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ABSTRACT 
We provide a survey of different approaches to study of phytoplankton dynamics. Our aim is to present models which show that 
phytoplankton forms large clusters of cells. We start from microscopic models describing the formation of phytoplankton clusters from 
single cells and their macroscopic limits. The macroscopic approach is modelled by means of stochastic partial differential equations or 
coagulation-fragmentation equations. Moreover, we mention advection-diffusion-reaction models. These models include interaction 
between phytoplankton, zooplankton and nutrient and vertical movement of phytoplankton. 
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INTRODUCTION 
 
Phytoplankton is the first level of food accessible to animals 
and in fact the main source of nutrient in the ocean. That is 
why understanding of its behaviour becomes so important 
and has been widely investigated by researchers from vari-
ous branches of science. Besides biological and ecological 
investigation, numerical and mathematical modelling plays 
the crucial role in understanding of plankton dynamics. In 
this paper we give a brief survey of models which describe 
the development of phytoplankton populations. We can div-
ide such models into four groups: 
(a) models described by point processes and superprocesses, 
(b) models of bio-physical coagulation processes, 
(c) coagulation-fragmentation models, 
(d) advection-diffusion-reaction models, which include mo-

dels with interaction between phytoplankton, zooplank-
ton and nutrient. 
It should be noted that our ‘classification’ is completely 

arbitrary and some models contain elements from more than 
one of these groups. Although this ‘classification’ is imper-
fect, it should help us to order our presentation. In this 
paper we describe briefly all these models concentrating ra-
ther on similarities than differences. We are going to focus 
on models which show that phytoplankton forms large clus-
ters of cells. This property is of great importance in survival 
of small herbivorous organisms, especially early larval stage 
of fish. 

Let us briefly introduce these four types of models. In 
the simplest models by Adler (1997) and Young (2001), 
described by point processes, all cells are independent and 
only diffusion and branching reproduction processes take 

place. El Saadi and Arino (El Saadi and Arino 2006; El 
Saadi and Arino pers. comm.) added to these models spatial 
interactions between phytoplankton cells caused by chemi-
cal signals. Such models use the so called Lagrangian ap-
proach: positions in space and properties of individuals are 
described separately by a system of (ordinary or stochastic) 
differential equations. Such approach is often used in indi-
vidual-based models of population dynamics (see e.g. Gue-
ron et al. 1996; Morale et al. 2005). A process with values 
in a measure space called a superprocess can be obtained as 
a limit of the point processes, when the number of cells 
tends to infinity and the frequency of the reproduction pro-
cess tends to infinity. This superprocess describes the space 
distribution of the population of cells. In this way we obtain 
the so called Eulerian approach: space distribution of the 
population is described by a (possibly stochastic) partial dif-
ferential equation. An Eulerian model usually can be ob-
tained as a continuum limit from a Lagrangian description. 
The Adler’s model will be presented in Section on Super-
processes and Plankton Dynamics, and its modifications 
containing interactions in Section on Models with Interac-
tions. 

There are numerous models concerning bio-physical 
coagulation processes in plankton communities. As we con-
centrate on population dynamics approach, we do not pre-
sent those models here. However, the coagulation process 
plays important role in our investigations, so we provide 
some necessary information on this issue in Section on Co-
agulation-Fragmentation Models. In this section we pre-
sent an Eulerian model given by Arino and Rudnicki (Arino 
and Rudnicki 2004). In this model the individual is an ag-
gregate – a group of phytoplankton cells living together. 
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Aggregates are structured by their size, which changes due 
to three processes: growth caused by cell division, fragmen-
tation and coagulation. The size distribution of aggregates 
satisfies a partial differential equation of the first order with 
two integral terms corresponding to fragmentation and co-
agulation processes. The main result of that paper is the 
existence and uniqueness of solutions and the long-time be-
haviour of the size distribution of aggregates in some spe-
cial cases. In Section Coagulation-Fragmentation Models 
we also present briefly other models based on fragmenta-
tion and coagulation processes (Ackleh and Deng 2003; 
Ackleh and Fitzpatrick 1997; Banasiak and Lamb 2008). 

More general fragmentation-coagulation models (Rud-
nicki and Wieczorek 2006a, 2006b) are studied in Section 
Individual-Based Models of Aggregates Dynamics. We 
begin this section with the presentation of some individual-
based models (Lagrangian approach) that include random 
movement of plankton particles as well as coagulation and 
disaggregation. We discuss the relation between individual-
based models and the macroscopic description by means of 
diffusion-coagulation-fragmentation equations, which can 
be obtained by the limit passage when the number of ag-
gregates goes to infinity whereas the mass of single cells 
tends to zero. Like in Adler’s model, a limit is a process 
with values in the space of measures, but the process itself 
is deterministic. If the initial value of this process is a mea-
sure absolutely continuous with respect to the Lebesgue 
measure then also the measures which are values of this 
process have densities. These densities satisfy some partial 
differential-integral equation (Eulerian approach). We also 
mention some numerical results concerning these models. 

Last section is devoted to advection-diffusion-reaction 
models. We present there models describing the vertical 
distribution of phytoplankton. Moreover, we discuss some 
papers which take into account the relationship between 
zooplankton and phytoplankton by means of various prey-
predator models. 
 
