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ABSTRACT 
In the potato (Solanum tuberosum), tuberization is a complex developmental process, leading to the formation of a specialized storage 
organ by the differentiation of the underground stolon. Tuberization begins with the perception of environmental signals in the leaves. 
Under short day (SD) conditions and cool temperatures, potato plants produce tubers, while they remain in a vegetative stage under long 
day (LD) conditions or high temperatures. Environmental signals exercise influences on the control of potato tuberization via several 
plant hormones and other endogenous factors. Tuberonic acid glucoside (TAG) isolated from the leaves of potato plants is the proposed as 
specific tuber-inducing substance. Tuberonic acid (TA) and jasmonic acid (JA), which are closely related compounds to TAG, have also 
showed strong activities on tuber induction. The generation of TAG is associated with the linolenic acid (LA) cascade. In the LA cascade, 
JA is biosynthesized from 13(S)-hydroperoxylinolenic acid (HPOT), catalyzed by lipoxygenase (LOX) as an initial enzyme, and then JA 
is metabolized to TA and finally converted into TAG. In the present review, which is aimed at elucidating the mechanism of potato tuber 
induction by means of temperature and LOX derivatives, low temperature was favorable for tuber induction of potato, and LOX activity 
appeared high level at the initial stage of potato tuberization and was stimulated by low growing temperature. In addition, the high 
endogenous levels of JA, TA, and TAG were observed at low temperature suggesting that the increase in LOX, which is activated by low 
temperature, results in large amounts of endogenous JA, TA and TAG, which play a crucial role in potato tuber induction. On the other 
hand, inhibitory effect for tuber induction under unfavorable environmental conditions could be recovered partially by the treatment of 
theobroxide, an exogenous tuber-inducing compound. 
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INTRODUCTION 
 
The potato (Solanum tuberosum) tuber results from a pro-
cess named tuberization, which is the formation of a spe-
cialized storage organ by the differentiation of the under-
ground stolon (Taylor et al. 1992). Tuberization begins with 
the inhibition of the longitudinal growth at the stolon tip 
followed by a swelling at the subapical region (Cutter 1978). 
Subsequently, vigorous thickening growth due to cell divi-
sion and expansion occurs (Xu et al. 1998b). Thereafter, 
biochemical changes, including accumulation of starch and 
formation of storage proteins, occur in growing tubers (Ap-
peldoorn et al. 1997). 

Tuberization is very much influenced by environmental 

signals and regulated by several plant hormones. Potato 
plants produce tubers under short day (SD) photoperiods 
and low temperatures, but they do not form tubers under 
long day (LD) conditions (Hussey and Stacey 1984). Like-
wise, potatoes do not form tubers at higher temperature 
even if SD conditions are satisfied (Ewing and Struik 1992). 

The effects of typical hormones on tuberization are well 
reviewed in the literature (Wareing and Jennings 1980; 
Melis and van Staden 1984; Vreugdenhil and Struik 1989; 
Ewing 1995). Gibberellins (GAs) are well-known as inhib-
itors of tuberization. Exogenous treatments of GAs resulted 
in tuber inhibitions in systems using whole plants (Okazawa 
1960), plantlets in vitro (Hussey and Stacey 1984) and ex-
cised sprouts cultured in vitro (Koda and Okazawa 1983a). 
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It is suggested that unfavorable environmental conditions 
for tuberization, i.e., LD, low irradiance, high temperatures 
and high nitrogen supplication, are related to high levels of 
GA activity (Woolley and Wareing 1972; Railton and 
Wareing 1973; Krauss and Marschner 1982; Menzel 1983). 

The existence of a specific potato tuber-inducing sub-
stance, which is produced in leaves during SD conditions 
and transported to the top of the stolon, has been proposed 
by grafting and other experiments (Gregory 1956; Kumar 
and Wareing 1973). In subsequent experiments, this pre-
sumed tuber-inducing substance was isolated from leaflets 
of potato plants using the bioassay of a potato single-node 
stem segment culture and the structure of this active com-
pound was identified to be 12-hydroxyjasmonic acid gluco-
side (tuberonic acid glucoside, TAG) (Koda et al. 1988; 
Yoshihara et al. 1989). 12-Hydroxyjasmonic acid was later 
named as tuberonic acid (TA). Both TA and its glucoside 
(TAG) are structurally and biosynthetically related to jas-
monic acid (JA). [2-14C] JA applied on potato leaves is me-
tabolized to TAG within 2 weeks and transferred to the sto-
lons and other plant parts (Yoshihara et al. 1996). 

JA is supposed to counteract the effects of GA (van den 
Berg and Ewing 1991). At an early stage of potato tuberiza-

tion, radial cell expansion of stolons occurs (Koda and Oka-
zawa 1983b), and in response to JA, the cells of potato tuber 
tissue expand as a consequence of water uptake (Takahashi 
et al. 1994). In addition, a large amount of methyl jasmo-
nate (Me-JA), a volatile derivative of JA, has been detected 
in plant species (Mithöfer et al. 2005). JA and Me-JA are 
involved in various morphogenic events such as tuberiza-
tion, bulb formation (Koda 1997), senescence (Ueda and 
Kato 1980), wounding (van den Berg and Ewing 1991), coi-
ling (Weiler et al. 1993) and various abiotic stresses (Creel-
man and Mullet 1995). 

