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ABSTRACT 
The exploration for efficient and green oxidation technologies has increased the interest in the use of enzymes to replace conventional 
non-biological methods. Among the different existing oxidant enzymes, laccases have been the subject of study due to their importance in 
environment protection, where enzymatic catalysis could serve as a more environmentally benign alternative than the currently used 
chemical processes. Fungal laccases are extracellular multi-copper oxidases mainly secreted by filamentous fungi. They have been 
attracting the attention of environmental scientists because of their ability to oxidise a wide variety of aromatic compounds. Though the 
laccases are demonstrated to have a range of promising applications, they are used in bioremediation of soils, water and the development 
of environmentally friendly processes in the pulp and paper industry. This paper reviews the potential applications of laccase enzymes 
with special reference to bioremediation. 
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INTRODUCTION 
 
Enzymatic oxidation techniques have a large potential with-
in a great variety of industrial fields including the pulp, 
paper, textile and food industries. Enzymes recycling on 
molecular oxygen as an electron acceptor are the most inter-
esting ones (Rodríguez Couto and Toca Herrera 2006, 2007; 
Mendonça et al. 2008). Thus, laccase is particularly a pro-
mising enzyme for the above-mentioned purposes. Laccases 
(EC 1.10.3.2) are defined in the Enzyme Commission (EC) 
nomenclature as oxidoreductases, which oxidize diphenols 
and related substances and use molecular oxygen as an elec-
tron acceptor (Thurston 1994; Viswanath et al. 2008a). They 
are a group of oxidative and copper-containing enzymes 
whose exploitation as biocatalysts in organic synthesis has 
been neglected in the past, probably because they were not 
commercially available (Baldrian 2006; Riva 2006; Joo et 
al. 2008). Other members of this group include mammalian 

plasma protein – ceruplasmin and ascorbate oxidase of 
plants. Although laccases are known as diphenol oxidases, 
monophenols like 2,6-dimethoxyphenol or guiacol are used 
as better substrate than diphenol-catechol or hydroquinone. 
In spite of display of different physiological functions in 
different organisms, laccases basically catalyse polymerisa-
tion and depolymerisation processes. Reactions catalysed 
by laccases proceed by monoelectronic oxidation of a suita-
ble substrate molecule to the corresponding reactive radical 
(Riva 2006). The redox process takes place with assistance 
of a cluster of copper ions that form catalytic core of the en-
zyme (Wong 2008). Laccases are of particular interest with 
regard to potential applications, because of their capabilities 
to oxidize a wide range of environmentally dangerous sub-
strates. Greater attention on laccase, an ecofriendly enzyme 
and a green catalyst in recent past is generating information 
that appeared in a number of reviews (Baldrian 2006; Riva 
2006; Singh and Chen 2008; Wong 2008) in the last couple 
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of years. These reviews dealt laccase-producing organisms, 
structure of enzyme, reaction mechanisms and general ap-
plications. In the present review, emphasis is focussed on 
molecular biology of laccase genes, heterologous expres-
sion of laccase genes and bioremediation. 
 
DISTRIBUTION AND PHYSIOLOGICAL 
FUNCTIONS 
 
Laccases are common enzymes in nature, being widely 
found in plants and fungi as well as in some bacteria and 
insects (Thurston 1994; Gianfreda et al. 1999; Mayer and 
Staples 2002; Claus 2004; Kiiskinen et al. 2004; Dong et al. 
2005; Minussi et al. 2007a). The physiological functions of 
these biocatalysts, which are mostly secreted and some-
times intracellular, are different in various organisms but 
they all catalyse polymerization or depolymerization pro-
cesses (Riva 2006). The first laccase was reported in 1883 
from Rhus vernicifera, the Japanese lacquer tree (Reinham-
mar 1984), from which the designation laccase was derived 
and the enzyme was characterized as a metal-containing 
oxidase by Bertrand (1985). Laccases have subsequently 
been detected in all species of family Anacardiaceae, and 
other plants – Acer pseudoplatanus, Pinus taeda, Aesculus 
parviflora and Populus eruamericana (Bligny and Douce 
1983; De Marco and Roubelakis-Angelakis 1997; Ranocha 
et al. 1999, Hüttermann et al. 2001; Mayer and Staples 
2002). Plant laccases are found in the xylem, where they 
presumably oxidize monolignols in the early stages of lig-
nification (Bao et al. 1993; O’Malley et al. 1993; Gavnholt 
and Larsen 2002; Mayer and Staples 2002) and also partici-
pate in the radical-based mechanisms of lignin polymer for-
mation (Hoopes and Dean 2004). In addition, laccases have 
been shown to be involved in the first steps of healing in 
wounded leaves (De Marco and Roubelakis-Angelakis 1997). 
However, the occurrence of laccases in higher plants ap-
pears to be far more limited than in fungi (Mayer and Sta-
ples 2002; Hoegger et al. 2006; Baldrian 2006). 

Only a few bacterial laccases have been described hi-
therto. The first bacterial laccase was detected in the plant 
root-associated bacterium ‘Azospirillium lipoferum’, where 
it was shown to be involved in melanin formation (Givau-
dan et al. 1993; Faure et al. 1994). An atypical laccase con-
taining six putative copper-binding sites was discovered in 
Marinomonas mediterranea, but no functional role has been 
assigned to this enzyme (Sanchez-Amat et al. 2001). Ba-
cillus subtilis produces a thermostable CotA laccase which 
participates in pigment production in the endospore coat 
(Martins et al. 2002). Although there are also some other re-
ports about laccase activity in bacteria (Givaudan et al. 
1993; Martins et al. 2002; Claus 2003; Dubé et al. 2008), it 
does not seem probable that laccases are common enzymes 
in certain prokaryotic groups. Bacterial laccase-like proteins 
are intracellular or periplasmic proteins (Claus 2003; Bal-
drian 2006). Currently, all marketed laccases are of fungal 
origin, but the recent identification and structure determina-
tion of a bacterial laccase may eventually broaden the hori-
zon for this enzyme class (Enguita et al. 2003). It remains 
to be seen whether bacterial enzymes can be expressed at 
levels sufficient for their commercialization. 