SUPERPROCESSES AND PLANKTON DYNAMICS 
 
The starting point in the model of Adler (1997) is a popu-
lation of N identical cells distributed in d dimensional space 
Rd. Cells move randomly in Rd and their movements are 
described by independent Brownian motions. Each cell can 
independently divide into two new cells or die at moments 
of time �,2�,3�,... We assume that the rate of division b and 
death μ is the same, i.e. b = μ = 1/2. Thus the size of the 
population is described by a branching process with 0 or 2 
offspring with the same probability in a single time unit. 
This assumption guarantees that the size of the population 
does not grow or decrease too fast, but the population ulti-
mately becomes extinct with probability 1. Denote by 
the measure describing the space distribution of cells at 
time t, i.e. 
 

(1) 
 

               
We should stress here that       is a random variable 

because both positions and number of cells depends on their 
random motion and the reproduction process. It means that � � � � � �  

is a stochastic process with values in the space of finite 
measures. 

Now suppose that the frequency 1/� of elementary 
events depends on the initial number of cells N. Assume 
that � = 1/N. Since the time between consecutive elementary 
events converges to zero as N ��,    for large N des-
cribes the spatial distribution of plankton cells after a large 
number of generations. A similar effect can be obtained if 
we change the scale of time and proportionally decrease the 
coefficient of diffusion of the Brownian motion. The se-
quence of processes     converges weakly as N �� to a 
process Xt with values in the space of measures, called a 
superprocess. For extensive information on superprocesses 
see (Dawson 1993; Etheridge 2000; Perkins 2002). 

The limiting process Xt has many interesting properties, 
which depend essentially on the dimension of the space. We 
only mention them without giving precise definitions. If d = 
1, then values of Xt are measures with densities f(x, t), which 
satisfy the stochastic partial differential equation: 

 
                     (2) 

 
 
where �(x, t) is a space-time Gaussian white noise. If d > 1 
then values of Xt are singular measures and equation (2) can 
be replaced by its weak version. For any smooth function � 
with compact support we denote by Xt(�) the expression   
� �(x) Xt (dx). Then 
 

(3) 
  
where Zt is a martingale measure with Z0 = 0 and quadratic 
variation given by 
 
 

 
Equation (3) can be written in a simpler (informal) way 
 

                              (4) 
 

Observe that equations (2) and (4) have two terms on 
the right-hand side. The first one �Xt is deterministic and it 
is connected with the movement of cells. If we disregard the 
birth/death branching phenomenon then the cells will be 
distributed like Brownian particles, that is, the density of 
the space distribution function satisfies the heat equation �t f 
(x, t) = � f (x, t). The second stochastic term   describes 
the stochastic fluctuation of the number of cells as a result 
of the birth and death events (see Ethier and Kurtz 1986; 
Dawson 1993). 

More interesting from biological point of view are 
geometric properties of the measures which are values of 
the superprocess Xt. Let Ft be a support of the measure Xt 
and let dim be the Hausdorff dimension. We recall that a 
support of the measure m is the set F of all points x such 
that for each open ball K with the centre in x we have m(K) 
> 0. Then 
 
dim Ft  = min(2,d) 
 
with probability 1. This result implies that in the case d = 3 
plankton cell forms fractal structures, although the Haus-
dorff dimension of Ft is an integer number. The informal 
justification of this fact is the following. Since the Brow-
nian motion is space symmetrical and the branching process 
is space independent, the superprocess Xt is also space sym-
metrical. The support of the measure Xt should have the 
same property but the non-trivial space symmetrical sets in 
3-dimensional space have topological dimension three or 
zero. It means that the sets Ft have different topological and 
Hausdorff dimensions and they are fractal sets. 

Real plankton usually forms clusters of cells. The clus-
ters have irregular structure and their space-distribution is 
also irregular. Unfortunately, the model is too difficult to 
get useful quantitative information about the clusters to 
compare the model with real plankton. We only know that 
the clustering phenomenon can be described by a compound 
Poisson process, by which we mean that one can represent a 
superprocess as a superposition of clusters. The number of 
clusters in any given size range is Poisson distributed. 

It should be also noted that computer simulations show 
that in this model cells form clusters like real plankton. If 
we want to compare the mathematical model with the real 
world we should use real values for coefficients of diffusion 
and the branching process. 

However, the nature of these processes is very compli-
cated and it differs significantly for different species of 
plankton, so the estimation of parameters is hardly possible. 
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Nevertheless, let us try to make some calculations based on 
simple assumptions of Adler’s model. The typical size of 
phytoplankton cells ranges from a few to several hundreds 
of micrometers, but most of them have diameters of 20–150 
μm. To estimate the diffusion coefficient of such particles 
we use a classical and commonly used formula derived by 
Einstein (1956) 

 
                                          (5) 
  

where kB is the Boltzmann constant, T is the temperature, � 
is the viscosity of the water and a is the radius of the parti-
cle. As it was mentioned, the fractal effects are obtained by 
increasing in the model the branching intensity or, equi-
valently, the rescaling of time and diffusion. That is why the 
dependence between the frequency of birth and death events 
and the diffusion coefficient plays crucial role: if diffusion 
is too fast, we obtain spreading and smoothing, and as a re-
sult a uniform distribution. We should measure that depen-
dence by means of the average displacement 
 

 
 
during the average life time � (see Table 1). We should 
underline that we consider here diffusion in three-dimen-
sional space while simulation in some papers are made in 
two (Adler 1997) or even in one-dimensional space (El Saadi 
and Bah 2006). 

