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ABSTRACT 
Fruit ripening is a complex, genetically programmed process that culminates in dramatic changes in the metabolites, colour, texture, and 
flavour of the fruit. In the present paper, we survey recent findings in the areas of fruit chlorophyll degradation, carotenoid biosynthesis, 
volatiles, cell wall metabolism and central metabolism shift during tomato and pepper ripening. Moreover, the latest research on 
molecular aspects of the ethylene response is presented. 
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INTRODUCTION 
 
Ripening can be defined as the summation of changes in 
tissue metabolism rendering the fruit organ attractive for 
consumption by organisms that assist in seed release and 
dispersal. Fruit ripening is a complex, genetically prog-
rammed process that culminates in dramatic changes in fruit 
metabolites, colour, texture, and flavour of the fruit (Sey-
mour et al. 1993). Ripening is influenced by internal and 
external cues, including developmental gene regulation, 
hormones, light and temperature. 

Fruits with different ripening mechanisms can be divi-
ded into two groups: climacteric and non-climacteric. In cli-
macteric fruit, ripening is accompanied by a peak in res-
piration and a concomitant burst of ethylene, the levels of 
which decline during the subsequent course of ripening. In 
tomato (Lycopersicon esculentum Mill.), which is thought 
to be a climacteric fruit, the ethylene burst is required for 
normal fruit ripening, whereas in pepper (Capsicum annu-
um L.) and eggplant (Solanum melongena L.), which are 
non-climacteric, it is not. In tomato, molecular analysis of 
fruit ripening focused on the roles of cell-wall metabolizing 
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and structural proteins (Goff and Klee 2006), and on the 
genetic basis of ethylene synthesis (Cara and Giovannoni 
2008). In pepper, studies have mainly centered on colour 
changes during fruit ripening (Barry et al. 2008) and carote-
noid biosynthesis (Ha et al. 2007), and in eggplant on fruit 
phenolics (Whitaker and Stommel 2003). 

In the present paper we survey some aspects of research 
on tomato and pepper biochemistry and the molecular phy-
siology of ripening. It should be noted that whereas experi-
mental work on tomato is abundant (Passam et al. 2007) 
that on pepper is much less extensive, while eggplant has 
not so far been researched at this level. 

In recent years, the molecular biology of ripening has 
turned to genomic approaches to reveal insights into pri-
mary ripening control upstream of ethylene ripening-related 
signal transduction systems and downstream metabolic net-
works. These advances have been facilitated by increasingly 
efficient positional cloning in tomato, by the development 
of a model for ethylene signal transduction from Arabidop-
sis and by improved metabolic profiling technologies. The 
result has been the opening of a new frontier in ripening 
molecular biology that is focused on upstream transcrip-
tional control and on the characterization of hormonal and 
environmental signaling mechanisms. 
 
COLOUR CHANGE 
 
Colour change is a dramatic event that occurs in fleshy 
fruits as they begin to ripen. In many fruits, including 
tomato and pepper, there is a sharp decrease in chlorophyll 
content and a concomitant increase in the synthesis of caro-
tenoids as a result of the conversion of chloroplasts into 
chromoplasts (Seymour et al. 1993). While the degradation 
of chlorophyll is correlated with the reprogramming of cel-
lular metabolism at the onset of fruit ripening, these two 
events are not necessarily interdependent. 
 
Chlorophyll degradation in tomato and pepper 
 
The chlorophyll degradation pathway follows the steps: 
chlorophyll b � chlorophyll a � chlorophyllide a � pheo-
phorbide a � red chlorophyll catabolite � fluorescent 
chlorophyll catabolite � non-fluorescent chlorophyll cata-
bolite (Hortensteiner 2006). 

In higher plants chlorophyll b is initially converted to 
chlorophyll a by the action of chlorophyll b reductase, 
which in rice has been proposed to be a chloroplast short-
chain dehydrogenase / reductase (Kusaba et al. 2007). The 
enzyme chlorophyllase catalyzes the conversion of chloro-
phyll a into chlorophyllide and phytol and this is thought to 
be the rate limiting step within the chlorophyll catabolite 
breakdown pathway (Jacob-Wilk et al. 1999; Tsuchiya et al. 
1999; Harpaz-Saad et al. 2007). Pheophorbide a oxygenase 
is an Fe-dependent monooxygenase (Pruzinska et al. 2003) 
and converts pheophorbide a into red chlorophyll catabolite, 
which is in turn converted into fluorescent chlorophyll cata-
bolite by red chlorophyll catabolite reductase (Wurthrich et 
al. 2000). 

In chlorophyll retention base and general senescence 
phenotypes, stay green mutants are grouped into several 
classes (Thomas and Howarth 2000). In these mutants, 
chlorophyll retention and senescence phenomena are not 
always interconnected. In class C, for example, of stay 
green mutants, chlorophyll degradation is inhibited, but 
other aspects of senescence proceed normally. A group of 
class C mutants have reduced pheophorbide a oxygenase 
activity and stable pigment-protein complexes within the 
chloroplast (Thomas and Howarth 2000; Park et al. 2007; 
Ren et al. 2007; Sato et al. 2000). These loci encode a fa-
mily of novel chloroplast proteins that may promote chloro-
phyll degradation via destabilization of protein-pigment 
complexes (Armstead et al. 2007; Jiang et al. 2007). 