Laccases are widespread in many fungal species belon-
ging to ascomycetes and basidiomycetes and the enzyme 
has already been purified from many species. Laccase pro-
duction in Phytopathogenic ascomyycetes like Gaeuman-
nomyces graminis (Edens et al. 1999), Magnaporthe grisea 
(Iyer and Chattoo 2003), Melanocarpus albomyces (Kiiski-
nen et al. 2002), Monocillium indicum (Thakker et al. 1992), 
some soil ascomycete species from the genera Aspergillus, 
Curvularia and Penicillium (Banerjee and Vohra 1991; 
Rodríguez et al. 1996; Scherer and Fischer 1998), as well as 
some fresh water ascomycetes (Abdel-Raheem and Shearer 
2002; Junghanns et al. 2005), was reported. Among yeasts, 
to date, laccase was only purified from the human pathogen 
Cryptococcus (Filobasidiella) neoformans (Williamson 
1994). This laccase is involved in the synthesis of melanin 

which was responsible for protection of yeast from animal 
host oxidative immune response (Liu et al. 1999) and fun-
gicides (Ikeda et al. 2003). Among physiological groups of 
fungi, laccases are typical for the wood-rotting basidiomy-
cetes and a related group of litter-decomposing saprotrophic 
fungi i.e., the species causing lignin degradation. Agaricus 
bisporus (Wood 1980), Botrytis cinerea (Marbach et al. 
1984), Coprinus cinereus (Schneider et al. 1999), Phlebia 
radiata (Niku-Paavola et al. 1988), Pleurotus ostreatus 
(Sannia et al. 1986), Cerrena unicolor (Kim et al. 2002), 
Stereum ostrea (Viswanath et al. 2008b), Phlebia radiata 
(Campoy et al. 2008), Fomitella fraxinea (Park and Park 
2008), Stereum hirsutum (Mouso et al. 2007), Lentinus tig-
rinus (Ferraroni et al. 2007) and Trametes versicolor (Ro-
galski et al. 1991; Minussi et al. 2007b) are some examples 
of basidiomycetes that produce laccases. Almost all species 
of white-rot fungi were reported to produce laccases with 
different production levels (Hatakka 2001). The majority of 
laccases characterized so far have been derived especially 
from white-rot fungi because of their abundance (Gianfreda 
et al. 1999; Kiiskinen et al. 2004). Fungal laccase plays a 
role in pigment formation in spores, detoxification of phe-
nol compounds produced during lignin degradation and acts 
synergesticlly with other enzymes in the breakdown of lig-
nin. In addition to plants, bacteria and fungi, laccases or lac-
case-like activities have been found in some insects, where 
they have been suggested to be active in cuticle sclerotiza-
tion (Sidjanski et al. 1997; Dittmer et al. 2004). 
 
LACCASE REACTION MECHANISM 
 
Laccases occur often as isozymes with monomeric or dime-
ric protein structures (Thurston 1994). Most monomeric 
laccase molecules contain four copper ions in their structure 
that can be classified in three groups using UV/visible and 
electron paramagnetic resonance (EPR) spectroscopy (Le-
ontievsky et al. 1997). The type I copper (T1) is responsible 
for the intense blue colour of the enzymes at 600 nm and is 
EPR-detectable, the type II copper (T2) is colourless, but 
EPR-detectable, and the type 3 copper (T3) consists of a 
pair of copper ions that give a weak absorbance near the 
UV spectrum but no EPR signal (Palmieri et al. 1998). The 
T2 and T3 copper sites are close together and form a trinuc-
lear centre that are involved in the catalytic mechanism of 
the enzyme (Palmieri et al. 1998; Solomon et al. 2001; Pal-
mer et al. 2003; Quintanar et al. 2005; Ferraroni et al. 2007; 
Augustine et al. 2008). The three-dimensional structures of 
a few fungal laccases (Hakulinen et al. 2002; Piontek et al. 
2002) and the CotA laccase from Bacillus subtilis (Enguita 
et al. 2003) have been characterised. All fungal laccases 
show a similar architecture consisting of three sequentially 
arranged domains of a �-barrel type structure (Fig. 1). The 
active site is well conserved with four copper sites T1 is lo-
cated in domain 3 with copper lying in a shallow depression 
and trinuclear copper cluster is at the interface between do-
mains 1 and 3 with each domain providing ligand residues 
at the coordination of copper ions. The T1 copper is coordi-
nated with His-N and Cys-S as conserved equatorial ligands 
(Palmer et al. 1999). The axial position has Leu or Phe that 
does not participate in the coordination. The copper-thio-
ether bond and noncoordination residue strongly influence 
the redox potential of the enzyme. Laccases from different 
sources displays a wide range of redox potentials. The T1 
site of laccase of T. versicolor shows a high redox potential 
of 780-800mV (Pointek et al. 2002) where as the plant R. 
vernifera enzyme has a value of 420 mV (Reinhammar 
1984). The T1 site is the primary electron acceptor site where 
the enzyme catalyses four 1e-oxidations of a reducing sub-
strate (Huang et al. 1999a, 1999b). The T2/T3 trinuclear site 
is where the reduction of molecular oxygen takes place by 
accepting electrons from T1 site. Elucidation of the nature 
coordination of the copper sites in laccase by spectroscopic 
and DFT studies (Quintanar et al. 2005) reveals that the T2 
copper site is coordinated to two His–N and one oxygen 
atom as OH- while each of the T3 coppers coordinates to 
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three His residues. Further, both T2 and T3 copper sites 
have open coodrination positions towards the center of tri-
nuclear cluster with the negative protein pocket (four con-
served Asp/Glu residues). Reduction of oxygen takes place 
via the formation bound oxygen intermediates (Zoppellaro 
et al. 2000). 