TAG, a tuber-inducing substance, is biosynthesized by 
a so-called linolenic acid (LA) cascade (Fig. 1). In plants, 
LA is initially oxygenated to form 9(S)- hydroperoxylinole-
nic acid (HPOT) or 13(S)-HPOT by lipoxygenase (LOX, 
EC 1.13.11.12) and then further metabolized into a number 
of biologically active compounds (Feussner and Wasternack 
2002). JA is synthesized from 13(S)-HPOT by consecutive 
actions of allene oxide synthase (AOS), allene oxide cyc-
lase (AOC), reductase, and ß–oxidative enzyme (Siedow 
1991). Next, JA is metabolized to TA and finally converted 
into TAG which has been identified as the endogenous 
tuber-inducing substance of potato (Yoshihara et al. 1989). 

Fig. 1 The linolenic acid cascade. 
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On the other hand, theobroxide (Fig. 3, 6), isolated 
from the culture filtrate of the fungus Lasiodiplodia theobro-
mae, has been identified as a natural tuber-inducing com-
pound in potato (Nakamori et al. 1994). Theobroxide 
strongly induces potato tuberization in vitro and in vivo 
under non-inductive photoperiod conditions (Nakamori et 
al. 1994; Yoshihara et al. 2000). Interestingly, a number of 
studies show the close relationship between theobroxide 
and JA in potato tuberization. Tuber induction of potato, in-
duced by theobroxide, is correlated with the stimulation of 
JA and TA syntheses and enhances the activity of LOX, a 
key enzyme for JA biosynthesis (Gao et al. 2003). Their 
successive study showed that theobroxide might play a role 
in the swelling of microtubers formed in vitro in a similar 
manner as that of JA, suggesting that theobroxide may be a 
trigger of JA production (Gao et al. 2005). In addition, a JA 
biosynthesis inhibitor, salicylhydroxamic acid (SHAM), 
suppresses the inductive effect of theobroxide on potato 
tuberization and reduces the endogenous content of JA and 

TA (Gao et al. 2003). 
In order to establish the mechanisms of tuberization, in 

this review, temperature is selected as the environmental 
variable, and its influences are systematically discussed 
with LOX derivatives and various enzymes in LA cascade. 
In addition, the role of exogenous treatments of theobroxide 
in overcoming unfavorable environmental conditions is 
taken into account. 
 
ENVIRONMENTAL FACTORS 
 
Potato tuberization begins with a sensing of the environ-
mental signals, followed by the generation of a signal 
(known as tuberigen) in the leaves (Gregory et al. 1956). 
Then, the generated signal is transported successively to a 
distant organ, such as the stolon tips, at which tuber forma-
tion is induced in response (Thomas 1998). Among various 
environmental cues, photoperiod is one of the most impor-
tant factors affecting tuberization. Under SD conditions, p-
otato plants produce tubers, but they remain in a vegetative 
stage under LD conditions (Ewing and Struik 1992). How-
ever, the critical night length for tuberization and the 
strength of the photoperiodic response varies with geno-
types (Snyder and Ewing 1989). For example, potato spe-
cies such as S. demissum and S. tuberosum ssp. andigena, 
which are often used in experiments with photoperiodic 
effects on tuberization, require definite day lengths, 12 h or 
less, to tuberize and they will not tuberize when day length 
exceeds a critical threshold (Ewing and Struik 1992). 

In addition to excessive day length, light exposure in 
the middle of the dark period (termed night break) also 
inhibits tuber formation (Jackson 1999). It has been repor-
ted that tuberization in S. tuberosum cv. ‘Arran Pilot’ was 
delayed by interruption of the long dark period and tuber 
initiation of S. demissum was blocked completely by night 
break (Slater 1963). Many studies have suggested that phy-
tochrome may be involved in potato tuberization since it 
has been implicated in many photoperiodic reactions. In an 
experiment that reversed the inhibitory effect of red light by 
far red light treatment, Batutis and Ewing (1982) provided 
evidence that phytochrome is involved in the regulation of 
potato tuberization. Later, Jackson et al. (1996) determined 
that phytochrome B is required for the photoperiodic con-
trol of potato tuberization by generating transformants of S. 
tuberosum ssp. that produced much lower levels of phyto-
chrome B protein than normal. They speculated that phyto-

Fig. 2 Endogenous tuber-
inducing substances of 
tuberous plants. 1 is 
isolated from potato and 2-
4 are isolated from 
Jerusalem artichoke. 

Fig. 3 Potato microtuber forming 
substances from Lasiodiplodia 
theobromae. 

71



Fruit, Vegetable and Cereal Science and Biotechnology 2 (Special Issue 1), 69-81 ©2008 Global Science Books 

 

chrome B is probably not involved in the induction of tube-
rization, but rather involved in a negative regulatory mecha-
nism that prevents tuberization in a non-inductive photo-
period, LD or SD with night break. 

Temperature is also a major environmental factor con-
trolling potato tuberization. Low temperatures are very fa-
vorable for tuber induction, while high temperatures exert 
negative influences (Ewing 1981; Ewing and Struik 1992). 
Tuberization is inhibited under cool air temperature and 
warm soil temperature condition, but this was not attributa-
ble to the failure of the production of a tuber-inducing sti-
mulus in leaves (Reynolds and Ewing 1989). At the high 
soil temperature, the produced stimulus was transported 
through the stolons, but the stolons were prevented from 
developing into tubers. By controlling the temperature of 
parts of the plants such as shoots, roots, stolons, and tubers 
independently, it was confirmed that high temperatures in 
the shoots exerted the most serious inhibitory effect on 
tuber induction (Ewing and Struik 1992). While slightly in-
creased temperatures of stolons and tubers showed no parti-
cular effect, high temperature of roots resulted in a minor 
negative effect. 