Fruits of the green-flesh mutants (Kerr 1956) of tomato 
on ripening display a muddy brown color due to the ac-
cumulation of lycopene coupled with a lack of chlorophyll 

degradation. In addition to the retention of chlorophyll, the 
thylakoid grana and light harvesting chlorophyll binding 
proteins, the Rubisco small subunit and the 33 kDa oxygen 
evolution protein also persist in mutant fruits (Cheung et al. 
1993). As senescence-associated marker genes appear to 
display normal expression patterns in mutants (Akhtar et al. 
1999) the above mentioned phemomena cannot be attrib-
uted to an inhibition of senescence, but rather are thought to 
result from the inhibition of chlorophyll degradation. More-
over, like green-flesh of tomato, fruit of the chlorophyll re-
tainer mutant of pepper have ripe fruits that are brown in 
color due to an inhibition of chlorophyll degradation during 
ripening. 
 
Carotenoid biosynthesis 
 
Tomato 
 
Among the most appreciated attributes of fruit are the pos-
session of colour and flavour components, and their impor-
tance as a source of minerals, vitamins, fibres and antioxi-
dants. For this reason a fuller comprehension of the biosyn-
thetic pathways for the production of these components is 
of both applied and fundamental importance. During tomato 
fruit ripening, a massive accumulation of lycopene occurs 
as a result of the conversion of chloroplasts to chromoplasts. 
In addition, phytoene, �-carotene and phytofluene accumu-
late, while xanthophylls decrease (Fraser et al. 1994). Thus, 
lycopene accumulation in tomato fruits arises from an 
increased flux through the initial stages of the pathway and 
a restriction by end-products that are typically found in ve-
getative tissues (Fig. 1). In tomato, two phytoene synthase 
genes, Psy-1 and Psy-2, have been clarified (Giorio et al. 
2007). Psy-1 is mainly expressed in ripening fruits. Over-
expression of Psy-1 under a constitutive promoter in tomato 
elevated the carotenoid content, which indicates that this 
phytoene synthase exerts the greatest control of precursor 
flux into the carotenoid pathway (Fray et al. 1995), while 
cyclisation is reduced (Ronen et al. 2000; Fraser et al. 
2002). The regulation of carotenoid formation in tomato 
fruits is thought to be controlled mainly at the transcriptio-
nal level (Fraser et al. 1994). 

Isotope labeling and functional genomics have demons-
trated that the geranylgeranyl pyrophosphate utilized in the 
formation of carotenoids is derived from a plastid localized 
desoxyxylulose 5-phosphate pathway and not from meva-
lonate pathways functioning in the cytoplasm (Rodriguez-
Conception and Boronat 2002). The first carotene formed in 
this pathway is phytoene, which results from the condensa-
tion of two geranylgeranyl pyrophosphate molecules cata-
lyzed by phytoene synthase. The six double bonds are intro-
duced through three successive reactions resulting in proly-
copene. Phytoene desaturase and �-carotene desaturase are 
involved in this procedure. The product of the desaturation 
reactions must be finally isomerised by carotene isomerase 
to all-trans lycopene (Isaackson et al. 2002). The cyclisa-
tion reactions of all-trans lycopene introduce b-ionone end 
groups. The reaction is catalysed by lycopene cyclase-b 
yielding �-carotene. 

To address the question of the role of sugars in control-
ling carotenoid accumulation, tomato pericarp discs from 
mature green fruits were cultured in vitro in the presence of 
various sucrose concentrations (Telef et al. 2006). Sucrose 
limitation delayed and reduced lycopene and phytoene ac-

Fig. 1 A simplified scheme of �-carotene biosynthesis. GGPP, geranyl-
geranyl pyrophosphate; Psy, phytoene synthase; PDS, phytoene desatu-
rase; ZDS, �-carotene desaturase; CrtISO, carotene isomerase; Lcy-b, 
lycopene cyclase b. 

146



Tomato and pepper fruit ripening. Aivalakis and Katinakis 

 

cumulation, with no significant effect on other carotenoids. 
Chlorophyll degradation and starch catabolism were not af-
fected by variations in sucrose availability. The reduction of 
lycopene synthesis observed under sucrose-limited condi-
tions was mediated through metabolic changes character-
ised by reduced hexose accumulation levels. 
 
Pepper 
 
Similar to tomato, a quantitative and qualitative change in 
carotenoid composition arises as ripening proceeds (Camar 
et al. 1995). Capsanthin and capsorubin, two pepper carote-
noids of major biological importance, are produced from 
antheraxanthin or violaxanthin respectively by the action of 
capsanthin-capsorubin synthase (CCS). The CCS gene is 
activated specifically during the final stages of pepper fruit 
ripening (Ha et al. 2002) and seems to produce capsaicin-
noids only in the fruits (Estada et al. 2002). 

Ripe pepper fruits can display a range of colours from 
white to deep red. Red peppers accumulate increasing levels 
of total carotenoids during ripening, whereas non-red pep-
pers accumulate lower levels of total carotenoids of varying 
composition. The expression levels of the phytoene syn-
thase, phytoene desaturase, and CCS genes are high in pep-
pers with high levels of total carotenoids, whereas one or 
two of these genes are not expressed in peppers with lower 
levels of total carotenoids. The red colour of pepper fruit is 
determined by the y+ dominant allele and the yellow colour 
by the y recessive allele (Lefebvre et al. 1998). The CCS 
gene is present in two Capsicum varieties whose ripe colour 
is yellow, but CCS gene transcripts are absent (Ha et al. 
2007). Sequence analysis of the CCS gene revealed two 
structural mutations in yellow peppers that may result in 
either a premature stop-codon or a frame-shift. This could 
suggest that nonsense-mediated transcriptional gene silen-
cing of CCS, and not the deletion of this gene, is responsi-
ble for the yellow colour in Capsicum. Chromoplast prote-
ome analysis of bell pepper fruits resulted in the identifica-
tion of 150 proteins (Siddique et al. 2006). The majority of 
the identified proteins are related to plastid carbohydrate 
and amino acid metabolism. Among the most abundant pro-
teins is CCS, suggesting a chromoplast-specific metabolic 
network. 
 