Laccase promotes substraction of one electron from 
phenolic hydroxyl groups of lignin to form phenoxy radical 
(Fig. 2). The degradation of lignin proceeds by phenoxy ra-
dical that leads to either oxidation at C�-carbon or cleavage 
of bond between C�-carbon and C�-carbon. This oxidation 
results in an oxygen-centered free radical, which can then 
be converted in a second enzyme-catalysed reaction to qui-
none. The quinone and the free radicals can then undergo 
polymerization (Thurston 1994). The presence of electron-
withdrawing substituents at phenoxy groups and bulky 
groups are more difficult to be oxidised. Laccase catalysed 
oxidation of phenols, anilines and benzene correlates with 
the redox potential difference between laccase’s T1 copper 
site and the substrate (Xu 1996). Laccases has been found 
to oxidise nonphenolic compounds and lignin in the pre-
sence of mediators -2,2’-azinobis-(3-ethylbenzthiazoline-6-
sulfonate) (ABTS), I-hydroxybenzotrizole (HBT) and 3 
hydroxyanthranilic acid (Bourbonnais et al. 1995, 1998). As 
oxygen uptake by laccase in presence of ABTS is faster 
than in HBT, widening of the substrate range of laccase to 

non-phenolic subunits of lignin by the inclusion of a medi-
ator such as ABTS is shown in Fig. 3. ABTS-mediated oxi-
dation of nonphenolic substrates proceeds via electron trans-
fer mechanism through formation of ABTS++. Further in-
vestigation is warranted on the precise role of small mole-
cule mediators in the catalytic mechanism of laccase. 
 
MOLECULAR BIOLOGY OF LACCASES 
 
Isozymes of laccases in lignolytic organisms are encoded by 
multiplicity of laccase gene sequences (Mander et al. 2006). 
For example, the number of laccase genes in Rhizoctonia 
solani is four (Wahleithner et al. 1996), five in Trametes 
species (Yaver and Golightly 1996; Yaver et al. 1996; Ho-
shida et al. 2001), three in the Basidiomycete I–62 (Mansur 
et al. 1997), at least two in Agaricus bisporus (Smith et al. 
1998), at least three in Pleurotus species (Giardina et al. 
1999; Soden and Dobson 2001; Palmieri et al. 2003; Rodrí-
guez et al. 2008), four in Podospora anserine (Fernandez-
Larrea and Stahl 1996), two in Lentinula edoeles (Zhao and 
Kwan 1999) or three in Gaumannomyces graminis (Litvint-
seva and Henson 2002). For the first time, laccase genes 
were isolated and sequenced about 20 years ago from the 
fungi Neurospora crassa (Germann and Lerch 1986), As-
pergillus nidulans (Aramayo and Timberlake 1990), Corio-
lus hirsutus (Kojima et al. 1990), and Phlebia radiata (Sa-
loheimo et al. 1991). Since then, sequencing of laccase 
genes has increased considerably. Laccase genes in lignoly-
tic fungi have been cloned and characterized (Kojima et al 
1990; Saloheimo et al. 1991; Coll et al 1993; Giardina et al. 
1995; Yaver et al. 1996; Jonsson et al. 1997). The overall 
intron–exon structure of all three laccase genes in G. gra-
minis (Litvintseva and Henson 2002) and in P. ostreaus 
(Giardina et al. 1999) is distinct. Analysis of laccase genes 
in different organisms points out conserved sequences in 
genes that encode copper binding regions of N-terminal do-
main of laccase enzyme. These sequences are laccase gene-
specific and have become basis for PCR–based screening 
for the presence of the laccase genes in organisms (Pointing 
et al. 2005). However, the number of laccase genes of which 
the corresponding protein products have been experimen-
tally characterized is significantly lower. To date, there are 
about 50 such enzymes, most of which are fungal laccases 
(Morozova et al. 2007). A typical laccase gene codes for a 
protein of 500-600 amino acids with a molecular weight 
usually ranging from 60 to 90 kDa, when determined by 
SDS-PAGE (Kiiskinen 2004; Jolivalt et al. 2005; Viswanath 
et al. 2008b). The difference between the molecular weight 
predicted from the peptide sequence and the experimentally 
obtained molecular weight is caused by glycosylation, 
which typically accounts for about 10-20% of the total MW 
(Froehner and Eriksson 1974; Coll et al. 1993; Giardina et 
al. 1996; Wahleithner et al. 1996; Dedeyan et al. 2000; Gal-
haup et al. 2002). Although laccase production in organisms 
is known to be influenced by a number of physiological and 
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Fig. 1 Ribbon representation of the X-Ray crystallographic structure 
of Trametes versicolor laccase. Modified from figure at 
www.chem.ox.ac.uk/icl/faagroup/fuelcell.html. 
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environmental factors, little work has been done to examine 
the regulation of expression of laccase genes at molecular 
level (Fernandez–Larrea and Stahl 1996; Mansur et al. 1997). 
Probing by PCR-based and Northern blot methods indicates 
that expression of laccase genes in organisms was differen-
tially regulated. For instance, lcc1 gene in a pathogen G. 
graminis was transcribed constitutively under all conditions 
whereas lcc2 was copper–inducible (Litvintseva and Hen-
son 2002). Transcription of lcc3 was observed only when 
the fungus was grown in association with the host plant. 
Similar observation on induction of transcription of laccase 
gene in another pathogen – Botrytis cinera occurred with 
only addition of pectin product of the host plant to the cul-
ture (Pezet 1998). The animal pathogen – C. neoformis ex-
presses laccase that is involved in biosynthesis of melanin-
like pigment in mouse tissue. Transcript levels of lcc1 and 2 
in Basidiomycete I-62 were inducible by veratryl alcohol 
during different stages of life cycle whereas lcc3 was not 
inducible (Mansur et al. 1998). Addition of 2,5 xylidine to 
the culture increased lcc1 mRNA levels in Trametes villosa 
(Yaver and Golightly 1996) but did not affect lcc2 mRNA 
levels. 