In our recent experiments, the effects of various grow-
ing temperature treatments (15, 20, 25 and 30°C) on tuberi-
zation using 2-week-old potato plants were examined. Our 
findings suggested that low temperature (15°C) is suitable 
for tuber induction, while relatively high temperature (20~ 
25°C) promotes tuber growth. However, high temperature 
(30°C) is inhibitory for tuberization in both tuber induction 
and growth, although the inhibitory effect is much greater in 
tuber induction (Nam et al. 2005) (Fig. 4). 

In addition to SD and low temperature, other environ-
mental factors such as high light intensity or low nitrogen 
level also promote induction of potato tuber formation 
(Werner 1934; Krauss 1985; Struik 1986; Demagante and 
van der Zaag 1988). 
 
PLANT HORMONES AND TUBER INDUCING 
SUBSTANCES 
 
Specific environmental signals are known to control tube-
rization of potato via several plant hormones. GAs are well-

known to have an inhibitory effect on tuber induction (Oka-
zawa 1960; Koda and Okazawa 1983a; Hussey and Stacey 
1984). Exogenous application of GA to potato stems pro-
moted stolon elongation and suppressed tuber formation 
(Smith and Rappaport 1969; Kumar and Wareing 1972; 
Vreugdenhil and Helder 1992). It was also reported that the 
endogenous level of GA was high during stolon elongation 
and declined when stolon tips started to swell under indu-
cing conditions, whereas a high level was maintained under 
non-inducing conditions (Pont-Lezica 1970; Koda and Oka-
zawa 1983b; Xu et al. 1998a). In contrast, treatments with 
the GA-biosynthesis inhibitors, such as ancymidol and tet-
cyclacis, stimulated tuber induction (Perl et al. 1991; Vreug-
denhil et al. 1994). Many reports have suggested that unfa-
vorable environmental conditions for tuberization are cor-
related with high levels of GA activity (Woolley and Ware-
ing 1972; Railton and Wareing 1973; Krauss and Marsch-
ner 1982; Menzel 1983). In an experiment using S. tubero-
sum ssp. andigena, the levels of GA declined after transfer 
from LD or night break conditions to SD (Machackova et al. 
1998) and negative influences of LD conditions on tuberi-
zation were improved by a partial block in its the GA bio-
synthetic pathway (van den Berg et al. 1995a, 1995b). An-
other report showed that photoperiod-dependent tuberiza-
tion is mediated by GA application, which prevents or de-
lays tuberization under inducing SD conditions. However, 
the application of ancymidol, an inhibitor of GA biosynthe-
sis will allow tuberization in non-inducing LD (Jackson and 
Prat 1996). Moreover, Menzel (1980, 1983, 1985) demons-
trated that the inhibitory effects of high temperature on 
tuberization might also be mediated through increased GA 
levels. 

The effects of abscisic acid (ABA) on potato tuberiza-
tion have been well documented in the literature. Applica-
tion of exogenous ABA promoted tuberization in whole 
plants, stem cuttings, and stolon tips (El-Antably et al. 
1967; Biran et al. 1972, 1974; Krauss and Marschner 1976). 
Other effects of ABA include increased numbers of tubers, 
earlier initiation of tubers, and the formation of sessile 
tubers (Abdullah and Ahmad 1980; Menzel 1980). However, 
other experiments with cultured stolons and sprouts showed 
that ABA suppresses potato tuberization (Palmer and Smith 

A B

C D

15°C    20°C     25°C   30°C 15°C    20°C     25°C   30°C 

Fig. 4 Temperature effect on the 
tuberization of potato. Pictures were 
taken at 1 week (A), 2 week (B), 3 
week (C), and 4 week (D) after 
temperature treatments. Reprinted from 
Nam KH, Minami C, Kong F, Matsuura 
H, Takahashi K, Yoshihara T (2005) 
Relation between environmental factors and 
the LOX activities upon potato tuber 
formation and flower-bud formation in 
morning glory. Plant Growth Regulation 
46, 253-260, with kind permission of 
Springer Science and Business Media, 
©2005. 
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1969b; Hussey and Stacey 1984). The effects of applied 
ABA depended on variety and concentration (Palmer and 
Smith 1969b; Hussey and Stacey 1984). Endogenous levels 
of ABA were increased under tuber-inducing conditions and 
decreased when nitrogen was supplied during tuber forma-
tion (Krauss and Marschner 1982; Marschner et al. 1984). 
Besides, ABA is generally believed to reduce GA-promoted 
processes during plant development. In contrast to GA, the 
exogenous application of ABA reduced stolon elongation 
and promoted tuber formation in potato (Okazawa and Chap-
man 1962; Xu et al. 1998a). Menzel (1980) reported that 
tuberization was delayed under high temperatures and high 
levels of GA, but partly reversed by ABA. This indicates 
that temperature exerts its influence by altering the balance 
between the levels of endogenous GA and ABA. Xu et al. 
(1998a) suggested that ABA stimulates tuberization by 
counteracting GA, and that sucrose regulated tuber forma-
tion by influencing GA levels. 