Genetic engineering for carotenoid content and 
composition 
 
An excellent review on genetic engineering for carotenoid 
biosynthesis has been presented by Sandmann et al. (2006). 
Much of the relevant research focused on transgenic plants. 
High �-carotene formation has been achieved by over-ex-
pression of an endogenous lycopene �-cyclase gene in to-
mato under a constitutive promoter (Rosati et al. 200; Dhar-
mapuri et al. 2002; d’Abrosio et al. 2004). Phenotypes are 
stable over numerous generations with these non homolo-
gous genes. Moreover, the fruit specific silencing of DET-1 
(De-etiolated-1) gene in tomato has led to significant in-
creases in carotenoids and other flavonoids (Davuluri et al. 
2005). Similar findings have been reported by over-expres-
sion of the cryptochrome 2 gene product in tomato (Gili-
berto et al. 2005). Canthaxanthin and astaxanthin, are high 
nutritional value substances that are used as feed sup-
plements. Gene products for astaxanthin formation have 
been expressed in higher plants (Mann et al. 2002; Stalberg 
et al. 2003; Morris et al. 2004; Ralley et al. 2004; Gerjets 
and Sandmann 2005). 
 
VOLATILES 
 
Flavour, formed in the intact fruit during ripening or upon 
tissue disruption, is the product of a complex mixture of 
sugars, acids, amino acids and volatile compounds (Bald-
win et al. 1991). 
 
 

Aroma extraction 
 
Steam distillation is among the oldest techniques used to 
separate volatile from non-volatile material. Nickerson and 
Likens (1966) developed a versatile distillation unit for si-
multaneous extraction of steam distillates by solvents. Al-
though aroma extracts can be obtained very fast and simply 
by this method, the elevated temperatures applied during 
distillation may lead to artifact formation, in particular 
when sugars and free amino acids are present in the food 
sample. In order to reduce the possibility of artifact forma-
tion, Weurman et al. (1970) developed a high vacuum dis-
tillation technique suitable for distilling the food its self or 
solvent extracts. The idea was to “transfer” the volatiles in 
an evacuated system to non-volatile material. Based on this 
high vacuum transfer technique, Schieberle and Grosch 
(1985) proposed a high vacuum sublimation equipment. 
However, the method has certain drawbacks such as partial 
condensation of aroma compounds with higher boiling 
points inside the tubing before reaching the traps, and only 
diethyl ether and dichloromethane extracts can be used. 

Aroma extract dilution analysis (AEDA) (Ullrich and 
Grosch 1987) screens the odorants boiling higher than the 
solvent used for extraction of the food. This procedure starts 
with high resolution gas chromatography-olfactometry 
(HRGCO) of the original extract containing the volatiles. 
The extract is then concentrated stepwise by distilling off 
the solvent, and, after each step, an aliquot is analysed by 
HRGCO. To identify the highly volatile potent odorants, 
gas chromatography-olfactometry of headspace samples is 
also carried out (Holscher and Steinhart 1992). Guth and 
Grosch (1993) used AEDA analysis to identify acetic acid, 
5-ethyl-4-hydroxy-2-methyl-3(2H)-furanone, trans-4,5-
epoxy-(E)-2decanal, and eugenol as important fresh tomato 
odorants. The results of AEDA are expressed as a flavour 
dilution factor, which is the ratio of the concentration of the 
odorant in the initial extract to its concentration in the most 
diluted extract in which the odour can be detected by 
HRGCO. Consequently, the flavour dilution factor is a rela-
tive measure of the odour potency of a compound in a food 
extract (Grosch 1993). 

A variation of this technique has been employed for the 
quantitative assay of major C5-C9 tomato volatiles using 
Tenax trapping and CaCl2 enzyme deactivation (Buttery et 
al. 1987). A high vacuum was applied to the solvent-assis-
ted flavour evaporation apparatus by means of a diffusion 
pump. From the vapour spray, which forms immediately, 
the volatiles and the solvent are transferred to the distilla-
tion head. The distillate enters a liquid nitrogen cooled flask. 
Volatiles, water and other solvents are condensed along the 
walls of the vessel. The identities of components are then 
confirmed by GC-MS methods. 
 
Tomato 
 
Tomato flavor has been extensively studied and more than 
400 volatile compounds have been identified in tomato 
fruits (Buttery et al. 1971; Servili et al. 2000). Concentra-
tions of selected odorants in three tasty (BR-139, FA-624 
and FA-612) and two less tasty (R-144 and R-175) tomato 
cultivars are presented in Fig. 2. However, new constituents 
of sensory importance continue to be characterized (Mayer 
et al. 2008). Full favored tomatoes are characterized (Tan-
dom et al. 2003) by a low level of acidity, a high content of 
total sugars and soluble solids, and an intermediate content 
of hexanal, cis-3-hexenal, 2- and 3-methyl-1-butanol, trans-
2-hexenal, cis-3-hexenol, geranyl acetone, �-ionone, and 1-
penten-3-one. The most common free volatiles (hexanal, 3-
methylbutanol, trans-2-hexenal, 1-hexanol, cis-3-hexenol, 
quaiacol, benzyl alcohol, 2-phenylethanol, and eugenol) oc-
cur in concentrations of between 100-300 �g/l of tomato 
juice (Ortiz-Serrano and Gil 2007). The concentrations of 
volatile compounds of fruits can be increased by enzymatic 
hydrolysis of non-volatile precursors (Buttery et al. 1990, 
Baldwin et al. 2000). Most of precursor compounds in fruits 
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are glycosides, mainly O-�-D glycosides or O-diglycosides. 
The glucose moieties are attached to aglycones through a �-
glycosidic linkage. Aglycones include monoterpenes, C11/ 
C13-norisoprenoids, benzene derivatives and linear alcohols. 
In diglycosides, the glucose moiety is further substituted by 
various sugars such as �-L-arabinofuranose, �-L-arabinopy-
ranose, �-L-rhamnopyranose, �-D-glucopyranose, �-D-apio-
furanose, or �-D-xylopyranose (Williams 1993; Sarry and 
Günata 2004). The enzymatic release of volatiles from gly-
cosides is catalyzed by �-glycosidases. Enzymatic hydroly-
sis of diglycosilate precursors can take place in one step by 
diglycosidases (Ogawa et al. 1997), or in two steps (Günata 
et al. 1988). However, the effect of glycosides on tomato 
flavor is still not completely understood (Sarry and Günata 
2004). 
 