Laccase production is subject to complex regulation by 
nutrients in the culture medium during the fungal growth 
(Soden and Dobson 2001; Cavallazzi et al. 2005; Dekker et 
al. 2007). Expression of laccase in some fungi is regulated 
by nitrogen-limiting conditions (Kirk and Farrell 1987; Perie 
and Gold 1991; Eggert et al. 1996; Pointing et al. 2000) 
while in others nitrogen sufficiency results in enhanced en-
zyme production. The effect of various nutrient nitrogen 
concentrations on expression of lcc genes at molecular level 
in T. Versicolor was examined (Collins and Dobson 1997). 
There was a direct correlation between concentration of nit-
rogen nutrient in growth medium and the level of lcc ex-
pression by T. versicolor. In Basidiomycetes 1-62 under 
nonlimiting nitrogen conditions, lcc1 and lcc2 transcript 
levels increased 100-fold over limting conditions (Mansur 
et al. 1998). The use of 1% cellulose as a carbon source in-
creased both lcc1 mRNA and lcc2 mRNA of Lentinula edo-
des (Zhao and Kwan 1999). A medium with high nitrogen 
has been shown to induce transcription of laccase genes in 
the Basidiomycete I-62 (CECT 20197) and in Pleurotus 
sajor-caju (Soden and Dobson 2001). 

Copper is also often a strong inducer of laccase gene 
transcription, and this has been suggested to be related to a 
defense mechanism against oxidative stress caused by free 
copper ions (Fernandez-Larrea and Stahl 1996; Collins and 
Dobson 1997; Palmieri et al. 2000; Soden and Dobson 2001; 
Galhaup et al. 2002; Litvintseva and Henson 2002; Dekker 
et al. 2007). In addition to copper, other metal ions such as 
Mg2+, Cd2+ or Hg2+ can stimulate laccase expression (Scheel 
et al. 2000; Soden and Dobson 2001; Galhaup et al. 2002). 
Metal response elements (MRE) with consensus sequences 
are found in the promoter regions of two fungal laccase 
genes of P. anserine (Fernandez–Larrea and Stahl 1996) and 
the Basidiomycete PM 1 (Coll et al. 1993). Involvement of 
these elements on copper induction of expression of lcc 
genes needs to be further assessed. 

 Certain aromatic compounds that are structurally re-
lated to lignin precursors, such as 2,5-xylidine or ferulic 
acid, have also been shown to increase laccase gene trans-

cription in Trametes villosa, T. versicolor and Pleurotus 
sajor-caju (Yaver et al. 1996; Collins and Dobson 1997; 
Soden and Dobson 2001). Current understanting of dif-
ferential expression of laccase genes in lignolytic orga-
nisms is fragmentary and needs to be further improved. 
 
HETEROLOGOUS PRODUCTION OF LACCASES 
 
The most important obstacles to commercial application of 
laccases are the lack of sufficient enzyme stocks and the 
cost of redox mediators. In order for laccases to be effective 
in environmental detoxification, large amounts of active en-
zyme are needed. Since an inexpensive source of laccase 
must be obtained for the some potential applications to be-
come a reality. There have been several reports of heterolo-
gous expression of recombinant laccases (Table 1). Laccase 
genes from Myceliophthora thermophila (Bulter et al. 2003), 
Trametes versicolor (Cassland and Jonsson 1999; Klonow-
ska et al. 2005), Coriolus hirsutus (Kojima et al. 1990) and 
Melanocarpus albomyces (Kiiskinen and Saloheimo 2004) 
in Saccharomyces cerevesiae were expressed. Similarly, ex-
pression of laccase genes from Pleurotus sajor – caju (So-
den et al. 2002), Trametes trogii (Colao et al. 2006) and 
Pycnoporus cinnabarinus (Otterbein et al. 2000) was in Pi-
chia pastoris (Hong et al. 2002), those from Pleurotus os-
treus (Piscitelli et al. 2005; Faraco et al. 2008) in Kluve-
romyces lactis, Trametes versicolor laccase genes in Yar-
ronia lipolytica (Jolivolt et al. 2005) and the laccase gene 
of Coriolus hirsitus (Sonoki et al. 2005) and Lentinula edo-
des (Sakamoto et al. 2008) was in tobacco, Myceliophthora 
laccase gene in Aspergillus oryzae (Berka et al. 1997), and 
the Pycnoporus laccase gene (Record et al. 2002) and Tra-
metes versicolor in Aspergillus niger (Bohlin et al. 2006). 
Laccase production levels have often been improved signi-
ficantly by expression in heterologous hosts, but the repor-
ted levels are still rather low for industrial applications 
(Table 1). The common problems associated with heterolo-
gous expression of fungal enzymes are incorrect folding of 
the polypeptide and inefficient codon usage of expression 
organisms, resulting in non-functional or low yields of en-
zyme. The incorrect substitution of carbohydrate residues 
during glycosylation of proteins, which is due to preferen-
tial utilization of specific carbohydrates by the expression 
organism, may pose an additional problem to heterologous 
expression. These problems are being overcome by using 
more advanced organisms as expression hosts whose codon 
usage and molecular folding apparatus are suitable for cor-
rect expression of these proteins. 

The importance of adequate copper concentration for 
proper laccase folding was further corroborated by studies 
in which two genes related to copper-trafficking in T. ver-
sicolor were over-expressed in S. cerevisiae expressing T. 
versicolor lcc3 gene; the heterologous laccase production 
by S. cerevisiae was improved up to 20-fold (Uldschmid et 
al. 2003). The effect was suggested to result from more ef-
ficient transport of copper to the Golgi compartment (Uld-
schmid et al. 2003). 