Obviously in the reality the observed pattern depends 
also on the size of particles: if they are very small in com-
parison to the displacement, we cannot observe aggregation 
and we get only what looks like dispersed sand. It seems 
that it is reasonable to consider the value ��/d, i.e. the ratio 
of the average displacement during lifetime and the dia-
meter of a particle. From the Einstein formula (5) it follows 
that ��/d ~ d–3/2. Simulations suggest that for ��/d �1 the 
effects of patchiness are hardly noticeable. So it seems (cf. 
Table 2) that the effect of branching process and diffusion 
may lead to appearing of visible clusters only for suffici-
ently big phytoplankton cells that are not capable of inde-
pendent movement (such as some species of Silica) provi-
ded that they moreover proliferate reasonably fast. 

It should be also noticed that most of phytoplankton 
species have some small ability of independent movement. 
This movement is not directed or aligned, so it can be mo-
delled as diffusion, but it increases the diffusion coefficient 
and, simultaneously, the average displacements. It seems 
that in such a case the branching process is too slow and 
diffusion is too large to observe clusters appearing. 

Adler also suggests some improvements of the model. 
First, equal chance of disappearing or splitting can be re-
placed by local dependence of birth and death probabilities. 
For example, if we assume that the mean number of off-
spring is 1 + a(t, x)/N, then equation (3) will have an extra 
term on the right-hand side, namely, 

 

 
 
Of course, such a model includes regional and seasonal 

impact on the rate of reproduction and gives even more ir-
regular behaviour of cells distribution. The model can be 
also modified to include migration of cells and dependence 
of the rate of reproduction on interaction between the plank-
ton (for example, the presence or absence of neighbours can 
have some influence on the rate of division). 

It should be mentioned here that the above model con-
tains only the so called molecular diffusion associated with 
random molecular motion of surrounding particles, connec-
ted with heat. Apparently the phytoplankton undergoes 
much more complicated movement caused by the flow of 
water, which has different nature and possibly may be trea-
ted as something external. However this flow causes very 
important phenomenon, namely the so called turbulent dif-
fusion. Modelling of turbulent, eddy movement of ocean is 
very difficult. Some authors (e.g. Malchow et al. 2000; 
Huisman and Sommeijer 2002a; Ghosal and Mandre 2003) 
use just standard diffusion with much bigger diffusion coef-
ficient, although it seems not always reasonable. There are 
also more realistic models of turbulent motion, see e.g. 
(Abraham 1998; Casasayas 2001; Martin 2003) and referen-
ces therein. Young, who investigates a similar individual-
based model in (Young et al. 2001), claims that the separa-
tion of cells’ pairs due to turbulence is much faster than dif-
fusive separation. In the paper by Adler and Skolakis (2001) 
the authors consider a model in which there are two inde-
pendent sources of motion: Brownian motion of single cells 
as in the previous model, and the motion of oceanic currents, 
modelled as a stochastic flow. Such a model is, of course, 
more realistic but also much more difficult to study. 
 
MODEL WITH INTERACTIONS 
 
In the previous model it has been assumed that all cells are 
independent which means that there are no interactions 
between them. But some motile species of algae have che-
mosensory abilities (Fitt 1985; Spero 1985) and they leak 
organic matter into solution (Mague et al. 1980) which can 
attract other individuals. These chemical signals can help 
phytoplankton cells to move towards the highest concentra-
tion of food molecules or omit contaminated area. Models 
with such spatial interactions between phytoplankton cells 
were considered in (Adioui et al. 2005; El Saadi and Bah 
2006; El Saadi and Arino 2006; El Saadi and Arino pers. 
comm.). The main idea in these papers is to add to the Ad-
ler’s model (Adler 1997) interaction between cells which 
change their speed. As in the Adler’s model we consider N 
identical cells which move in Rd and their movements are 
governed by two factors: diffusion described by indepen-
dent Brownian motions and by interaction terms which in-
clude influence of all other particles. 

The starting point in the paper (El Saadi and Arino pers. 
comm.) is the same as in classical dynamics – the system of 
second order differential equations which express the forces 
acting on particles in fluid: friction, interaction forces and 
random collisions (diffusion): 

 
 
                                      (6) 

 
 
for i = 1,…,N, where xi(t) is the position of the i-th cell at 
time t,  
 

 
 
is the friction constant, m is a mass of a single cell, F is a 
pairwise attraction force and D is the diffusion constant. It 
should be mentioned that the diffusion constant D (see (5)) 
can also be written as D= kT/m�. If we consider the 
movement of particles in fluid we can neglect acceleration 
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Table 1 The average displacement ��(d) (in μm) of a diffusive particle of 
given size after period of time of 1, 5, 12 and 24 hours. 
Diameter 1 h 5 h 12 h 24 h 
10 μm 26 59 91 128 
20 μm 19 41 64 91 
50 μm 12 26 41 57 

100 μm  8 19 29 41 
200 μm  6 13 20 29 
 
Table 2 ��/d – the ratio of average displacement and diameter. 
Diameter 1 h 5 h 12 h 24 h 
10 μm 2.62 5.85 9.07 12.82 
20 μm 0.93 2.07 3.21 4.53 
50 μm 0.23 0.52 0.81 1.15 

100 μm 0.08 0.19 0.29 0.41 
200 μm 0.03 0.07 0.1 0.14 
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because the friction constant � is large in comparison with 
acceleration (see Smoluchowski-Kramers approximation 
(Schuss 1980)). It means that we can replace system (6) by 
a simpler one: 
 
 

                                      (7) 
 
 
It is assumed that the magnitude of the attraction force 

F(x – y) depends only on the distance ||x – y|| of cells, so F 
can be expressed as 

 
, 

 
where � is the magnitude of F. 

