitant oxidation of NAD(P)H to NAD(P)+, catalysed by 
alcohol dehydrogenase (ADH) (Vartapetian and Jackson 
1997; Kingston-Smith and Theodorou 2000; Nakazono et al. 
2000). The fermentative metabolic route allows the synthe-
sis of only 2 moles of ATP against 36 per mole of glucose 
produced during aerobic respiration. To compensate the de-
ficit in energy, glycolysis is accelerated, leading to the dep-
letion of carbohydrate reserves (“Pasteur effect”). Not sur-
prisingly, the enzymes that participate in the fermentation 
pathway (see above PDC and ADH) belong to a group of 
approximately 20 ANPs, selectively induced during hypoxic 
stress, whereas overall protein synthesis is reduced (Sachs 
et al. 1980; Chang et al. 2000). ANPs which are induced 
mainly under hypoxia include enzymes of glycolysis, etha-
nolic fermentation, processes related to carbohydrate meta-
bolism but also others involved in aerenchyma formation 
(xyloglucans endotransglycosylase) and cytoplasmic pH 
control (Vartapetian 2006). 

Species tolerant to soil waterlogging are generally con-
sidered those able to maintain their energy status via fer-

mentation. In addition to their ability to keep an appropriate 
energy level, maintenance of cytosolic pH is critical. When 
hypoxia or anoxia occur the pH of the cytoplasm shows an 
early decrease that is attributed to an initial production of 
lactic acid by fermentation. According to the “Davies-Rob-
erts pH-stat theory”, the decline in pH permits the switch 
from lactate to ethanol fermentation by inhibition of lactate 
dehydrogenase (LDH) and activation of ADH (Chang et al. 
2000). Because acidosis can induce cell necrosis, the switch 
taking place maintains pH at approximately 6.8, thus allow-
ing cell survival. Although this hypothesis has been verified 
in some cases, there are numerous reports which question 
this model (Tadege et al. 1998; Kato-Noguchi 2000b). In-
deed, it is obvious today that the correlation between lactate 
and cytoplasmic acidification is not ubiquitous in all tissues 
and plants studied (Felle 2005). 

Because O2 is lacking under hypoxic conditions, it has 
to be substituted by alternative electron acceptors. In fact, 
nitrate has long been considered as a terminal electron ac-
ceptor for plant mitochondria under hypoxic or anoxic con-
ditions (Vartapetian and Polyakova 1998; Vartapetian et al. 
2003). More recently nitrate reduction has been investigated 
as an alternative respiratory pathway, and it could be crucial 
for the maintenance of redox and energy homeostasis of the 
cell under limiting oxygen conditions (Igamberdiev and Hill 
2004). This sequence of reactions, referred to as the Hb/NO 
cycle, in which NO (nitric oxide) is oxidized to nitrate, in-
volves a class 1 non-symbiotic hemoglobin which is in-
duced under hypoxia (Fig. 1) (Dordas et al. 2003; 2004; 
Perazzolli et al. 2004; Parent et al. 2008a). The postulated 
Hb/NO cycle was very recently demonstrated in hypoxic 
roots and in addition to being important during the plant 
flooding response it could also play a role early during seed 
germination (Hebelstrup et al. 2007). 
 
PHYSIOLOGICAL RESPONSES TO SOIL 
WATERLOGGING 
 
One of the earliest plant physiological responses to soil 
flooding is a reduction in stomatal conductance (Fig. 2) 
(Sena Gomes and Kozlowski 1980; Pezeshki and Chambers 
1985; Folzer et al. 2006). Soil waterlogging may not only 
increase stomatal resistance but also limit water uptake, 
thus in term leading to internal water deficit (Jackson and 
Hall 1987; Ismail and Noor 1996; Pezeshki et al. 1996; Pe-
zeshki 2001; Nicolas et al. 2005; Folzer et al. 2006; Parent 
et al. 2008a). 