Pepper 
 
In samples of 13 different species of pepper and peppercorn, 
more than 300 volatile compounds have been characterized 
(Cardeal et al. 2006). Alpha thujene, �-pinene, camphene, 
sabinene, �-pinene, myrcene, o-cymene, limonene, �-terpi-
nene, terpinen-4-ol, �-terpineol, carvone, �- and �-cubebene, 
�-copaene, allo-aromanderene and �-elemene were detected 
in all samples analyzed. 
 
CELL WALL METABOLISM 
 
Tomato 
 
Fruit texture is among the principal quality traits determi-
ning the preferences of consumers and shelf life (Knee and 
Miller 2002) and is dependent on the integrity of the fruit 
cell walls. Fleshy fruits are predominantly composed of 
thin-walled parenchyma cells. The highly hydrophilic cell 
wall of tomato fruits is composed of pectin, cellulose, and 
hemicelluloses. The middle lamella is composed mainly of 
pectic substances cross-linked by calcium (Seymour and 
Gross 1996). Sugar phosphates and sugars are the precur-
sors of pectic and hemicellulose polysaccharides (Scheible 
and Pauly 2004), which account for 90% of the cell wall 
(Redgwell and Fisher 2002). Pectins contain different struc-

tural domains that are classified as homoglacturans, type I 
rhamnogalacturans and type II rhamnogalacturans. Homo-
galacturans contain 100-200 uninterrupted galacturonates 
linked with 1-4 a-glycositic bonds (Willats et al. 2001a, 
2001b; Bonnin et al. 2002) and can be methylated at posi-
tion 6, acetylated at position 2 and/or 3 (Quéméner et al. 
2003) or substituted by xylose (Le Goff et al. 2001), apiose 
or short xylose side chains on O-2 and /or O-3 (Oechslin et 
al. 2003). Type I rhamongalacturans are 1-4-a-linked galac-
turonic acid, interrupted by the insertion of 1-2 linked a-L-
rhamnose and type II rhamongalacturans are complex struc-
tures with diverse sugars and linkages (Willats et al. 2001a). 

During tomato fruit ripening a number of enzymes 
which are involved in cell wall modification are up regu-
lated. The precise action of these enzymes, however, is not 
completely understood (Seymour et al. 2002; Brummell 
2006). Pectic substances are reported to be hydrolyzed by a 
number of enzymes involving polygalacturanases, rhamno-
galacturonases, �-galactosidases and pectin methylesterases. 
During tomato fruit ripening the activity of polygalacturo-
nases, the enzymes that hydrolyze the linear polygalacturan 
backbones, increases dramatically (Della Penna et al. 1986). 
Among other hydrolytic enzymes that show high activity in 
fruits are rhamnogalacturonase and �-galactosidase (Gross 
et al. 1995). Although a number of tomato �-galactosidases 
are expressed during ripening (Smith and Gross 2000), the 
precise role of each is not known. Of the three genes (TBG1, 
3 and 4) used in transgenic experiments in tomatoes only 
the repression of TBG4 decreased fruit softening (Smith et 
al. 2002). Pectin methylesterases catalyze the de-esterifica-
tion of pectins. In tomato three pectin methylesterases are 
expressed (Tucker and Zhang 1996). Down-regulation of a 
fruit specific methylesterase (PME2) resulted in an unal-
tered degree of fruit softening upon ripening but in reduced 
fruit firmness after 7 weeks at room temperature (Tieman et 
al. 1992). 

Cellulases degrade carboxymethylcellulose. Their acti-
vity is generally associated with softening in tomato fruits, 
but the antisense suppression of a fruit-specific gene (Brum-
mell et al. 1999) caused no change in the pattern of sof-
tening. Moreover, xyloglucan endotransglycosylase, which 
cleaves xyloglucans, is thought to be involved in ripening-
related changes in cell wall of tomato fruit (Maclachlan and 
Brady 1994). 

Expansins, a class of cell wall proteins, have been im-
plicated in tomato fruit ripening. During fruit development 
an expansin is co-expressed with xyloglucan endotransgly-
cosylase and cellulose encoding genes (Catala et al. 2000), 
while most other expansin genes are expressed during fruit 
development (Bertin 2005). The role of expansins in fruit ri-
pening remains obscure. 
 
Pepper 
 
Depolymerization of non-xyloglucan matrix glycans is the 
prominent cell wall change observed during pepper ripening. 
Suppression of a ripening-related endo-1-4-�-glucanase in 
transgenic pepper fruit did not prevent depolymerization of 
cell wall polysaccharides during ripening (Harpster et al. 
2002). Genetic evidence showed that polygalacturonase 
(PG1) is the candidate gene for the soft flesh and deciduous 
fruit mutation in Capsicum. Accumulation of PG1, mRNA 
and protein was detected in the fruit and it increased during 
ripening from the breaker to the red stage (Rao and Paran 
2003). Therefore, the fruit-specific endo-polygalacturonase 
gene is thought to control polygalacturonase-mediated fruit 
softening, which is a major fruit ripening process. Recent 
evidence (Ogasawara et al. 2007) showed that during bell 
pepper fruit ripening, �-galastosidase activity increased 
markedly in comparison with other glycosidases and its pat-
tern of activity follows the accumulation of polygalacturo-
nase. A marked decrease in galactose content in the pectic 
fraction during ripening was observed, a fact that shows a 
major role of PG1 and �-galastosidase in fruit ripening 
(Ogasawara et al. 2007). 