The life of cells is described in the same way as in 
Adler’s model, namely, in a time interval [t, t + h] a cell can 
split into two cells or die with the same probability h/2 + 
o(h). It means that N is the initial number of cells and the 
position of cells is determined by a system of equations of 
the form (7) but the system is changed after each elemen-
tary event (division or death of a single cell). Let us assume 
that the mass of a single cell is proportional to 1/N. Then 
the measure   given by (1) describes the spatial distri-
bution of the mass of phytoplankton at time t. If the pro-
bability of elementary events grows proportionally to N, 
then the stochastic process   is weakly convergent to a 
measure valued stochastic process Xt. The process Xt satis-
fies the non-linear stochastic partial differential equation 

 
                                          (8) 
 

where F � Xt denotes the convolution of the function F and 
the measure Xt. Equations (8) and (4) are similar. The only 
difference is that equation (8) contains extra drift term 
div((F � Xt) · Xt ), which usually appears in the classical 
Fokker-Planck equation. The term F � Xt describes the local 
velocity of phytoplankton which results from the interaction 
among cells. 

In the papers (El Saadi and Bah 2006, 2007) some com-
puter simulations based on the above model were presented. 
Authors conceived a simulator to represent virtually indivi-
dual aggregative behaviour of plankton model in 1D and 2D 
and to compare influences of particular processes of the 
cells behaviour on the aggregate patterns. Authors suggested 
that including attraction of cells improved the effect of ag-
gregative behaviour. They investigated the so called Clark-
Evans index (or nearest neighbour index) of simulated po-
pulation. However in the second paper, namely (El Saadi 
and Bah 2007), authors seem to choose parameters that cor-
respond to real values, it is rather difficult to compare these 
experimental results with values in the real world. The first 
reason is that their simulations were studied mainly in one 
dimension, where one has no obvious description of physi-
cal diffusion. The second one is a choice of a function �, 
which appears in the interaction term. Namely, they assume 
that �(x) = a(x – x1)(x2 – x) if         , where a  > 0 and 
x2 > x1 > 0 are some constants, and �(x) = 0 if         . 
The advantage of this choice of � is that it is expressed by a 
simple mathematical formula and that the range of interac-
tion is restricted to some bounded neighbourhood of a cell 
but the closest vicinity of it is also excluded. On the other 
hand, � is a non-smooth function, therefore, it is difficult to 
expect that it describes real biochemical processes. Now, we 
try to find alternative formulae for �. If we assume that � 
depends on the density of some substance emitted by cells 
then first we should calculate how the density depends on 
the distance from the source of emission. Let us assume that 
a cell produces the substance with the constant speed c and 
that the substance spreads randomly in water with a dif-
fusion coefficient D. Then the space distribution of the sub-
stance is given by the formula 

 

 
 
 
 
It means that if we assume that the magnitude of the 

interaction forces is proportional to the density of the sub-
stance then �(||x||) = C||x||–2 like in gravitational interac-
tions. If a cell chooses the direction and the speed of moving 
by comparison of the densities of the substance on its mem-
brane, then it is sensible to choose �(||x||) = C||x||–3, i.e. the 
derivative of the previous function. Of course, we should 
take into consideration that a cell has some size, so these 
formulae can be applied only outside the cell and we simply 
put �(||x||) = 0 inside it. 
 
COAGULATION-FRAGMENTATION MODELS 
 
Until now, we have considered models of phytoplankton 
dynamics in microscale in which individuals are single cells 
of phytoplankton. But phytoplankton cells tend to form ag-
gregates in which they live together like colonial organisms, 
and one can consider models of phytoplankton dynamics in 
which individuals are aggregates. Since the size and loca-
tion in the space of aggregates is important in study of fish 
recruitment, models in mesoscale can be even more inter-
esting than models describing behaviour of single cells. 
Such models include processes of coagulation and fragmen-
tation of aggregates, their growth and death. 

Coagulation is a complex physical process (cf. Jackson 
1990; Dam and Drapeau 1995) including turbulent shear, 
particle settling and Brownian motion. The main role in the 
process of coagulation of phytoplankton is played by TEP 
(Transparent Exopolymer Particles). TEP are by-product of 
the growth of phytoplankton and their stickiness cause that 
cells remain together upon contact (cf. Jackson 1990; Dam 
and Drapeau 1995; Passow and Alldredge 1995; Engel 
2000). On the other hand the low level of concentration of 
TEP leads to fragmentation of phytoplankton aggregates. 
Also porosity of aggregates and their stickiness play impor-
tant role in this process (Jackson 1995). According to (Han-
sen and Kiørboe 1997), some species of phytoplankton do 
not need TEP to form aggregates: they appear by physical 
cell collisions and their subsequent adhesion. 

Jackson in (Jackson 1990) studies physical processes of 
coagulation of phytoplankton aggregates and then builds a 
mathematical model of this phenomenon. He assumes that 
only unicellular aggregates can proliferate, two aggregates 
can join with some probability which depends on the col-
lision rate, and an aggregate can sink with the rate depen-
ding on its size. Aggregates are divided into classes accor-
ding to their size, i.e. an aggregate from the class i consists 
of i phytoplankton cells. Let Ci(t) be the number of ag-
gregates in the class i at time t. Then the functions Ci(t) sa-
tisfy the following system of differential equations: 

 
 
 
                                          (9) 

 
 
 
where b, mi, �i, j are, respectively, birth, sinking and coagu-
lation rates. The coagulation rate equals 	�i, j, where 	 is the 
probability that particles stick after contact (stickiness) and 
�i, j is the collision rate. The system (9) is a version of the 
discrete Smoluchowski model of coagulation process inclu-
ding birth and death. For newer results in this direction we 
refer to the paper (Jackson 2005). 