Directed evolution has also been used for improving 
heterologous laccase production. A site directed mutation/ 
random mutation in the Myceliophthora thermophila lac-
case gene accompanied by evolution resulted in the highest 

Table 1 Laccase production in heterologous hosts  
Laccase gene Production host Laccase production (mg1-1)* 
Ceriporiopsis subvermispora lcs-1 (Larrondo et al. 2003) Aspergillus nidulans 

Aspergillus niger 
1.5 
1.5 

Myceliophthora thermophila lcc1 (Bulter et al. 2003) Saccharomyces cerevisiae 18 
Pleurotus sajor-caju lac4 (Soden et al. 2002) Pichia pastoris 4.9 
Pycnoporus cinnabarinus lac1 (Record et al. 2002) Aspergillus niger 70 
Pycnoporus cinnabarinus lac1 (Sigoillot et al. 2004) Aspergillus oryzae 80 
Trametes versicolor (Jolivalt et al. 2005) Yarrowia lipolytica 2.5 
Trametes versicolor lac1 & lac2 (Bohlin et al. 2006) Pichia pastoris 2.8 
Trametes trogii lac1 (Colao et al. 2006) Pichia pastoris 17 
* The reported production levels have been obtained in shake flask cultivations, except in the case of Phlebia radiata laccase which was produced in a laboratory fermenter. 
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reported laccase production level in S. cerevisiae but also 
enhanced Kcat of the enzyme (Bulter et al. 2003). A similar 
strategy with Fome lignosus yielded mutant laccase enzyme 
with four substitutions (Hu et al. 2007). This mutant en-
zyme exhibited improved kinetic properties due to rapid 
movement of water along water channel in the enzyme 
molecule. A themostable laccase that tolerates high concen-
trations of solvents is the genetic product of five rounds of 
directed evolution in Saccchromyces cerevisiae (Zumarraga 
et al. 2007). Thus, efforts have to be made in order to 
achieve cheap overproduction of this biocatalyst in hetero-
logous hosts and also their modification by chemical means 
of protein engineering to obtain more robust, active and 
tailormade enzymes. 
 
INDUSTRIAL APPLICATIONS 
 
Laccases of fungi are of particular interest with regard to 
potential industrial applications, because of their capability 
to oxidize a wide range of toxic and environmentally prob-
lematic substrates. Oxidation reactions are comprehensively 
used in industrial processes, for instance in the textile, food, 
wood processing, pharmaceutical and chemical industries. 
Enzymatic oxidation is a potential substitute to chemical 
methods, since enzymes are very specific and efficient cata-
lysts, and are ecologically sustainable. Laccases are cur-
rently studied intensively for many applications and they 
are already used in large scale in the textile industry (Tza-
nov et al. 2003; Rodríguez Couto and Toca Herrera 2006; 
Casieri et al. 2008). Related to textile bleaching, in 1996 
Novozyme (Novo Nordisk, Denmark) launched laccase en-
zyme in denim finishing: DeniLite. In 2001, the company 
Zytex (Zytex Pvt Ltd. Mumbai, India) developed a formu-
lation based on LMS capable of degrading indigo in a very 
specific way. The trade name of the product is Zylite. Toge-
ther with low molecular weight redox-mediator compounds, 
laccases can generate a desired worn appearance on denim 
by bleaching indigo dye (Campos et al. 2001). The potential 
use of laccase for bleaching has been investigated and this 
has even led to the esoteric suggestion of using laccase in 
the presence of hydroxyl stilbenes as hair dyes (Onuki et al. 
2000). Another potential environmental application for lac-
cases is the bioremediation of contaminated soils, as lac-
cases are able to oxidize toxic organic pollutants, such as 
polycyclic aromatic hydrocarbons (Manzanares et al. 1995; 
Canas et al. 2007; Martin et al. 2007; Camarero et al. 2008) 
and chlorophenols (Gianfreda et al. 1999; Michizoe et al. 
2005; Ford et al. 2007). The most useful method for this ap-
plication would probably be inoculating the soil with fungi 
that are efficient laccase-producers, because the use of iso-
lated enzymes is not economically feasible for soil remedi-
ation in large scale. The current practical applications of the 
use of laccase, has led to a search for source of the enzyme 
from white-rot fungi, and the use of mediators, which pro-
mote or facilitate enzyme action. 

Laccases, when acting on lignin, can display both lig-
ninolytic and polymerizing (cross-linking) abilities. The sub-
strate range of laccase can be extended to cover both phe-
nolic and non-phenolic compounds by means of laccase-
mediator systems (LMS), which makes laccase suitable for, 
e.g., biobleaching of lignocellulosic pulps. As laccase/LMS 
can also help remove pitch, phenolic contaminants, and 
dyes from wood-based materials and water, laccase techno-
logy is virtually applicable to the entire production chain of 
paper products from pulping to recovery of secondary fibers 
and effluent treatment. Indeed, most of the published re-
search and applications of laccase/LMS in the forest pro-
ducts industry relate to the pulp and paper sector, where par-
ticular emphasis has been placed on studying laccase/LMS 
for use in biobleaching and mill water treatment (Petri and 
Andreas 2008). Emerging research areas include the tailor-
ing of lignocellulosic materials by laccase-assisted biograf-
ting of phenols and other compounds, and the use of laccase 
for adhesion enhancement in binderless wood boards (Petri 
and Andreas 2008). Recently, the utility of laccases has also 

been applied to Nanobiotechnology (Rodríguez Couto and 
Toca Herrera 2006). This is an increasing research field 
mainly due to the fact that laccases are able to catalyse 

Table 2 Recent industrial applications of fungal laccases. 
Application Laccase source Reference 

Trametes medusta Rehorek et al. 2004 
Trametes versicolor Blanquez et al. 2004 
Pycnoporus cinnabarinus Camarero et al. 2004 
T. versicolor Camarero et al. 2004 
Pleurotus ostreatus Hou et al. 2004 
Pleurotus eryngii Camarero et al. 2004 
T. villosa Knutson and Ragauskas 2004
T. versicolor Tavares et al. 2004 
T. versicolor Moreira et al. 2004 
Trametes hirsuta Rodriguez Couto et al. 2004a
T. hirsuta Rodriguez Couto et al. 2004b
T. hirsuta, T. versicolor Rodriguez Couto et al. 2004c
P. ostreatus Palmieri et al. 2005 
Coriolopsis rigida Gomez et al. 2005 
Funaria trogii Unyayar et al. 2005 
T. hirsuta Dominguez et al. 2005 
T. medusta Michael et al.2005 
Trametes trogii Levin et al. 2005 
T. hirsuta Rodriguez Couto et al. 2005
Collybia sp. Mc Erlean et al. 2006 
Collybia dryophila Baldrian and Snajdr 2006 
Mycena inclinata Baldrian and Snajdr 2006 
T. versicolor McErlean et al. 2006 
P. ostreatus McErlean et al. 2006 
P. ostreatus CCBAS477 Baldrian and Snajdr 2006 
P. sajor-caju Murugesan et al. 2006 
Pycnoporus coccineus Chairattanamanokorn et al. 