Fig. 2 Concentrations of selected odorants in three tasty (BR-139, FA-
624 and FA-612) and two less tasty (R-144 and R-175) tomato 
cultivars. (Adapted from Mayer et al. 2008). 
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It is thus likely that in the coming years, our understan-
ding both of the coordination of cell wall metabolism 
during fruit development and the consequences of temporal 
changes in wall metabolism on fruit ripening, and morpho-
logy in general, will be furthered. 
 
CENTRAL METABOLISM SHIFT 
 
After the start of flowering, developing fruits become im-
portant sinks. Fruit development comprises a cell-division 
phase, which follows pollination and usually lasts for two 
weeks (Bunger-Kibler and Bangerth 1983), followed by a 
cell-enlargement phase. Cell division and its regulation ap-
pear to be directly affected by the level of available carbo-
hydrates and the form in which they are present (Francis 
and Halford 2006). During the cell enlargement phase, the 
fruit shows maximum growth rate and increase in size up to 
the mature green stage. Fruit ripening, however, is not ac-
companied by further growth (Gillapsy et al. 1993) 

Sink strength of tomato fruit is principally affected 
(Waker and Ho 1977) by: (a) unloading of sucrose by the 
phloem, (b) hydrolysis and uptake of sugars, (c) biosynthe-
sis and storage of carbohydrates (Ho et al. 1983). The re-
gulation of primary carbohydrate metabolism and of the 
enzymes involved plays, therefore, an important role in 
determining the carbohydrate composition and level, and 
may a have large effect on the growth and the strength of 
sinks (Koch 2004). 

Young tomato fruits undergo a transient period of starch 
accumulation (Fig. 3) (Ho and Hewitt 1986). Starch ac-
cumulation is heavy in the inner pericarp and columella 
tissue of the developing fruit (Wang et al. 1994) and may 
amount to circa 20% of dry weight in the young fruits, but 
is negligible in red ripe fruits. It has been proposed that 
transient starch functions as a carbohydrate reservoir during 
fruit development and contributes to soluble hexose levels 
in mature fruit (Dinar and Stevens 1981). The harvestable 
yield of tomato appears to be regulated among other factors 
by the rate of carbohydrate import into individual fruit and 
sink activity (Yelle et al. 1988). High accumulation of solu-
ble solids can significantly increase the quality of the to-
mato, sugars being the major components and comprising 
approximately 65% of the soluble solids. 

Sucrose, glucose and fructose are the major sugars 
found in tomato fruits, with high hexose accumulation being 
characteristic of domesticated tomato (S. lycopesricum) 
whereas some wild tomato species (S. chmielewskii) ac-
cumulate mostly sucrose (Yelle et al. 1991). Any discussion 
on sucrose metabolism of fruits should consider the route 
by which carbon enters the fruit. Tomato plants translocate 
sucrose (Waker and Ho 1997) which can be hydrolyzed via 
either invertase or sucrose synthase. Sucrose synthase is 
often associated with sucrose hydrolysis in starch meta-
bolism (Quick and Schaffer 1996), and in tomato fruits its 
activity is correlated with transient starch accumulation 
(Beckles et al. 2001). However, sucrose synthase activity is 
not essential for starch synthesis, because its inhibition re-
sulted in a reduced unloading capacity of sucrose in the 
initial stages of fruit development, but had only a small 
effect during ripening (D’Aoust et al. 1999). The action of 

sucrose synthase in the carbon metabolism of fruit during 
early development seems to be that of providing hexose 
phosphates (Roessner-Tunali et al. 2003). The enzyme 
ADP-glucose pyrophosphorylase catalyzes the synthesis of 
ADP-glucose in starch-synthesizing tissue. Its activity (Ro-
binson et al. 1988) also follows the transient starch accumu-
lation pattern. On the other hand, invertases hydrolyze suc-
rose into glucose and fructose. Three types of invertases 
have been purified so far in higher plants: the acid inver-
tases which are ionically bound to the cell wall, the acid 
invertases localized in the vacuole (both of which show an 
optimal pH range of 4.5-5.0), and the cytosolic alkaline in-
vertases, whose optimal pH range is 7.0-7.8 (Koch 2004; 
Roitsch and Gonzales 2004). Unlike the cytosolic isoforms, 
which appear to specifically hydrolyze sucrose, the vacuo-
lar and cell wall invertases also hydrolyze other �-fructa-
nosides, such as raffinose and stachyose. Apart from under-
going transcriptional control, the cell wall and vacuolar 
invertases seem to be controlled by post-translational me-
chanisms, such as developmentally regulated proteolytic 
degradation and the activity of proteinaceous inhibitors 
(Rausch and Greiner 2004). In tomato, a cell wall invertase 
(LIN5) (Fridman et al. 2004) is considered to be important 
for the establishment of sink strength and for apoplastic 
phloem unloading. In addition, it is thought that the inver-
tase activity in the unloading zone leads to favorable condi-
tions for the maintenance of mitotic activity and enhanced 
growth potential (Roitsch and Gonzales 2004). The expres-
sion pattern of this enzyme suggests that it is restricted to 
fruits and flowers (Fridman and Zamir 2003). Invertase 
antisense plants showed increased sucrose and decreased 
hexose concentrations in the fruits and 30% smaller fruits 
than those of the control plants (Klann et al. 1996). A de-
tailed biochemical characterization of vegetative and fruit 
tissues of the introgression line carrying the Lin5 wild allele 
was reported by Baxter et al. (2005). 
 