Cytokinins have been found associated with potato 
tuberization, but in contrast to GA and ABA, less attention 
has been paid to cytokinins (Palmer and Smith 1969). Many 
reports have demonstrated that exogenous application of 
cytokinins stimulates potato tuberization (Palmer and Smith 
1969a; Kumar and Wareing 1974; Hussey and Stacey 1984) 
and endogenous levels of cytokinins are high in induced tis-
sues (Mauk and Langille 1978; Obata-Sasamoto and Suzuki 
1979), implying cytokinins as positive tuber-inducing fac-
tors. Langille and Forsline (1974) have reported that the 
levels of cytokinins were increased temporarily under tuber-
inducing environmental conditions such as SD and cool 
temperatures. Exogenously applied N6-benzyadenine (BA) 
extensively induced microtubers on different explants inclu-
ding stolons, shoot cuttings and intact microplantlets (Don-
nelly et al. 2003). Although cytokinin is necessary for tube-
rization, it is not the only factor regulating tuber induction 
in potatoes. Since no significant effects of cytokinins on 
stolon elongation and tuber formation have been reported 
under inducing or non-inducing conditions, it would seem 
that cytokinins are not a limiting factor in tuber formation 
(Xu et al. 1998b). Furthermore, it has been verified that 
cytokinins do not stimulate, but rather suppress tuber growth 
even at concentrations optimum for in vitro tuberization in 
the dark (Sarker et al. 2006). It has also been proposed that 
cytokinins are less important than GA in relation to potato 
tuberization (Dimalla and van Staden 1977). Vreugdenhil 
and Struik (1989) have reported that the response of a sto-
lon to high levels of cytokinin depends on the interaction 
with other hormones, mainly the levels of GA3. Exogenous 
cytokinins decreased tuber growth during JA-induced tube-
rization in potato (Dermastia et al. 1996). Similarly, Sarker 
et al. (2006) reported that exogenous cytokinins antagonize 
the jasmonate-effect on tuber growth after induction, and 
the related effects of these two hormones interrelate with 
the regulation of endogenous sugar and starch levels in 
tubers depending on the maturing time of the cultivars 
during potato tuber formation in vitro. 

It has been established that the hormones, auxin and 
ethylene, play a minor role on tuberization (Melis and van 
Staden 1984; Vreugdenhil and van Dijk 1989). Harmey et al. 
(1966) reported that the application of IAA in the tuber-
inducing medium led to early tuber initiation. However, 
Obata-Sasamoto and Suzuki (1979) showed a high level of 
auxin was present in the stage prior to tuber initiation but its 
levels declined during tuber development. Probably, auxin 
plays an important role in stolon orientation and growth. 
Moreover, its function is pronounced when combined with 
other hormones (Ewing and Struik 1992). Application of 
IAA in the presence of GA significantly inhibited the elon-
gation of stolons than under GA conditions alone, and the 
supplement of IAA in 1% sucrose medium completely 
blocked the growth of the lateral buds. These findings sug-
gest that IAA indirectly supports tuberization by counterac-
ting the effects of endogenous GA (Xu et al. 1998a). IAA, 
which reduces stolon elongation, stimulated the production 
of ethylene, an inhibitor of tuber formation (Vreugdenhil 

and van Dijk 1989). 
Application of exogenous ethylene has been found to 

inhibit potato tuberization in several in vitro studies and the 
addition of an ethylene antagonist accelerated tuberization 
in potato (Vreugdenhil and van Dijk 1989; Vreugdenhil and 
Struik 1990). It is certain that ethylene stimulates the pro-
duction of GA, which is well-known to inhibit tuberization. 
Although limited evidence is available on the beneficial 
effect of ethylene on potato tuberization, a probable hypo-
thesis is that ethylene is produced by friction between soil 
particles and the growing stolon tip, thereby preventing the 
elongation of stolon (Vreugdenhil and Struik 1989; Vreug-
denhil and van Dijk 1989). 

The existence of a specific potato tuber-inducing sub-
stance, which is produced in leaves during SD conditions 
and transported to the top of the stolon, was postulated by 
grafting and other experiments (Gregory et al. 1956; Kumar 
and Wareing 1973). Later, many research groups made a 
great effort to identify this specific tuber-inducing stimulus. 
In 1988, the occurrence of a tuber-inducing stimulus in po-
tato leaves was confirmed in bioassays using a potato sin-
gle-node segment culture (Koda and Okazawa 1988; Koda 
et al. 1988; Yoshihara et al. 1989) and the active substance 
isolated from potato leaves (Koda et al. 1988). This sub-
stance showed tuber-inducing activity in vitro at a concen-
tration of 0.01 mg/l (c 3 × 10-8 M) and its chemical structure 
was identified to be 3-oxo-2-(5-�-D-glucopyranosyloxy-2-z-
pentenyl)-cyclopentane-1-acetic acid (12-hydroxyjasmonic 
acid glucoside, named TAG) (Yoshihara et al. 1989) (Fig. 2, 
1). Afterwards, TAG methyl ester and two polyacetylene 
compounds, methyl �–D-glucopyranosyl helianthenate A 
and B were isolated from the leaves of Jerusalem artichoke 
(Helianthus tuberosus L.) (Matsuura et al. 1993) (Fig. 2, 2-
4). The aglycone of TAG (12-hydroxyjasmonic acid, named 
TA) was also shown to have strong tuber-inducing activities 
in potato (Yoshihara et al. 1989; Koda et al. 1991). Both TA 
and its glucocide (TAG) are structurally and biosynthetic-
ally related to JA. The potato tuber-inducing activity of JA 
was almost the same as that of TA and TAG (Koda et al. 
1991). When [2-14C](±) JA was applied on potato leaves, it 
was metabolized to TAG within 2 weeks and transferred to 
the stolons and other plant parts (Yoshihara et al. 1996). 