Now we present a continuous model of phytoplankton 
dynamics including coagulation-fragmentation processes 
given by Arino and Rudnicki (2004). In this model ag-
gregates are structured by size, i.e. their mass which is 
proportional to the number of cells. The division or death of 
the individual cells changes the size of aggregates. Apart 
from growth due to cell division within an aggregate, two 
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main mechanisms are at work: splitting of a given aggregate 
into parts, which is called fragmentation process, and co-
agulation (aggregation), by which two distinct aggregates 
join together to form a single one. 

In our model all factors mentioned above are hidden in 
the probability of aggregation, which makes mathematics 
much simpler. Again, it is assumed that coagulation is a bi-
nary process and two distinct aggregates join together with 
some probability, which depends only on the size of ag-
gregates. 

In this model the size of an aggregate is denoted by x. 
An aggregate grows with the rate b(x) but it can die, for 
example, by sinking to the seabed or whatever cause, with 
the mortality rate d(x). It can break with the rate p(x) and 
the size y of its descendants is given by the conditional 
density K(y,x). Finally, we should consider the coagulation 
process which normally depends on the space distribution. 
In this work, space is not explicitly considered, so it is as-
sumed that aggregates of any size are somehow uniformly 
distributed. We assume that ability to glue to another cell 
depends on the size and is given by the function g(x). 

Let the function u(x, t) be the density of the distribution 
of x, i.e. 

 
 

 
is the number of cells of size x1 < x < x2 at time t. Taking 
the sums of the variations due to growth and mortality, frag-
mentation and coagulation, one can check that u satisfies 
the equation 
 
                                     (10) 
 
where 
 
a(x) = d(x) + p(x) + g(x),                         (11) 

                                                                   
(12) 

 
                                                      

(13) 
 
 
                                         (14) 
 
  
In equation (10) we have terms responsible for growth 

A1u, death d(x)u(t), fragmentation –p(x)u(t) + A2u(t), and 
coagulation –g(x)u(t) + A3u(t). In order to formulate some 
properties of the solutions of (10) we need the space X of 
measurable and nonnegative functions such that 

 
. 

 
We assume that the functions p, d, g and K are suf-

ficiently regular, otherwise some unwanted phenomena can 
occur, see e.g. (Banasiak 2004). 

Theorem 1. For each     there exists a unique 
solution u: [0,�)�X  of equation (10) such that u(0) = u0 . 

It is rather difficult to study the behaviour of the solu-
tions of equation (10) when time goes to infinity. Some par-
tial results can be obtained studying the behaviour of mo-
ments Mn(t) of solutions, i.e. 

 
              , 
 

n = 0,1,2,…�. The paper includes the derivation of ordinary 
differential equations for Mn(t). It allows giving sufficient 
conditions for the existence of large aggregates, which is 
important from the biological point of view. 

The results of this paper can be generalized into two 
directions. Firstly, one can add space distribution of ag-
gregates. Such generalization was done in two papers (Rud-
nicki and Wieczorek 2006a, 2006b) and it will be discussed 

in the next section. Secondly, one can assume that during 
division of cells some of them fall off the aggregates and 
enter the system as new aggregates, leaving the size of the 
original aggregate unchanged by cell division (Ackleh and 
Fitzpatrick 1997; Ackleh and Deng 2003; Banasiak and 
Lamb 2009). Such a model leads to an equation similar to 
(10) but with an additional boundary condition 

 
 
 

where x0 is the size of a single cell and �(x) is the rate at 
which daughter cells of an aggregate of size x create a sin-
gle-cell aggregate. Such an integral boundary condition ap-
pears in many age-structured models and it was introduced 
for the first time by McKendrick (1926). Also the coagula-
tion term in that model differs from the term –g(x)u(x, t) + 
A3u(x, t) and it is the same as in the classical Smoluchowski 
model (von Smoluchowski 1916), i.e. 
 
 

 
 
where k(x, y) representing the rate at which an aggregate of 
size x sticks to an aggregate of size y. 
 
INDIVIDUAL-BASED MODELS OF AGGREGATES 
DYNAMICS 
 
In sections Superprocesses and Plankton Dynamics and 
Models with Interactions we have presented models which 
described the behaviour of single cells and the relation be-
tween them. Such models are called individual-based mo-
dels, for short IBM. Similar models can be also constructed 
for aggregates. Now, on the basis of papers (Rudnicki and 
Wieczorek 2006a, 2006b), we present IBMs for aggregates, 
and we also show that limit passage with the number of ag-
gregates to infinity leads to an equation for the density of 
space-size distribution of aggregates similar to (10). 

The first IBM model from (Rudnicki and Wieczorek 
2006b) is a discrete one, where an aggregate is composed of 
an integer number of cells and it moves randomly with 
constant steps in the space Rd. Such a model can be useful 
in computer simulations. In this model an individual is an 
aggregate that consists of indistinguishable cells with equal 
masses joined by organic glue. Let us assume that N is the 
initial number of aggregates, and denote by N(t) the number 
of aggregates in time t. Each aggregate is described by two 
variables: its position x in the space Rd and its mass m. In 
this model we assume that a single cell has the mass 1/N, so 
m = n/N, where n is the number of cells in the aggregate. 
Cells in the aggregate may die or divide into two daughter 
cells, which cause the decrease or growth of the aggregate. 
The aggregate may shatter into two smaller aggregates or 
die (sink or be eaten). Thus the whole situation is described 
by the following processes: 

• A single cell in the aggregate may die in a unit of 
time with probability 
m(m) depending on the mass of the 
aggregate, or may divide leaving two new cells with pro-
bability 
b(m). 