Starch formation and degradation 
 
Earlier studies of the sucrose to starch transition in the 
tomato fruit suggested that fructokinase, sucrose synthase, 
and AGPase are likely to share in the control of the rate of 
starch accumulation (Schaffer and Petreikov 1997). Two 
different isoforms of fructokinase, exhibiting temporal and 
spatially dinstict expression patterns, have been detected 
(Kanayama et al. 1998). However, although both isoforms 
have been shown to play a role in floral initiation and abor-
tion, seed number, and stem and root growth in tomato 
plants (Odanaka et al. 2002), their role in fruit metabolism 
has received far less attention. On the other hand, the recent 
application of the theory of metabolic control analysis to the 
same pathway in potato tubers suggested that only AGPase 
exhibited considerable control of starch synthesis (Davies et 
al. 2005; Geigenberge et al. 2005). 

In spite of the fact that during ripening, massive starch 
hydrolysis occurs, virtually nothing is known about the en-
zymes involved, although work in our laboratories points to 
the involvement of �-amylase. 
 
Metabolite changes 
 
Through the analysis of over 70 primary metabolites, it was 
possible to distinguish three developmental stages of tomato 
fruits (green, orange and red) and follow the influence of 
hexose phosphorylation through fruit development by ana-
lyzing transgenic plants constitutively over-expressing an 
Arabidopsis hexokinase (AtHXK1) (Roessner-Tunali et al. 
2003). Moreover, in a recent study, integrated analysis of 
metabolite and transcripts levels during tomato fruit deve-
lopment was performed (Carrari and Fernie 2006). Data 
from these studies show that glucose, fructose (Fig.4), man-
nose and maltose accumulate in ripe fruit, while the levels 
of minor sugars also displayed major shifts. Rhamnose and 
fucose are both rapidly and equally depleted during ripen-
ing, while galactose, xylose and arabinose display an in-

A B 

Fig. 3 Starch accumulation in tomato (blue to black color): (A) an 
immature green fruit, and (B) a late breaker fruit. 
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verse behaviour. Sugar alcohol levels tend to decline during 
development, although the levels of mannitol recover some-
what at later stages of ripening. 

Levels of organic acids (Carrari and Fernie 2006) that 
are not associated with the TCA cycle generally display a 
different behaviour with respect to the developmental stage. 
Ascorbate, dehydroascorbate, t-caffeate, galacturonate, and 
galactonate-1-4-lactone increase either gradually or rapidly 
during the later stages of fruit development, whereas male-
ate and gulonate-1-4-lactone display variable behavior. 

The levels of ascorbic acid (vitamin C) increased during 
ripening in all tissues, though its increase was generally lar-
gest between the green to breaker or the breaker to turning 
stages (Fig. 5A). When red fruit was compared to green, the 
ascorbic acid content was found to increase by nearly 10-
fold in the placenta (Mounet et al. 2007). 

Tocopherols are present at different concentrations in 
diverse parts of the tomato fruit (Fig. 5B, 5C). Vitamin E 
(�-tocopherol) is the most abundant tocopherol in all tissues 
and at all stages of fruit development, being lowest in the 
pericarp. Gamma-tocopherol, which is the biosynthetic pre-
cursor of �-tocopherol, was highest in the locular paren-
chyma and seeds of the tomato fruit (Mounet et al. 2007). 
The ratio �- to �-tocopherol clearly differs between tissues, 
suggesting tissue-dependent differences in the activity of 
the corresponding �-tocopherol methyltransferase. The 
levels of �-tocopherol are relatively low in all tissues, while 
�-tocopherol is not detectable. 

The total fatty acid content of tomato fruit (arachidic, 
behenic, linoleic, lignoceric, oleic, palrmitic and stearic 
acids) amounts to 0.09% flesh DW (Mounet et al. 2007). 
Whatever the tissue and the developmental stage, linoleic 
acid is always the major fatty acid (Fig. 6), followed in the 
flesh and seeds by palmitic and linolenic acids, which cons-
titute the main fatty acids at 8 DPA. At 45 DPA, the major 
fatty acids did not change in the flesh, but in the seeds the 
picture is modified since palmitic and oleic acids are the 
most abundant after linoleic acid. 

The level of amino acids (Fig. 7) is also highly variable 
during development. A gradual decline in metabolite levels 
was observed for GABA, �-Ala, Arg, Asn, Gln, pyrogluta-
mate, Orn, Leu, and Val, while the levels of Ser, Ala and 
Pro decreased rapidly. In contrast, Trp, Cys, Glu, Asp, Lys, 
Met, and putrescine increased to a peak at fruit ripening. 
One of the most prominent changes associated with ripen-
ing tomatoes is a two-fold increase in Glu content in the 
tomato pericarp (Carrari and Fernie 2006). The aforemen-
tioned changes were broadly similar to those reported in 
earlier less extensive studies (Boggio et al. 2000; Chen et al. 
2001), with major changes occurring between the green and 
red fruit. There was also a large increase in glucose and 
fructose within the cell wall components, as well as the aro-

matic amino acids, Asp, Lys, Met, and Cys. As might be 
expected there was also an increase in all pigments other 
than chlorophyll. 
 