2006 
Rhizoctonia solani Mc Erlean et al. 2006 
Stropharia 
rugosoannulata 

Baldrian and Snajdr 2006 

T. versicolor CCBAS 614 Baldrian and Snajdr 2006 
T. hirsuta Rodriguez Couto et al. 2006
T. hirsuta Rodriguez Couto and Toca 

Herrera 2006 
T. versicolor CCT 4521 Minussi et al. 2007b 

Decolorization 
of dyes 

Stereum ostrea Viswanath et al. 2008b 
Trametes pubescens Nicotra et al. 2004 
Panus tigrinus Zavarzina et al. 2004 
Cladosporium 
sphaerospermum 

Potin et al. 2004 

Myceliophtora 
thermophila 

Nicotra et al. 2004 

Rhus vernicifera Moeder et al. 2004 
T. versicolor Dodor et al. 2004 
T. versicolor Mun-Jung et al. 2004 
P. ostreatus, T. versicolor Keum and Li 2004 
Clavariopsis aquatica Junghanns et al. 2005 
Stachybotrys chartarum Mander et al. 2006 
Stropharia 
rugosoannulata 

Steffen et al. 2007 

Stropharia coronilla Steffen et al. 2007 
Coriolopsis polyzona Cabana et al. 2007 

Degradation of 
xenobiotics 

Rigidoporus lignosus Cambria et al. 2008 
Rhus vernicifera Durante et al. 2004 
Panus tigrinus D’ Annibale et al. 2004 
Pycnoporus coccineus Jaouani et al. 2005 
Phanerochaete 
chrysosporium 

Lee et al. 2006 

T. versicolor CCT 4521 Minussi et al. 2007b 
T. versicolor Pedroza et al. 2007 
Trametes versicolor Minussi et al. 2007a 
Trametes villosa Minussi et al. 2007a 
Lentinula edodes Minussi et al. 2007a 
Botrytis cinerea Minussi et al. 2007a 
Trametes trogii Ellouze et al. 2008 

Effluent 
treatment 

Lentinus tigrinus Ellouze et al. 2008 
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electron transfer reactions without additional cofactors and 
to the development of several techniques for the immobili-
sation of biomolecules such as micropatterning, self-assem-
bled monolayers and layer-by-layer technique. These tech-
niques can be used to immobilize laccases preserving their 
enzymatic activity. Table 2 shows several recent applica-
tions of laccases with reference to bioremediation. 
 
LACCASES - ROLE IN BIOREMEDIATION 
 
Laccases have received much attention from researchers 
during the past decades due to their broad substrate range 
and to the fact that they use molecular oxygen as the final 
electron acceptor instead of hydrogen peroxide as used by 
peroxidases. This makes laccases highly interesting for a 
wide variety of processes, such as textile dye decolourization, 
pulp bleaching, effluent detoxification, biosensors and bio-
remediation. One of the major environmental problems, 
faced by the world today, is the contamination of soil, water, 
and air by toxic chemicals. With industrialization and the 
extensive use of pesticides in agriculture, the pollution of 
the environment with organic compounds has become a se-
rious problem. Eighty billion pounds of hazardous organo-
pollutants are produced annually in the United States and 
only 10% of these are disposed of safely (Reddy and Mathew 
2001). Certain hazardous compounds, such as polycyclic 
aromatic hydrocarbons (PAH), pentachlorophenols (PCP), 
polychlorinated biphenyls (PCB), 1,1,1-trichloro-2,2-bis(4-
chlorophenyl)ethane (DDT), benzene, toluene, ethylben-
zene, xylene (BTEX) and trinitrotoluene (TNT) are persis-
tent in the environment and are known to have carcinogenic 
and/or mutagenic effects. The ability of fungi to transform a 
wide variety of hazardous chemicals has arisen interest in 
using them in bioremediation (Alexander 1994; Riva 2006). 
Enzymatic treatment is currently considered an alternative 
method for the removal of toxic xenobiotics from the envi-

ronment (Gianfreda et al. 1999). 
The laccase of the ectomycorrhizal fungus Xerocomus 

chrysenteron responds to DDT stress in various ways, 
suggesting a large potential of biodegradation or minerali-
zation of DDT (Chao et al. 2008). Biodegradation of 2,4-
dichlorophenol using response surface methodology by the 
laccase of Pleurotus sp. is one of the recent applications 
demonstrated by Bhattacharya and Banerjee (2008). The 
mechanism(s) of bisphenol A (BPA) to induce cell prolifera-
tion and the occurrence of its bioremediation by treatment 
with laccase are reported by Bolli et al. (2008). BPA, a na-
turally-occurring pollutant that can be used as a model of 
environmental estrogen action complexity, promotes human 
cancer cell proliferation via ER-alpha-dependent signal 
transduction pathways. BPA oxidation by laccase impairs 
the binding of this environmental estrogen to ER-alpha 
loosing all its ER-alpha-dependent effect on cancer cell pro-
liferation. Moreover, the laccase-catalyzed oxidation of 
BPA reduces the BPA cytotoxic effect (Bolli et al. 2008). 
Recently, aqueous solutions polluted by BPA have been bio-
remediated by using laccase (Trametes versicolor) immobi-
lized on hydrophobic membranes in non-isothermal biore-
actors (Ricupito et al. 2008). Mohamad et al. (2008) des-
cribed the design of a laccase of Trametes versicolor with 
broader substrate spectrum in bioremediation. They des-
cribed the application of evolutionary trace (ET) analysis of 
laccase at the ligand binding site for optimal design of the 
enzyme. In this attempt, class specific sites from ET ana-
lysis were mapped onto known crystal structure of laccase. 
These findings provide a foundation to the design of laccase 
with a broader substrate spectrum for further expansion of 
laccase application in industry and bioremediation. 
 