JA and its methyl ester (MeJA) are ubiquitous in the 
plant kingdom and it is believed that they induce a wide 
variety of plant responses (Koda 1992). They are involved 
in various morphogenic events such as tuberization, bulb 
formation (Koda 1997), senescence (Ueda and Kato 1980), 
wounding (van den Berg and Ewing 1991), coiling (Weiler 
et al. 1993) and abiotic stress (Creelman and Mullet 1995). 
Exogenously applied JA and MeJA induce tuberization of 
potato stolons, shoot cuttings and plantlets cultured in vitro 
(Yoshihara et al. 1989; Pelacho and Mingo-Caster 1991; 
Koda et al. 1991; Ravnikar et al. 1992; Pruski et al. 2001, 
2002). Abdala et al. (1996) confirmed the endogenous JA 
content in roots, stolons and periderm of newly formed 
tubers. The highest concentration of JA was detected in foli-
age at the initial growth stages of the potato plants and in 
roots and stolons at the stage of tuber set. However no 
changes were observed in tubers between the stages of tuber 
set and advanced tuberization (Creelman and Mullet 1995; 
Abdala et al. 2000). Besides, a number of reports showed 
that exogenous application of JA does not affect tuber in-
duction in potato (Helder et al. 1993; Jackson and Willmit-
zer 1994; Sarkar et al. 2006). Application of SHAM, an in-
hibitor of JA biosynthesis, did not prevent tuberization 
under SD conditions (Helder et al. 1993). These results in-
dicate that differences in the levels of JA itself do not con-
trol tuberization. It has been suggested that potato tuberiza-
tion is regulated by a balance between the levels of JA and 
other hormones. Koda and Kikuta (2001) reported that JA-
induced tuberization of potato plants in vitro depended on 
the maturation time of the cultivar. The relative higher JA-
response of an early cultivar is assumed to be due to the 
lower levels of endogenous GAs (Koda 1997; Koda and 
Kikuta 2001). JA during potato tuberization counteracts the 
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effect of GA on microtubule orientation (Jackson 1999). JA 
reversed the inhibitory effect of GA3 on tuberization of 
potato shoot cuttings in vitro, and the promoting effect of 
JA on potato tuberization was antagonized in rooted plant-
lets possessing a high level of endogenous GAs (Castro et 
al. 2000). It has also been observed that JA enhances the 
growth of potato plantlets in vitro, simulating in the ratio of 
active to inactive cytokinin (Dermastia et al. 1994; Koda 
1997). Sarkar et al. (2006) showed that cytokinins antago-
nize the jasmonate-effect on tuber growth after induction, 
although this reversing effect is more clearly with JA than 
MeJA independently on the cultivars. 
 
MICROTUBER FORMING SUBSTANCES FROM 
FUNGI AND PLANTS 
 
Lasiodiplodia theobromae is a common pathogenic fungus 
found in the tropics and subtropics, and its culture filtrate 
inhibits the growth of higher plants and produces various 
organic metabolites (Hirai 1938; Aldridge et al. 1971). Seve-
ral potato microtuber inducing substances have been iso-
lated from the culture filtrates of the fungus L. theobromae 
IFO 31059 by bioassay using cultures of single-node seg-
ments of potato stem in vitro. Nakamori et al. (1994) iso-
lated three potato-tuber inducing substances and their struc-
tures identified as JA (Fig. 3, 5), theobroxide (Fig. 3, 6) and 
mellein (Fig. 3, 7). In additional experiments, six lasiodip-
lodin-related compounds, 5-oxolasiodiplodin (Fig. 3, 8), 5-
hydroxylasiodiplodins (Fig. 3, 9) and (Fig. 3, 10), (3R),(4S) 
-4-hydroxylasiodiplodin (Fig. 3, 11), (3R),(6R)-6-hydroxy-
de-O-methyllasiodiplodin (Fig. 3, 13), (3R),(5R)-5-hydro-
xy-de-O-methyl -lasiodiplodin (Fig. 3, 14) (Matsuura et al. 
1998; Yang et al. 2000a) and two resorcinol derivates, ethyl 
(6' R)-2,4-dihydroxy-6-(6'-hydroxyheptyl)benzoate (Fig. 3, 
15) and isobutyl (6' R)-2,4-dihydroxy-6-(6'-hydroxy-hep-
tyl)benzoate (Fig. 3, 16) (Yang et al. 2000b) were isolated 
as biologically active compounds inducing potato micro-
tuber formation. More recently, (3R,6S)-6-hydroxylasiodip-
lodin (Fig. 3, 12) was isolated from the culture broth of the 
Shimokita 2 strain of L. theobromae (Li et al. 2005). 

On the other hand, cucurbic acid and methyl cucurbate 
isolated from the seeds of Cucurbita pepo showed tuber-in-
ducing activity in potatoes, but their activities were some-
what lower than those of JA and MeJA (Fukui et al. 1977; 
Koda et al. 1991). Experiments comparing the tuber-indu-
cing activities of JA and related substances indicated that 
the partial structures are indispensable for the tuber-indu-
cing activity included a carboxyl group or its ester at the C-
1 position, a double bond (pentenyl group) in the substitu-
ent at the C-2 position, and an oxygen atom at the C-3 
position (Koda et al. 1991). 
 