Organic acids 
 
Although it is of central importance to the tomato fruit, rela-
tively is currently known concerning the regulation of gly-
colysis and the biosynthesis of organic acids. Similarly, 
although organic acids are of fundamental importance both 
at the cellular and at the whole organism level, their study 
has received much less attention than that of sugars. Indeed, 
the TCA cycle in plants is very poorly characterized and al-
though the structure of the cycle is well known, its regu-
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Fig. 5 Concentrations of ascorbic acid (A1), �-tocopherol (B) and �-toco-
pherol (C) in the pericarp, placenta and locular parenchyma+seeds (LP+ 
Seed) during tomato fruit development (Adapted from Moco et al. 2007). 
(A2) Concentrations of ascorbic acid, dehydroascorbic acid and vitamin C 
in sweet pepper during fruit development (Adapted from Marin et al. 
2004). 
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lation is not (Fernie et al. 2004). The concentrations of or-
ganic acids of the TCA cycle (Carrari and Fernie 2006) 
showed a peak at around 56 days after anthesis. For the ma-
jority of organic acids of the TCA, there was a relative 
minor increase, but for citrate the increase was substantial. 
These changes could be attributed to the changes in activi-
ties of TCA cycle enzymes (Jeffrey et al. 1986). Although 
there are differences between American and European culti-
vars, the concentrations of citrate and isocitrate remain high 
until the later stages of fruit development. Because NADP-
isocitrate dehydrogenase activity peaks in the ripe pericarp 
(Gallardo et al. 1995), it would be plausible to hypothesize 
that this enzyme supplies 2-oxoglutarate for amino acid bio-
synthesis and ammonia assimilation (Galvez et al. 1999). 
 
MOLECULAR ASPECTS OF EHTYLENE 
RESPONSE IN TOMATO 
 
Ethylene is a gaseous phytohormone that controls many 
processes of plant growth and development including fruit 
ripening, germination, organ senescence and stress respon-
ses. Among the processes controlled or influenced by ethy-
lene, fruit ripening is one the most important to agriculture. 

The role of ethylene in fruit ripening has been inten-
sively studied in a number of plant species. However, to-
mato is an important model for the study of fleshy fruit de-
velopment, essentially because this is the species for which 
well-characterized mutant stocks, efficient transient and 
stable transformation, extensive expressed sequence tags 

and microarrays resources, and high density genetic maps 
are available. In addition, over 30% of the tomato genome 
has been sequenced in an ongoing effort. Fruits with dif-
ferent ripening mechanisms can be divided into two groups: 
climacteric in which ripening is accompanied by a peak in 
respiration and a concomitant burst of ethylene release, and 
non-climacteric, in which respiration shows no dramatic 
change and ethylene production remains at a very low level.  
Tomatoes as climacteric fruits are characterized by an in-
crease in respiration and a concomitant increase in ethylene 
biosynthesis just prior to the initiation of ripening. 
 
Ethylene biosynthesis 
 
Ethylene is formed from methionine which is converted to 
S-adenosyl-L-methionine by the enzyme 1-amino-cyclopro-
pane-1-carboxylate synthase (ACS), then to methylthioade-
nosine and 1-amino-cyclopropane-1-carboxylic acid (ACC), 
the precursor of ethylene. ACC is oxidized to CO2, HCN 
and ethylene by ACC oxidase (ACO). Tomato has at least 
eight ACS gene family members (LeACSA1A, LeACSA1B, 
LeACSA2-7), four of which are differentially regulated fruit 
ripening and wounding elicitors (Alexander and Grierson 
2002). Four ACO genes have been identified in tomato so 
far; three of them (LeACO1, LeACO3 and LeACO4) have 
been shown to be differentially expressed during fruit ripen-
ing. LeACO3 transcripts are transiently accumulated at the 
breaker, pink, red and full-ripe stages and then disappear, 
whereas LeACO1 and LeACO4 transcripts are accumulated 
during the process of ripening (Nakatsuka et al. 1998; Cara 
and Giovannoni 2008). 
 
The molecular basis of ethylene perception in 
tomato fruit 
 
The skin of the tomato fruit is relatively impermeable to 
ethylene, so the gas builds up to high internal levels 
throughout the fruit. However, ethylene is readily diffusible 
within the confines of the fruit. It has been suggested that 
tomato fruits possess a capacity to measure cumulative 
ethylene through development and upon achievement of a 
certain cumulative exposure to ethylene, ripening is initi-
ated (Klee 2004). 

To achieve full ripening, climacteric fruits, such as to-
mato, require synthesis, perception and signal transduction 
of ethylene. Investigations into the ethylene response of 
ripening fruit have concentrated on the characterization of 
tomato homologues of Arabidopsis ethylene signal trans-
duction genes. Ethylene is perceived by a family of mem-
brane-localized receptors, of which at least six ethylene 
receptors have been identified in tomato (LeETR1, 2, 4–6 
and Never-ripe [NR], also called LeCTR3) (Klee and Tie-
man 2002). Based on gene and protein structures, the ethy-
lene receptors have been divided into two subfamilies, sub-
family I (LeETR1, 2 and 3) contains the conserved kinase 
residues whereas subfamily II (LeETR4, 5 and 6) lacks some 
conserved kinase residues. The receptors are disulfide-
linked dimers, and ethylene binding is mediated by a copper 
co-factor (Cara and Giovannoni 2008). 

The patterns of expression of the tomato ethylene recep-
tors have been characterized. Each gene has a distinct pat-
tern of expression in ripening fruit, and transcripts have also 
been found in other tissues, e.g. roots and leaves (Klee 
2004). Genetic analysis in tomato and Arabidopsis has 
shown that the receptors act as negative regulators of the 
ethylene response pathway. In the absence of the hormone, 
receptors actively suppress ethylene responses. Upon ethy-
lene binding, suppression is removed and the response oc-
curs. In tomato, loss of a single subfamily II receptor, 
LeETR4, results in increased ethylene sensitivity. Antisense 
LeETR4 plants show phenotypes consistent with a constitu-
tive ethylene response, including significantly earlier fruit 
ripening. This mutant phenotype can be restored to wild-
type by over-expression of the subfamily I receptor, NR 
(Tieman et al. 2000). It has been observed that in transgenic 

Linoleic

Linolen
ic

Palmitic Oleic

Arachidic
Stea

ric
 

C
on

ce
nt

ra
tio

ns
 m

g/
g 

D
W

0

20

100

Flesh 8 DPA 
Seed 8 DPA
Fresh 45 DPA
Seed 45 DPA

Fig. 6 Concentrations of the main fatty acids in the flesh and seed of 
red ripe tomato fruits. (Adapted from Mounet et al. 2007). 