• The whole aggregate moves according to the �-ran-
dom walk – i.e. it skips by a vector of the length � in one of 
2d directions (parallel to one of the axes, d is the dimension 
of the space) with probability (1/�2)D(m)�t in the time in-
terval �t (where D is the coefficient depending on the mass). 

• The aggregate may die in a unit of time with proba-
bility� 
d(m). 

• The aggregate of mass m may split in a unit of time 
with probability 
f (m) into two parts with mass m1 and m2 
with probability pN(m, m1), where m = m1 + m2 and 

 
 
 
     
• The i-th and j-th aggregates may join up with proba-

bility �ij depending on their mass and locations, and on the 
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state of the whole population. 
The question of the position of new aggregates after 

fragmentation and coagulation is more complex. In (Rud-
nicki and Wieczorek 2006a) it is assumed that after frag-
mentation both new aggregates appear at the same location 
as their parent. A more general model is considered in (Rud-
nicki and Wieczorek 2006b), in which after the break up of 
an aggregate with the centre y, the new two parts with mass 
m1 and m2 have centres at positions x1 and x2 distributed 
with a density af (x1,x2,y,�m1,m2). Coagulation is described 
by two terms: the probability coefficient of coagulation � 
and the place x = x(x1,x2,m1,m2), where the new aggregate 
appears after coagulation of (x1,m1) and (x2,m2). Let the abi-
lity of the i-th aggregate to coagulate be c(mi), the condi-
tional probability that it joins to the j-th aggregate is given 
by 

 
         , 
  

and it is modified by a distance-depending coefficient v(xi – 
xj). Thus the i-th and j-th aggregates may join up with pro-
bability 
 

                              (15) 
 

 
where the sum in the denominator extends over all living 
individuals. 

The term �, describing probability of coagulation, is 
significantly different from standard physical models, 
where the probability of coagulation is proportional to the 
square of the number of particles. We consider the more 
biologically justifiable case, when the coagulation ability of 
a single aggregate is not unbounded, but approximately 
constant. The coagulation ability depends on the concentra-
tion of some organic glue (TEP) (Dam and Drapeau 1995; 
Passow and Alldredge 1995). It means that the probability 
of joining is a function of production of TEP by an ag-
gregate, which depends on the mass of the aggregate. 

Instead of the discrete individual model we can con-
sider a continuous model in which the mass of an aggregate 
is a positive real number and aggregates are moving like 
Brownian particles in the space Rd. In this model an indivi-
dual is described by two variables (x,m), where      is its 
position in space and m > 0 is its mass. As before, ag-
gregates grow as a result of divisions of cells, may die, 
break up and join up. Although both models are essentially 
different, they lead to the same results when we pass to in-
finity with the number of aggregates. 

As in Section Superprocesses and Plankton Dyna-
mics, the state of the population of aggregates at time t can 
be described by a stochastic process    with the values in 
the space of finite measures defined by 

 
                              (16) 
 

 
where (xi, mi) is the position and mass of the i-th aggregate 
at time t, and 
x, m is the Dirac delta measure at (x, m). We 
should underline here that   is a stochastic process because 
positions, sizes and number of aggregates depend randomly 
on their motion and the fragmentation-coagulation process. 
There is one crucial difference between our model and the 
models from sections Superprocesses and Plankton Dyna-
mics and Models with Interactions. Namely, the intensity 
of elementary events (fragmentation and coagulation) does 
not depend on N. Let us recall that in models in those previ-
ous sections this intensity was given by 1/� ~ N, that is the 
time between consecutive elementary events converges to 
zero as N ��, which can be criticized from a biological 
point of view. 

Now we want describe the limit passage of the process 
 as N tends to infinity. We set the step of the random 

walk to be � = 1/N. We also assume that there exists a conti-

nuous function q : R+ × R+ � R+ such that for all        , 
   and all sequences (nN), (  ) of positive integers 

such that nN/N �m and  /N �  as N �� we have 
NpN(nN/N,  /N) �q(m,  ), and this convergence is uniform. 
It means that the discrete distribution pN with the step 1/N 
approximates the continuous distribution density q. The 
function q satisfies                   and q(m,  ) = 
q(m, m –  ) for all m >  > 0. The coagulation term re-
mains unchanged. We assume that the functions D, 
f , 
d , c, 
v, af  and ac are bounded and continuous; moreover c(m) > 
0 for all        . We also assume that the functions 
m and 

b are continuous and the function 
(m) = m(
b(m) – 
m(m)) 
is bounded from above. The last assumption also seems to 
be natural because the function 
 is the growth rate of an ag-
gregate. 

Consider the limit passage when the initial number of 
aggregates tends to infinity as N �� and the mass m of a 
single cell tends to zero: m = 1/N �0. 