Degradation of xenobiotics 
 
One of the most efficient processes to remove pollutants 
from environment is through biodegradation of xenobiotics. 
It is the process by which living organisms degrade or trans-
form hazardous organic contaminants into less toxic com-
pounds. Screening of indigenous microbes from the pol-
lutant contaminated site for their degradation potential is 
one way to approach the problem. Thus, microorganisms 
that can degrade various pollutants have been isolated with 
the eventual goal of exploiting their metabolic potential for 
the degradation of polluted sites (Spain et al. 2000; Dua et 
al. 2002; Furukawa 2003). 

Laccases are able to oxidize a broad range of xenobiotic 
compounds including chlorinated phenolics (Bollag et al. 
2003; Colao et al. 2006), pesticides (Torres et al. 2003; 
Gorbatova et al. 2006; Ford et al. 2007) and polycyclic 
aromatic hydrocarbons (Pozdnyakova et al. 2004; Tekere et 
al. 2007; Koschorreck et al. 2008). Moreover, polycyclic 
aromatic hydrocarbons, which arise from natural oil depo-
sits and utilization of fossil fuels, were also found to be de-
graded by laccases (Pointing 2001; Hu et al. 2007; Galli et 
al. 2008). Laccase purified from a strain of Coriolopsis gal-
lica oxidized carbozole, N-ethylcarbozole, fluorine and di-
benzothiophene in presence of 1-hydroxybenzotriazole and 
2.2’-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid as free 
radical mediators (Bressler et al. 2000). Patel et al. (2008) 
established the effective role of laccase of Pleurotus ostrea-
tus HP-1 in bioremediation of PAHs contaminated sites. La-
boratory experiments have demonstrated that phenols and 
aromatic amines may be removed from water by the ap-
plication of laccase (Dec and Bollag 2000). The underlying 
mechanism of the removal involves enzymatic oxidation of 
the pollutants to free radicals or quinones that undergo poly-
merization and partial precipitation (Dec and Bollag 2000). 
Laccase from white-rot fungus, Trametes hirsuta, has been 
used to oxidize alkenes (Niku-Paavola and Viikari 2000). 
The oxidation is the effect of a two-step process in which 
the enzyme first catalyses the oxidation of primary substrate, 
a mediator added to the reaction, and then the oxidized me-
diator oxidizes the secondary substrate, the alkene, to the 
corresponding ketone or aldehyde. In addition to substrate 

Table 2 (Cont.) 
Application Laccase source Reference 

Agaricus bisporus, T. 
versicolor 

Timur et al. 2004 

Aspergillus niger Timur et al. 2004 
Agaricus bisporus, T. 
versicolor 

Vianello et al. 2004 

C. unicolor Jarosz-Wilkolazka et al. 2004
T. versicolor Gomes et al. 2004 
T. versicolor Ferry and Leech 2005 
T. versicolor Roy et al. 2005 
C. unicolor Jarosz-Wilkolazka et al. 2005
Coriolos versicolor Liu et al. 2006 
Cerrena unicolor El Kaoutit et al. 2008 
Trametes hirsuta El Kaoutit et al. 2008 
Cerrena unicolor Karnicka et al. 2008 

Biosensors 

T. versicolor Boussaad et al. 2008 
Phanerochaete 
chrysosporium, 
Pleurotus eryngii 

Sigoillot et al. 2005 

Trametes versicolor, T. 
villosa 

Minussi et al. 2007a 

Lentinula edodes Minussi et al. 2007a 
Botrytis cinerea Minussi et al. 2007a 

Biopulping 

Trametes versicolor Oudia et al. 2008 
Rigidoporus lignosus Garavaglia et al. 2004 
Lentinus tigrinus Ferraroni et al. 2007 
Myceliophthora 
thermophila 

Zumárraga et al. 2007 

Organic 
synthesis 

Pleurotus ostreatus Festa et al. 2008 
Phellinus robustus Songulashvili et al. 2006 
Ganoderma adspersum Songulashvili et al. 2006 
Trametes hirsuta Selinheimo et al. 2006 
Trametes hirsuta Schroeder et al. 2008 

Food industry 

Trametes hirsuta Flander et al. 2008 
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oxidation, laccase can also immobilize soil pollutants by 
coupling to soil humic substances – a process analogous to 
humic acid synthesis in soils (Bollag and Myers 1992). The 
xenobiotics that can be immobilized in this way include 
phenolic compounds and anilines such as 3,4-dichloroani-
line, 2,4,6-trinitrotoluene or chlorinated phenols (Ahn et al. 
2002). The immobilization lowers the biological availability 
of the xenobiotics and thus their toxicity. A laccase pro-
duced in the yeast, Pichia pastoris, was engineered by site-
directed mutagenesis to improve the rate of electron transfer 
between the copper-containing active site of laccase and an 
electrode (Gelo et al. 1999). Thus, laccase may be usefully 
engineered to improve the efficiency of particular bioreme-
diation processes. 
 