 

Asparagine

Aspartic
 acid

GABA

Glutamic a
cid

Glutamine

Phenylalanine

Leucin
e

Pyroglutamic a
cid

C
on

ce
nt

ra
tio

ns
 m

g/
g 

D
W

0

10

30

40

50

Flesh 8 DPA
Seed 8 DPA
Flesh 45 DPA
Seed 45 DPA

Fig. 7 Concentrations of selected amino acids in the flesh and seed of 
red ripe tomato fruits. (Adapted from Mounet et al. 2007). 

 

151



The European Journal of Plant Science and Biotechnology 2 (Special Issue 1), 145-155 ©2008 Global Science Books 

 

tomato plants, where NR expression is reduced by antisense 
inhibition, expression of LeETR4 increases proportionally. It 
appears, therefore, that somehow the tomato plant compen-
sates for the loss of NR by increasing the expression of 
LeETR4. This phenomenon, referred to as functional com-
pensation, has not been observed in Arabidopsis (Tieman et 
al. 2000; Kevany et al. 2007). Recent work on the tomato 
ethylene receptor family has demonstrated that receptor 
levels during fruit development determine the timing of 
ripening (Kevany et al. 2007). Protein levels are at their 
highest level during immature fruit development and de-
crease significantly at the onset of ripening, facilitating 
ethylene-mediated ripening processes. Ethylene treatment 
of immature fruit causes receptor degradation and earlier 
fruit ripening (Kevany et al. 2007). Fruit-specific suppres-
sion of the ethylene receptor LeETR4 results in early-ri-
pening tomato fruit (Kevany et al. 2008). 
 
The molecular basis of the ethylene signaling 
pathway downstream to ethylene receptors in 
tomato fruit 
 
In Arabidopsis, the ethylene signaling pathway downstream 
from the ethylene receptors (CTR1, EIN3, EIL and ERF) is 
well understood (Adams-Phillips et al. 2004a; Guo and 
Ecker 2004). Detailed knowledge of the ethylene signaling 
pathway defined in Arabidopsis enables comparative analy-
ses to be carried out in other important crop species, such as 
tomato, where ethylene is critically involved in the fruit ri-
pening process. 

In tomato, ethylene signaling components have been de-
fined, including a CTR-like gene (LeCTR1), through com-
plementation of a ctr1 mutant of Arabidopsis to function in 
ethylene signaling (Leclercq et al. 2002). Arabidopsis CTR1 
has been assigned to a subclass of Raf-like mitogen-acti-
vated protein kinases (MAPK) (Cara and Giovannoni 2008). 
Antisense silencing of the LeCTR1 gene resulted in plants 
with constitutive ethylene phenotypes, suggesting its phy-
siological role in negatively regulating ethylene responses 
in tomato (Liu et al. 2002). Additional CTR (LeCTR2, 3 and 
4) genes have been identified in tomato (Adams-Phillips et 
al. 2004b). Recent studies using a yeast two-hybrid inter-
action assay have shown that the tomato receptors LEETR1, 
LEETR2, and NR can interact with multiple LECTRs (Zhong 
et al. 2008). 

Homologues of Arabidopsis EIN3, EIL and ERF genes 
have also been identified and characterized in tomato. Four 
new members of the ERF (ethylene-response factor) family 
of plant-specific DNA-binding (GCC box) factors were iso-
lated from tomato fruit (LeERF1-4). Four tomato EIL (ethy-
lene insensitive) genes were identified and have been pro-
posed to be functionally redundant positive regulators of 
multiple ethylene responses (Tieman et al. 2001; Yokotani 
et al. 2003). Recently, a novel gene (GR) was identified in 
tomato which is associated with the ethylene signaling path-
way. Constitutive over-expression of GR in transgenic 
plants recreates the Gr mutant phenotype (ripening inhibi-
tion) but does not result in plants that display whole plant 
ethylene insensitivity (Barry and Giovannoni 2006). Tomato 
hosts at least two additional gene GR-family members, GR1 
and GR2 (Cara and Giovannoni 2008). 
 
CONCLUSIONS AND FUTURE PERSPECTIVES 
 
Tomato ranks very high among the vegetables that are in-
dustrially produced and distributed throughout the world. 
They are perceived by the consumers as healthy and tasty 
vegetables. The properties of tomatoes beneficial to health 
are attributed to antioxidants, in particular lycopene, and 
their high content of vitamins, such as vitamin A and C. 
Consumer choice is driven by organoleptic quality (taste, 
aroma and color), origin of production, size and shape, agri-
cultural production conditions and price. 

Continuous research efforts have revealed a complex re-
gulatory network involved in the developmental regulation 

of ripening in these fleshy fruits. Therefore, an increased 
understanding of the biochemistry and physiology of the 
fruit with the aid of new advents in functional genomics 
may contribute to the further improvement of tomato qua-
lity traits. Recently, major efforts by seed companies and 
researchers are being directed towards the improvement of 
quality traits (taste, flavor and health benefits) by conven-
tional breeding or genetic engineering, without losing im-
portant agricultural characteristics or compromising consu-
mer demand. Knowledge of the metabolic pathways permits 
the genetic construction of folate- and lycopene-fortified to-
matoes. However, genetic modification approaches need to 
be carefully integrated with studies of the biochemistry and 
physiology of the fruit, as well as conventional breeding. 
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