Low O2 levels may also reduce hydraulic conductivity 

Fig. 2 Main physico-chemical events taking place in the rhizosphere during soil waterlogging and the resulting modifications in plant metabolism 
and physiology followed by the initiation of adaptive responses. 
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(Fig. 2; Lp) consequent to a decrease in root permeability 
(Clarkson et al. 2000; Else et al. 2001). The decrease in Lp 
may be linked to aquaporin gating by cytosolic pH (Tour-
naire-Roux et al. 2003). Evidence suggests that the regula-
tion of plasma membrane intrinsic proteins (PIPs) by pH is 
especially relevant under anoxic conditions (Postaire et al. 
2007), as a conserved histidine residue at position 197 in 
the intracellular Loop D has been identified to be the major 
pH-sensing site under physiological conditions (Tournaire-
Roux et al. 2003; Kaldenhoff and Fischer 2006; Secchi et al. 
2007). In fact, downregulation of aquaporin genes is com-
monly associated with a decline in root Lp as aquaporins 
control radial water movement in the roots (North et al. 
2004; Vandeleur et al. 2005). Thus, it seems that the re-
duced Lp throughout the plant under soil waterlogging con-
ditions is most probably linked to inhibition of water trans-
port by aquaporins, though in depth studies on the effect of 
aquaporin on whole plant water regulation during soil 
waterlogging are still lacking. Furthermore, the reduction in 
radial water movement may in part be explained by the pre-
sence of cross-sectional oxygen gradients in the root tissue. 
Indeed, there is clear evidence that in flooded soils, an O2 
gradient exists between the stele, which may be under an-
oxic conditions, and the cortical cells which may only be 
under hypoxic conditions (Thomson and Greenway 1991; 
Colmer 2003). Thus, these differences in tissue microenvi-
ronment may also contribute to cross-sectional differences 
in cellular energy levels and subsequent declines in root Lp. 

O2 deficiency generally induces a rapid reduction in the 
rate of photosynthesis in flood-intolerant plants which is 
generally considered a result of reduced stomatal aperture 
(Huang et al. 1997; Gravatt and Kirby 1998; Pezeshki and 
DeLaune 1998; Malik et al. 2001). Other factors such as a 
decrease in leaf chlorophyll content, early leaf senescence 
and a reduction in leaf area may also contribute to inhib-
ition of photosynthesis at a later stage (Sena Gomes and 
Kozlowski 1980; Cao and Conner 1999). 

When the stress is prolonged it may lead to the inhib-
ition of photosynthetic activity of the mesophyll (Huang et 
al. 1994; Liao and Lin 1994; Pezeshki et al. 1996), as well 
as reductions in the metabolic activity and the translocation 
of photoassimilates (Pezeshki 1994; Drew 1997; Pezeshki 
2001; Sachs and Vartapetian 2007). The outcome of a dec-
line in photosynthesis on plant growth and development 

may be dramatic and it may lead to concurrent physiolo-
gical dysfunctions such as the inhibition of water transport 
and changes in hormone balance (Vuylsteker et al. 1998; 
Kato-Noguchi 2000a; Else et al. 2001; Gunawardena et al. 
2001). In order to maintain its metabolic activity, the plant 
has to draw on its carbohydrate reserves. As initial carbo-
hydrate supply is correlated with the level of tolerance to 
hypoxia/anoxia in many species, presumably through its in-
volvement in providing energy during anaerobic conditions, 
the level of carbohydrate reserves may be a crucial factor in 
the tolerance to long term flooding (Setter et al. 1997; Ram 
et al. 2002). For instance, an increased capacity to utilise 
sugars through the glycolytic pathway enables rice seed-
lings to survive longer periods of flooding (Ito et al. 1999). 

Although a plant may have high sugar reserves, these 
must however be available and converted readily through 
an efficient glycolytic pathway. In fact, the availability of 
photoassimilates to the cells under anaerobiosis has been 
proposed as one of the limiting steps for survival under 
flooding conditions (Pezeshki 2001). Indeed, waterlogged 
soils tend to reduce the translocation of photosynthetic pro-
ducts from “source” leaves to “sink” roots (Barta and Sulc 
2002; Yordanova et al. 2004). As a result, the maintenance 
of photosynthetic activity and accumulation of soluble 
sugars to roots is clearly an important adaptation to flooding 
(Chen et al. 2005). 
 