LIPOXYGENASE AS THE KEY ENZYME AND 
LINOLENIC ACID CASCADE PRODUCTS 
 
A potato tuber-inducing substance, TAG, is biosynthesized 
by a so-called LA cascade (Fig. 1). Using �-LA as the ini-
tial substrate, molecular oxygen is stereo-specifically intro-
duced into either position carbon 9 or 13 of LA by LOX 
protein catalysis, leading to either 9- or 13-HPOT, respec-
tively (Howe and Schilmiller 2002; Kongrit et al. 2006). 9- 
and 13-HPOT are substrates for members of the CYP74 
family of cytochrome P450, which is a group of enzymes of 
oxygen-activated reactions, such as AOS of CYP74A, 
hydroperoxide lyase of CYP74B/C and divinyl ether syn-
thase of CYP74D (Hannemann et al. 2007). These enzymes 
are localized in membranes of chloroplasts (Froehlich et al. 
2001) and utilize the acyl hydroperoxide of the substrate as 
oxygen donor and form new carbon-oxygen bonds in the 
products, which function serve as essential signals for plant 
mechanical responses (Weiler et al. 1993) and some deve-
lopmental processes (McConn and Browse 1996). 

13-HPOT is metabolized to divinyl ether fatty acids 
(e.g., etherolenic acid) by divinyl ether synthase, to C6 alde-
hydes and C12 �-keto-fatty acids by hydroperoxide lyase 

and 12,13-epoxyoctadecatrienoic acid (allene oxide) by 
AOS. Since the product of AOS branch is an unstable epo-
xide intermediate, it is converted either to enantiomerically 
pure cis(+)-12-oxo-phytodienoic acid (12-OPDA), the first 
cyclic and biologically active compound, by AOC or to a 
mixture of �- and �-ketols and racemic cis-OPDA spontane-
ously in the absence of AOC (Hamberg and Fahlstadius 
1990; Laudert et al. 1997). 12-OPDA is reduced by OPDA 
reductase yielding 3-oxo-2-[2'-pentenyl]-cyclopentane-1-
octanoic acid, which is subsequently transformed to JA by 
three rounds of �-oxidation (Howe and Schilmiller 2002). 
Finally, JA is further derived to TA and then TAG, which 
has been identified as the endogenous tuber-inducing sub-
stance of potato (Yoshihara et al. 1989). 

On the other hand, in the 9-LOX pathway, 9-HPOT ex-
periences an analogous set of catalytic reactions by other 
isoforms of divinyl ether synthase, hydroperoxide lyase or 
AOS, resulting in colnelenic acid, 9-oxo-nonanoic acid or 
9,10-allene oxide, respectively. Afterwards, 9,10-allene 
oxide is transformed to 9,10-�-ketol octadecadienoic acid, 
10,13-�-ketol octadecadienoic acid or 10-OPDA via nonen-
zymatic reactions. 9,10-�-ketol octadecadienoic acid is be-
lieved to be involved in inducing factors in flower bud for-
mation (Takimoto et al. 1989, 1991, 1994; Yokoyama et al. 
2000; Yamaguchi et al. 2001; Suzuki et al. 2003; Yokoyama 
et al. 2005). 
 
Enzyme activities and protein contents 
 
LOX is the first enzyme in the LA pathway and ubiquitous 
among eukaryotes (Siedow 1991; Porta and Rocha-Sosa 
2002). In different plant species, LOXs are present as mul-
tiple isoforms or isozymes suggesting that each one may 
play distinct functions in the plant (Royo et al. 1996; Heitz 
et al. 1997; Smith et al. 1997; Fischer et al. 1999). Many 
studies have suggested that LOXs play a crucial role in 
plant evolution including growth and development, flower-
ing, fruit ripening, seed germination and senescence (Rouet-
Mayer et al. 1992; Saravitz and Siedow 1995; Sung and 
Chiu 1995; Kausch and Handa 1997; Fukuchi-Mizutani et 
al. 2000; Ye et al. 2000). LOX gene expression is regulated 
by different hormones such as ABA (Melan et al. 1993), JA 
(Creelman and Mullet 1997), and also by different forms of 
stress, such as pathogen attack (Melan et al. 1993) and 
wounding (Porta et al. 1999). 

LOXs have been detected during potato tuber develop-
ment and several research groups have suggested that LOXs 
are involved in the control of potato tuberization (Bachem 
et al. 1996; Royo et al. 1996; Kolomiets et al. 2001). Potato 
LOXs are encoded by a large multigene family and several 
LOX cDNAs have been isolated from potato tubers, roots, 
and leaves (Geerts et al. 1994; Casey 1995; Kolomiets et al. 
1996a, 1996b; Royo et al. 1996; Fidantsef and Bostock 
1998). Royo et al. (1996) characterized three distinct classes 
of LOX genes in potato plants based on their deduced 
amino acid sequences and their patterns of expression. Lox1 
genes were expressed mostly in tubers and roots and com-
prise enzymes with 9-LOX activity. Lox2 genes were ex-
pressed in leaves only and Lox3 genes were expressed in 
leaves and roots that produce 13-HPOT, the precursor of JA 
and related compounds. Accumulation of Lox1 class trans-
cripts detected in the apical and subapical regions of newly 
formed tuber, specifically in vascular tissue of the peri-
medullary region, which is the site of the most active cell 
growth during tuber enlargement in situ hybridization 
(Kolomiets et al. 2001). LOX activity was suppressed in 
relation to reduced tuber yield, decreased average tuber size, 
and a disruption of tuber formation (Kolomiets et al. 2001). 
An inhibitor of LOX, naproxen and SHAM also declined 
LOX activity in potato plants (Kolomiets et al. 2001; Gao et 
al. 2003). It has been observed that all enzymes of the LA 
cascade, LOX, AOS, and AOC, differentially localize with-
in chloroplasts, and are mainly found associated with thyla-
koid membranes (Farmaki et al. 2007). 