Decolourization of dyes 
 
The textile industry accounts for two-thirds of the total dye-
stuff market and consumes large volumes of water and che-
micals for wet processing of textiles (Riu et al. 1998). The 
chemical reagents used are very diverse in their composi-
tion, ranging from inorganic compounds to polymers and 
organic products (Banat et al. 1996). There are about 
1,000,000 commercially available dyes with over 7×105 
tonnes of dyestuff produced annually (Zollinger 2002). Rep-
resentatives of different classes of synthetic dyes, classified 
in the colour index (C.I.) according to chemical structure 
(Wesenberg et al. 2003). Due to their chemical structure 
dyes are resistant to fading on exposure to light, water and 
different chemicals and most of them are difficult to deco-
lourize due to their synthetic origin. Government legislation 
is becoming more and more stringent, especially in the 
more developed countries, regarding the removal of dyes 
from industrial effluents (Poots and McKay 1976). Concern 
arises, as several dyes are made from known carcinogens 
such as benzidine and other aromatic compounds. Most cur-
rently existing processes to treat dye wastewater are inef-
fective and not economical. Therefore, the development of 
processes based on laccases seems an attractive solution 
due to their potential in degrading dyes of diverse chemical 
structure (Hou et al. 2004) including synthetic dyes cur-
rently employed in the industry (Rodríguez Couto et al. 
2005). The use of laccase in the textile industry is growing 
very fast, since besides to decolorize textile effluents as 
commented above, laccase is used to bleach textiles and 
even to synthesize dyes (Setti et al. 1999; Kandelbauer et al. 
2004). Flavodon flavus decolourized several synthetic dyes 
like Azure B, Brilliant Blue R in low nitrogen medium 
(Raghukumar 2000). Alternatively, laccase, along with sta-
bilizers, may be suitable for treatment of wastewater (Soa-
res et al. 2001a, 2001b). Partial decolorization of two azo 
dyes and complete decolorization of two triphenylmethane 
dyes (bromophenol blue and malachite green) was achieved 
by cultures of Pycnoporus sanguineus producing laccase as 
the sole phenoloxidase (Pointing and Vrijmoed 2000). Tra-
metes hirsuta, and a laccase purified from the fungus, was 
able to degrade triarylmethane, indigoid, azo and anthraqui-
nonic dyes used in dyeing textiles (Abadulla et al. 2000b) 
as well as 23 industrial dyes (Rodríguez et al. 1999). The 
purified laccase of white rot fungi Pleurotus ostrea and Ste-
reum ostrea, decolorized textile dyes i.e., Remazol black-5, 
Remazol blue-19 and Remazol orange-16 (Palmieri et al. 
2005; Viswanath et al. 2008b). More than 90% of decolori-
zation activity was observed after 16 h incubation with lac-
case at 20 nkat/ml for all the textile dyes used in their study. 
The degradation of azo dyes, which are the most widely 
used colorants, has been studied most (Heinfling et al. 
1997; Chagas and Durrant 2001; Martins et al. 2003; Ciul-
lini et al. 2008; Tauber et al. 2008). Other classes, such as 
anthraquinone (Knapp et al. 1995; Swamy and Ramsay 
1999; Lu et al. 2007; Guo et al. 2008), phthalocyanin (Knapp 
et al. 1995; Heinfling et al. 1997; Huang et al. 2007) and 
polymeric dyes (Glenn and Gold 1983; Camarero et al. 
2005) were also shown to be susceptible to biodegradation 
by laccases of white rot fungi. The demand for removal of 

synthetic dyes released from textile industries using laccase 
is being increased tremendously (Abadulla et al. 2000a; 
Zille et al. 2003; Baldrian and Snajdr 2006; Viswanath et al. 
2008b; Casieri et al. 2008). Therefore, searching for poten-
tial laccases to cope with this demand is an important task 
in the area of dye degradation. 
 
Effluent treatment 
 
Laccases from fungi offer several advantages of great inter-
est for biotechnological applications of industrial effluent 
treatment. As they exhibit broad substrate specificity, they 
can bleach kraft pulp or detoxify agricultural byproducts in-
cluding olive mill wastes or coffee pulp (D’Annibale et al. 
2000). Laccase of an isolate of the fungus, Flavodon flavus, 
was shown to decolourize the effluent from a kraft paper 
mill bleach plant (Raghukumar 2000). Laccase purified from 
white-rot basidiomycete, T. villosa degrades bisphenol A, an 
endocrine-disrupting chemical (Setti et al. 1999). Nonyl-
phenols have increasingly gained attention because of their 
potential to mimic the action of natural hormones in verte-
brates (Ying et al. 2002). They result from incomplete bio-
degradation of nonylphenol polyethoxylates (NPEOs), 
which have been widely used as non-ionic surfactants in in-
dustrial processes. Both nonylphenols and NPEOs are dis-
charged into the environment, mainly due to incomplete re-
moval of wastewater treatment facilities (Ying et al. 2002). 
Nonylphenols are more resistant to biodegradation than 
their parent compound and hence are found worldwide in 
wastewater treatment plant effluents and rivers (Heemken et 
al. 2001). Due to their hydrophobicity, they tend to absorb 
onto surface water particles and sediments and accumulate 
in aquatic organisms. Consequently, nonylphenols represent 
a serious environmental and human health risk. Laccases 
from aquatic hyphomycete Clavariopsis aquatica, has 
proved to degrade xenoestrogen nonylphenol (Junghanns et 
al. 2005). In addition to the potential role of such degrada-
tion processes for natural attenuation processes in fresh-
water environments, laccase also offers new perspectives 
for biotechnological applications such as wastewater treat-
ment. 

Simple bioinformatics searches that incorporate multi-
ple sources of data offer a quicker and more rapid means of 
identifying new potential targets for bioremediation as com-
pared to conventional method. Protein-ligand docking tool 
can be used to screen pollutants for their susceptibility to 
degradation by already characterized enzyme. As the sub-
strate specificity differs from one laccase to other, laccase 
from different sources can be utilized for degrading dif-
ferent pollutants. Although docking has been successfully 
used for drug screening (Drews 2000), its utility in predic-
ting the pollutants which can be potential targets for biore-
mediation has not been acknowledged so far (Suresh et al. 
2008). 

The most important obstacles for reaping benefits from 
non-specific reaction mechanism of laccase for bioremedia-
tion purpose in maintenance of clean environment are lack 
of inexpensive enzyme stocks and redox mediators. Rapid 
progress has been made over the past few years and current 
level of understanding of regulation of expression of lac-
case genes has to be improved further. Efforts have to be 
put forth for expression of laccase genes in heterologous 
hosts with larger capacity for secretion of protein. It is ex-
pected that laccases will be able to compete with other pro-
cesses such as elemental chlorine free totally chlorine blea-
ching and effluent treartment. Tailor-made laccase for speci-
fic purposes will become a possibility. 
 
CONCLUSIONS 
 
Laccases are blue copper proteins which catalyze oxidation 
reactions coupled to four electron reduction of molecular 
oxygen to water. Because of the versatility of potential sub-
strates, laccases are highly interesting as novel biocatalysts 
in various industrial processes. This review provided infor-
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mation on distribution and physiological functions of lac-
cases with their biotechnological applications with special 
reference to bioremediation with recent account. In addition, 
deeper understanding of the biochemistry of laccase will 
facilitate the development of novel and more economical 
laccase applications. 
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