Theorem 2 We assume that the initial distribution   of 
the process   converges weakly to some finite measure �0 
on the space Rd × R+. Then the sequence of processes 

converges in distribution to a (non-random) function 
with values in the space of measures. 
If the measure � 0 is absolutely continuous with respect 

to the Lebesgue measure on Rd × R+, then for each t the 
measure    is also absolutely continuous, i.e. there exists a 
nonnegative measurable function u such that �(t)(dx dm) = 
u(t, x, m) dx dm. For each t ��0 the function u(t, x, m) is the 
density of the space-size distribution of aggregates. It 
should be noted that the term “distribution” is not used in 
the strictly probabilistic sense, i.e. the integral 

 
  

 
which gives the total number of aggregates, can be different 
from one and can change in time. One can check that u 
satisfies an equation  

 
u �(t) = – a(x)u(t) + A0u(t) + A1u(t) + A2u(t) + A3u(t) , (17) 
 
where the operators A1, A2, A3 represent the processes of 
growth, fragmentation and coagulation and they are similar 
to the respective terms of (10) but, of course, they are more 
complex because the fragmentation and coagulation pro-
cesses are non-local. The operator A0 is responsible for ran-
dom walk of aggregates and is given by the formula A0 
f(x,m) = D(m)�x f(x,m), where �x is the Laplace operator 
with respect to the spatial variable x. 

Theorem 2 does not provide us additional information 
about the convergence of the processes    to the function 

. It would be interesting to obtain results in this di-
rection. For example, we expect that some version of the 
central limit theorem holds, that is the process 

 
 
 
  

 
converges to a process   with values in the space of the 
tempered distributions. If we treat the function    as the 
mean value of the process   , then the process    mea-
sures the fluctuation of the process   (see for example 
Bojdecki and Talarczyk (2005)). 

In the paper (Rudnicki and Wieczorek 2006b) we pre-
sented some numerical results concerning clustered patterns 
of distribution of aggregates in two-dimensional space. We 
used the Clark-Evans index which compares the observed 
mean nearest neighbour distance to that expected for a 
random distribution of individuals. The Clark-Evans index 
is given by 

 
                              (18) 

 
 
where demp and dexp are, respectively, the empirical and the 
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expected mean distances to the nearest neighbour. If indivi-
duals are located at points x1, x2,…, xN , then 
 

                              (19) 
 
 
The expected mean distance dexp is the expected value 

of (1) if points x1, x2,…, xN are independently and uniformly 
distributed in some domain      . For large values of N 
we have 

 
         ,  

 
 
where S is the area of the domain D. It is assumed that 
Clark-Evans index indicates regular, random and clustered 
patterns of distribution. Namely, if CEI is approximately 
one then points are randomly distributed. If CEI > 1 they 
have regular structure, and if CEI < 1 they form clustered 
patterns of distribution. Since CEI is simple to calculate, it 
is commonly used in various applications (see e.g. Ander-
sen 1992; Ioannides and Overman 2004; Pretzsch 1997). 

Since our aggregates have different sizes we also intro-
duced another index, called the weighted Clark-Evans index 
WCEI, which, in our opinion, can be more adequate. We de-
fine 

 
                              (20) 
 

 
where  

   
(21) 

 
 
and (x1,m1),...,(xN,mN) are locations and mass of individuals. 
Analogously, we define    as the expected value of (21) 
assuming that mass of individuals are independent on their 
positions. We have 
 

=    .                             (22) 
 
The weighted Clark-Evans index also indicates regular, 

random and clustered patterns of distribution. But since 
large aggregates have a crucial influence on the weighted 
Clark-Evans index, we can say more about clustering if we 
compare both indices. Namely, if WCEI < CEI then the 
mean distance of large aggregates to the nearest neighbour 
is smaller than average for all aggregates, which suggests 
that clusters are formed around large aggregates. 

The conclusions from the numerical experiments are the 
following. First, the spatial structure of aggregates can 
become clustered even if we consider models without co-
agulation. The reason for such a phenomenon is that the 
processes of growth and fragmentation can lead to clusters 
appearing of relatively large aggregates. Second, the pro-
cess of clustering of phytoplankton aggregates depends sig-
nificantly on the type of diffusion. Precisely, if we assume, 
as in standard physical models of diffusion, that the dif-
fusion coefficient decreases if the mass increases, then the 
weighted Clark-Evans index is smaller than the Clark-
Evans index. It means that not only spatial structure becomes 
clustered, but also large aggregates play crucial role in the 
process of clustering. Our simulations in (Rudnicki and 
Wieczorek 2006b) do not intend to describe directly the real 
dynamics of phytoplankton, and do not use any physically 
supported coefficients. Nevertheless, in the view of consi-
derations from Section Superprocesses and Plankton Dy-
namics, it seems that this model can be more realistic. Ac-
tually, knowing that an aggregate may consist of even few 
hundred of plankton cells, we can suppose that the dis-
placements due to diffusion are much smaller than those in 
Table 1, even considering that typical fragmentation time 
may be now longer. Taking also into consideration the fact 
that such aggregates are more extensive (cf. Table 1 and the 

discussion below), we claim that under assumptions of this 
model the visible clustering behaviour is obtained using 
physically correct coefficients. 
 
OTHER MODELS 
 
In this section we present macroscopic models that can be 
classified as advection-diffusion-reaction models. We start 
with a very interesting aspect of plankton modelling, which 
is vertical distribution of phytoplankton. Cells of most phy-
toplankton species are heavier than water, so they tend to 
sink. On the other hand they need the sunlight for photo-
synthesis (and hence to survive), so they may live only in 
the well-lit upper layer of water. Probably the first analy-
tical approach to this problem was due to Riley et al. (1949). 
They concluded that it is a turbulent diffusion what prevents 
sinking of cells. They also derived, under rather simple as-
sumptions, the formula for the minimal diffusivity at which 
a phytoplankton population will not extinct, namely 
 

  
 
where v is the sinking velocity and r is the growth rate in 
the well-lit layer. The general situation (Massel 1999) is 
described by the advection-diffusion equation on the plank-
ton density w(t, z) of the form  
 

                              (23) 
  
Here, the variable z is the vertical spatial variable 

(depth), D is the turbulent diffusion coefficient and S is the 
source term describing the reproduction and the death rate. 
In general, the term S depends on the light intensity at given 
depth, i.e. S = g(I(t, z))w(t, z) – d w(t, z), where I(t, z) is the 
intensity of light at depth x and at time t, and d is the death 
rate. Behaviour of such models with various functions g, 
describing the dependence of the reproduction rate on light, 
was widely investigated for example in Ebert et al. (2001), 
Huisman and Sommeijer (2002a, 2002b) and Ghosal and 
Mandre (2003). 