In our study, the effect of temperature, which is one of 
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the critical requirements for potato tuber formation, on 
LOX activity was examined (Nam et al. 2005) (Fig. 5) 
using UV spectrophotometry (Gao et al. 2003). During the 
initial stages of tuberization, that is, one week after the 
15°C temperature treatment, high levels of LOX activity 
were observed. These findings suggested that potato tuber 
induction is correlated with LOX activity and is also depen-
dent on the growing temperatures. Another experiment in 
which the relationships between LOX and light or dark 
treatment in a typical SD plant, morning glory (Pharbitis 
nil), showed that LOX activity was greatly enhanced up to 
30 min and then declined after switching from light to dark 
conditions. However, the activity did not vary on switching 
from dark to light conditions (Nam et al. 2005). This sug-
gests that the appearance of flower buds in P. nil might be 
attributed to the activation of LOX which can be initiated 
by dark treatment. A report by Ye et al. (2000) using the 
Arabidopsis thaliana plant, suggested that LOX may medi-
ate a photoperiodic signal in the transition from vegetative 
growth to bolting and reproductive growth. 

13(S)-HPOT converted from LA by 13-LOX catalysis is 
metabolized by an AOS into an unstable allene oxide, 
which is cyclized by an AOC to cis-(+)-OPDA (9S,13S) 
carrying the enantiomeric structure of the naturally occur-
ring JA (Feussner and Wasternack 2002). AOS enzymes are 
members of the cytochrome P450 enzyme family, sub-
family CYP74 (Howe and Schilmiller 2002). AOS proteins 
have been observed in various plant organs (Gardner 1975; 
Blée and Joyard 1996; Caldelari and Farmer 1998; Laudert 
and Weiler 1998; Grechkin and Hamberg 2000) and cloned 
from several plant species (Maucher et al. 2000; Froehlich 
et al. 2001; Itoh et al. 2002). In potato plants, the activity of 
AOS was shown in stolons, roots and developing tubers 
(Hamberg 2000) and three cDNAs encoding AOS (StAOS1-
3) were isolated (Stumpe et al. 2006). In western blotting 
analysis, AOS protein largely accumulated under inductive 
photoperiod conditions for flower-bud formation in P. nil, 
suggesting that AOS probably plays a role in flower-bud 
formation in P. nil (Kong et al. 2005a). AOC gene was 
cloned from tomato (Ziegler et al. 2000) and A. thaliana 
plants (Stenzel et al. 2003). Kong et al. (2005a) reported 
that AOC protein plays an essential role in the initial JA ac-
cumulation induced by theobroxide. To perform the conver-
sion of the unstable allene oxide to the first cyclic precursor 
of JA, the association between AOC and AOS is required to 

be in close proximity (Farmaki et al. 2007). In our unre-
ported study, the AOS/AOC branch to JA biosynthesis was 
stimulated in response to low temperature and resulted in 
high endogenous levels of both AOS and the AOC enzyme. 
 
Quantitative and qualitative analysis of the 
products 
 
In the LA cascade, 13-LOX derived products have been 
closely correlated with potato tuberization (Yoshihara et al. 
1989; Koda et al. 1991; Pelacho and Mingo-Castel 1991; 
Castro et al. 2000; Kolomiets et al. 2001; Pruski et al. 
2002; Sarkar et al. 2006). TA and TAG with strong tuber-
inducing activities, where TAG might be more important, 
were isolated from potato leaves using the bioassay of a 
potato single-node stem segment culture (Koda and Oka-
zawa 1988; Koda et al. 1988; Yoshihara et al. 1989). Simi-
lar to TA and TAG, JA and its methyl ester have also shown 
tuber-inducing activities in potato (Koda et al. 1991). TA 
and its glucoside (TAG) are structurally related to JA and 
when JA applied to potato leaves was further metabolized to 
TAG within 2 weeks (Yoshihara et al. 1996). 

JA has been involved in various morphogenic events 
including bulb formation and tuberization (Koda 1997). 
Formation of plant storage organs such as tubers and bulbs 
are controlled by photoperiod. In onion (Allium cepa L.) 
plants, bulb formation occurs in leaf blades in response to 
the stimulus of LD photoperiods, whereas tuber formation 
in potato plants was initiated in stolon tips by SD stimulus. 
In the potato, tuberization begins with cessation of stolon 
elongation followed by a swelling at the sub-apical region 
brought about by radial cell expansion (Booth 1963; Cutter 
1978; Koda and Okazawa 1983b; Peterson et al. 1985; Xu 
et al. 1998b). Mita and Shibaoka (1983) reported that bulb 
formation of onion plants, which is caused by the lateral ex-
pansion of leaf sheath cells, was accompanied by the dis-
ruption of cortical microtubules in the cells. Later, JA and 
MeJA were found to disrupt cortical microtubules in sus-
pension cultures of tobacco BY-2 cells and potato cells 
(Abe et al. 1990; Matsuki et al. 1992). In potato plants, the 
cessation of stolon elongation and cell expansion in the sub-
apical meristem region was induced in response to JA 
(Takahashi et al. 1994) and once JA has induced cell expan-
sion of a potato tuber, reorientation of the cortical micro-
tubules occurred (Shibaoka 1991; Koda 1997). Abdala et al. 
(2000) have reported that endogenous levels of JA in-
creased in roots between swollen stolon and tuber set and 
these organs may facilitate the action of JA on the orienta-
tion of microtubules during cell expansion in stolons. In the 
recent experiment on the effect of JA on histology, exoge-
nously applied JA resulted in the enlargement of meristems, 
the increase in cell expansion, the reduction in the length of 
leaf primordia and the early differentiation of vascular 
tissue facilitating the movement of substances to the stolon 
tip (Cenzano et al. 2003). It has also been suggested that 
subapical meristem of the stolon might start to swell when 
the concentration of TAG reaches a sufficiently high level 
to induce tuberization (Yoshihara et al. 1996). 