MORPHOLOGICAL AND ANATOMICAL 
ADAPTATIONS TO SOIL WATERLOGGING 
 
The presence of hypertrophied lenticels is a common ana-
tomical change observed in many woody species during 
flooding (Fig. 3) (Yamamoto et al. 1995; Kozlowski 1997). 
Hypertrophic growth appears as swelling of tissues at the 
stem base and is believed to result from radial cell division 
and expansion. It has long been associated with auxin 
(IAA) and ethylene production (Blake and Reid 1981; Koz-
lowski 1997). The development of hypertrophied lenticels is 
believed to facilitate the downward diffusion of O2 as well 
as the potential venting of compounds produced in the roots 
as by-products of anaerobic metabolism (ethanol, CH4, 
CO2). Although there is still no clear consensus on their ac-
tual physiological role, their number has been associated 
with increase tolerance to flooding in Quercus species (Co-

Fig. 3 Anatomical and morphological adaptations taking place during plant flooding. 
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lin-Belgrand et al. 1991; Parelle et al. 2006b). In addition, 
hypertrophied lenticels tend to be more developed under the 
water surface (Tang and Kozlowski 1982; Parelle et al. 
2006a) which does not support a role as important facilita-
tors of O2 entry and delivery toward the root system, as 
commonly assumed. It is thus more probable that lenticels 
may in fact help maintain plant water homeostasis during 
flooding, by partially replacing the decaying root system 
and providing a means of water intake for the shoot. In sup-
port for such a role, lenticels are permeable to water (Groh 
et al. 2002), the tendency for stomatal conductance to return 
towards control levels after a transient decrease has gene-
rally been associated with their development (Pezeshki 
1996; Gravatt and Kirby 1998; Folzer et al. 2006), and their 
presence is associated with maintenance of plant water sta-
tus during flooding stress in Quercus species (Parent et al. 
2008a). Thus, although their function is still not clearly es-
tablished, it seems that lenticels may play a crucial role 
during adaptation to flooding conditions in some species by 
helping maintain shoot water homeostasis. 

Another important morphological adaptation to flooding 
is the development of adventitious roots (Fig. 3), which 
functionally replace basal roots (Bacanamwo and Purcell 
1999; Gibberd et al. 2001; Malik et al. 2001). The forma-
tion of these specialised roots takes place when the original 
root system becomes incapable of supplying the shoot with 
the required water and minerals (Mergemann and Sauter 
2000). Furthermore, decay of the main root system may be 
considered as a sacrifice to allow a more efficient use of 
energy for the development of a more adapted root system 
(Dat et al. 2006). 

Adventitious roots are commonly formed near the base 
of the stem or in the region where lenticels are abundant, 
and their growth is lateral, parallel to the water/soil surface. 
Their presence at the interface between the water saturated 
soil and atmosphere reflects their importance in replacing 
the normal root system both underwater and following re-
treat of the water table. Furthermore, the ability to produce 
adventitious roots is commonly associated with enhanced 
tolerance to flooding and their development has commonly 
been associated with ethylene production (Voesenek et al. 
1993; Mergemann and Sauter 2000; Steffens et al. 2006). 
More recently, other molecules have been identified as key 
players in their initiation (Pagnussat et al. 2002; 2003; 
2004). Indeed, recent data indicate that NO production 
works downstream of IAA in the control of adventitious 
root formation. However, the understanding of the role of 
NO in the regulation of adventitious roots is in its infancy 
and important findings on the crucial role of NO in flooding 
stress tolerance may lie ahead. 

Finally, one of the most important responses to water-
logging is the development of lacunae gas spaces (aeren-
chyma) in the root cortex (Fig. 3). The development of ae-
renchyma may be a response to flooding in both flood toler-
ant and flood intolerant species (Vartapetian and Jackson 
1997; Schussler and Longstreth 2000; Chen et al. 2002; 
Evans 2004). On the other hand, aerenchyma formation is 
an adaptive response in flood tolerant species only, specifi-
cally in bottomland woody species (Kludze et al. 1994; Pe-
zeshki 1996). The increase in porosity may enhance venting 
toward the shoot and the atmosphere of phytotoxic com-
pounds, produced in the roots (i.e., ethanol, methane) (Vis-
ser et al. 1997; Visser and Pierik 2007) and/or enhance the 
longitudinal diffusion of gases in the roots, thus increasing 
their aeration (Laan et al. 1991; Evans 2004). In fact, the 
proportion of aerenchyma is generally considered as a key 
discriminating factor between wetland and non-wetland 
plants (Vasellati et al. 2001). 