The models we have presented up to now considered 
only one population, namely that of phytoplankton. How-
ever, there is also a great number of models describing phy-
toplankton in interaction with other populations. Quite fre-
quent and important approach uses the so called NPZ (nu-
trient-phytoplankton-zooplankton) models. An NPZ model 
describes, by definition, three quantities, namely the con-
centration of nutrient N, phytoplankton P and zooplankton 
Z, that are related by three differential equations. The equa-
tions characterize the flow of matter between the compo-
nents, i.e. e.g. uptake, loss due to death or sinking, grazing 
and so on. For an extensive review on this subject we refer 
to the paper of Franks (2002). Let us recall here after 
(Franks 2002) the general NPZ system 

 
 
 

(24) 
                                                      

 
 
 
 
where the functions f, g, h, i and j correspond, respectively, 
to phytoplankton response to light, phytoplankton nutrient 
uptake, zooplankton grazing, phytoplankton and zooplank-
ton loss terms. The model (24) displays a wide range of 
dynamics, from stabilization to chaotic oscillations depen-
ding on the choice of the functions occurring in it. The lite-
rature on the NPZ models is huge, so that we mention here 
only a few examples (Steele and Henderson 1981; Scheffer 
1991; Edwards and Brindley 1996; Edwards and Bees 2001), 
referring also to the bibliography therein and in (Franks 
2002). We mention also the paper of Edwards (Edwards 
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2001), whose aim was to investigate the sensitivity of the 
dynamics which respect to models’ complexity. He exten-
ded a classical NPZ model by adding detritus and consi-
dered two new models: in the first one zooplankton can 
graze only upon phytoplankton while in the second one they 
can graze upon phytoplankton and detritus. The author con-
cluded that addition of the detritus term in the first model 
hardly changed the dynamics, while considering the grazing 
of detritus by zooplankton changed significantly the beha-
viour of the model. We should stress here that NPZ or 
NPZD models simulate concentrations of phytoplankton 
and zooplankton and do not provide us information about 
the space distribution of them, in particular they cannot ex-
plain plankton patchiness. 

Some possible extensions of simple NPZ models are ob-
tained by coupling them with diffusion or, more generally, 
hydrodynamical, equations. This allows the spatial investi-
gations and in particular admits to study the origins of 
plankton patchiness. Levin and Segel in (Levin and Segel 
1976) proposed using the reaction-diffusion equations ob-
tained form NPZ type models (or in fact the simpler prey-
predator model) coupled with diffusion to explaining the 
patchiness of plankton. They gave the following simple mo-
del of phytoplankton P and herbivorous zooplankton Z 

 
 
                              (25) 

 
 
 
where μ and � are species-specific diffusion coefficients and 
a, b, c, d and e are some positive constants. In this model 
the mechanism of pattern formation, originally described by 
Turing (1952), works. The functions P(t) and Z(t) describing 
the total sizes of both populations are solutions of the fol-
lowing system of ordinary differential equations 
 
 

                                     (26) 
 
 
 
This system has a globally asymptotically stable statio-

nary solution 
 
                              (27) 

 
provided that 
 
bc > de and c > e.                              (28) 

 
In particular, if P(0) > 0 and Z(0) > 0, then limt��P(t) = 

P0 and limt��Z(t) = Z0. The pair (P0,Z0) is also a spatially 
uniform equilibrium of the system (25), but condition (28) 
is not sufficient for stability of this solution. Adding dif-
fusion can destabilise the system and may lead to other, 
non-uniform steady states producing patterns. Precisely, the 
behaviour of the systems depends on the ratio R = μ/�, i.e. 
there exists a constant Rcr, which depends on b, c, d, and e, 
such that for R > Rcr the solution (P0,Z0) becomes unstable. 
It means that the greater mobility of herbivorous zooplank-
ton can lead to plankton patchiness. 

Similar models, but with different and more sophisti-
cated coefficients, were investigated by many authors, e.g. 
(Pascual 1993; Malchow 2000; Sarkar and Malchow 2005) 
both in mathematical and numerical way. Recently, also the 
influence of viral infection on plankton patchiness has been 
studied (see Beltrami and Carroll (1994) and Malchow et al. 
(2004)). Allegretto et al. (2005) include into their model the 
variable describing the oxygen concentration. They obtain 
periodic solutions under some assumptions concerning an-
nual periodic external conditions. 

An interesting extension of such models was presented 
in (Malchow et al. 2000). Authors investigate a model, 
based on the reaction-diffusion system similar to (25), in the 

presence of fish, considered as localized fish schools. The 
fish schools are treated as super-individuals according to the 
idea from (Scheffer et al. 1995). Each school is a group of 
fish that feed on plankton and move randomly according to 
simple rules based on the concentration of plankton. The 
authors conduct numerical simulations and solve numeri-
cally the differential equations, obtaining pattern formation 
and, in some cases, travelling waves. 
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