The development of aerenchyma or lacunae tissues is 
not unique to roots. They are also observed in the leaf 
sheath following submergence, forming an interconnecting 
system of shoot-root ventilation (Jackson and Armstrong 
1999; Fabbri et al. 2005). Aerenchyma increases tissue 
porosity which itself can be initiated as a result of osmotic 
dependant changes in cell shape (Fig. 3) (Justin and Arm-

strong 1987; Folzer et al. 2006). The changes in cell shape 
and assemblage in the root cortex are most likely linked to 
enhanced cell wall loosening enzyme activity and with su-
berin deposition in the exodermis (Colmer 2003; De Si-
mone et al. 2003; Armstrong and Armstrong 2005; Enstone 
and Peterson 2005). 

The development of a suberized exodermis correlates 
with the development of aerenchyma in maize (Enstone and 
Peterson 2005) and is associated with a decline in radial 
loss of root O2 (Visser et al. 2000; Armstrong and Arm-
strong 2005). Such a barrier on the periphery of the cortex 
may not only reduce the loss of O2 to the rhizosphere but 
could also protect the plant from phytotoxins produced by 
microorganisms in the environment surrounding the roots 
(Soukup et al. 2002; Armstrong and Armstrong 2005; Sou-
kup et al. 2007). 

The development of aerenchyma has been investigated 
for many years and it is now clear that at least two types of 
developmental processes are involved. The first is the con-
stitutive development of aerenchyma as it occurs whether or 
not the plant is under waterlogged conditions. It forms by 
cells separating during tissue development. The cell death 
type taking place through cell separating is termed schizo-
geny (formed by cell separation) and is developmentally 
regulated and independent of any external stimuli. It is the 
outcome of highly regulated tissue specific patterns of cell 
separation. The other type of cell death process is termed 
lysogeny (formed by partial breakdown of the cortex), re-
sembles programmed cell death, typically observed during 
the hypersensitive response of plant pathogen interactions 
(Mittler et al. 1997; Parent et al. 2008b) and more recently 
identified during other abiotic stresses (Pellinen et al. 1999; 
Dat et al. 2001; Dat et al. 2003; Van Breusegem and Dat 
2006). The active cell death process which takes place 
during aerenchyma development is genetically controlled 
and shows many similarities with apoptosis, though there is 
increasing evidence that it generally lacks several features 
of apoptotic cell death (Buckner et al. 2000). In Sagittaria 
lancifolia for example, nuclear changes (clumping of chro-
matin, fragmentation, disruption of the nuclear membrane), 
are the earliest events observed following flooding. These 
nuclear changes are followed by plasma membrane beco-
ming crenulated, tonoplast disintegration, organelle swell-
ling and disruption, loss of cytoplasmic contents and col-
lapse of the cell (Schussler and Longstreth 2000). This se-
quence of events seems common to most species studied, 
though the timing of tonoplast disruption varies (Schussler 
and Longstreth 2000). 
 
CONCLUSION 
 
This short update reviews our current understanding of 
plant biochemical, physiological and morphological respon-
ses to soil waterlogging. The changes taking place in the 
root zone and their perception by the plant are clearly es-
sential for the establishment of an appropriate response. The 
alteration in gas diffusion, the soil chemical environment 
(pH, Eh) and, the accumulation of toxic by-products of an-
aerobic processes coupled to the decline in O2 are clearly 
keys to the capacity of a plant to set up the right response. 
These adaptive features include changes in metabolism 
which may help preserve the plant cell integrity. Although 
less efficient than aerobic processes, the fermentative path-
way can help maintain the cell pH but also ATP homeostasis. 
In addition to the glycolytic pathway to lactate and to etha-
nol, nitrate reduction could be used as an alternative respi-
ratory pathway to help maintain redox and energy homeo-
stasis under hypoxic and anoxic conditions. Other features 
such as higher carbohydrate reserves and/or their efficient 
use, maintenance of photosynthesis and plant water status 
through shoot elongation or aquaporin gating may greatly 
improve plant survival to submergence. Finally, morpholo-
gical changes such as lenticels formation, aerenchyma de-
velopment, adventitious roots initiation and/or root suberi-
zation can not only ameliorate the rate of O2 diffusion to the 
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submerged growing parts but also help alleviate water and 
nutrient deficiencies. Most of these adaptive features have 
been well characterised in model species adapted to flood-
ing conditions such as maize, rice and carex, however the 
exact role of lenticels as well as the molecular processes in-
volved in aerenchyma formation still need further scrutiny. 
In addition, our understanding of the adaptive response of 
woody species making up forest ecosystems is still in its 
infancy. 
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