Based on our findings (Nam et al. 2005), it is very 
likely that increased LOX activity results in an increase in 
the total amount of cascade products. To understand the role 
of temperature in the LA cascade in detail, the contents of 
9(S)-HPOT and 13(S)-HPOT in potato leaves were deter-
mined (Nam et al. 2008) (Fig. 6) by reverse phase-HPLC 
(Göbel et al. 2002). LOX catalyzes both pathways to 9(S)-
HPOT and 13(S)-HPOT in the LA cascade. In this regard, a 
selective catalysis of LOX toward either 9(S)-HPOT or 
13(S)-HPOT depending on temperature is difficult to be 
considered. Therefore, when LOX activity is enhanced at a 
given temperature, both reactions to 9(S)-HPOT and 13(S)-
HPOT will be enhanced equally. However, only the 9(S)-
HPOT level was enhanced under experimental conditions. 
This discrepancy can be explained by means of the differen-
ces in reaction rates. Since neither 9(S)-HPOT nor 13(S)-
HPOT is a final product in the LA cascade, they are trans-
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formed via successive reactions to the next metabolites in 
the pathways. Under the proposed explanation, the high ac-
cumulation of 9(S)-HPOT implies that the successive reac-
tions occur very slowly. On the other hand, the low and 
constant levels of 13(S)-HPOT suggest that the further reac-
tions to JA, TA and TAG are very facile. 

In addition, the endogenous contents of JA, TA and 
TAG were analyzed (Nam et al. 2008) by GC-SIM-MS 
(Matsuura et al. 2002). The highest JA content appeared at a 
growing temperature of 15°C and decreased as the growing 
temperature increased (Fig. 7A); this result was consistent 
with LOX measurements. Since low temperatures (15°C) 
were favorable for tuber induction, the relevance between 
JA and tuber induction is apparent to some extent. Also, for 
all temperatures studied, a relatively high JA content was 
observed one week after the temperature treatment, but dec-
lined sharply after two weeks. On the other hand, slightly 
high temperatures (20 and 25°C) are suitable for potato 
tuber growth. This observation that the content of JA dec-
lined as temperature increased and as the potato tuber deve-
loped suggests less association between JA and tuber 
growth. In the LA cascade, JA is metabolized to TA and 
finally into TAG (Siedow 1991). TAG has been suggested 
as a main endogenous tuber-inducing substance of potato 
(Koda et al. 1988; Yoshihara et al. 1989). As expected from 
the LA cascade, the endogenous levels of both TA and TAG 
showed a similar dependence on growing temperature to 

that of JA (Fig. 7B and 7C). In particular, TAG was extra-
ordinarily elevated at low temperature and the amounts of 
TAG were about 20-40 times larger than those of JA and TA 
in all cases. Because TAG is produced in leaves and is 
transferred to the stolon as a main tuber-inducing substance 
(Yoshihara et al. 1996), a high amount of TAG under low 
temperature conditions, demonstrates that TAG is the most 
important potato tuber-inducing substance. In summary, it is 
proposed that the increase in LOX, which is activated by 
low temperature, results in large amounts of endogenous JA, 
TA and TAG, which play a crucial role in potato tuber in-
duction. 
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REGULATION OF POTATO TUBER FORMATION 
BY CHEMICALS 
 
Theobroxide (Fig. 3, 6), an epoxy cyclohexene compound 
isolated from the culture filtrate of the fungus L. theobro-
mae (Nakamori et al. 1994), is purportedly involved in the 
regulation of various plant development processes. In order 
to explore the exact functions of theobroxide, various phy-
siological and biochemical studies have been carried out 
systematically, in particular, in relation to the following 
three subjects; potato tuberization; P. nil flower bud forma-
tion; and stem elongation in P. nil and spinach (Spinacia 
oleracea). 

Using a single segment in vitro bioassay, theobroxide 
was demonstrated to have potato microtuber inducing acti-
vity at a concentration of 5 × 10-6 M and it was almost iden-
tical to that of (±) JA (Nakamori et al. 1994). Furthermore, 
application of theobroxide (10-3 M in 100 ppm Tween 20 
solution) onto the leaflet surface of potato plants induced 
tubers under non-inducing photoperiod conditions and en-
hanced total number and total fresh weight of tubers com-
pared to that of controls without theobroxide (Yoshihara et 
al. 2000). In a study on the effect of different concentrations 
(10-5, 10-4, 10-3, and 2 × 10-3 M) of theobroxide on the in-
duction of potato microtuber formation, as the concentra-
tion of theobroxide was elevated, the tuberization ratio also 
increased (Yang et al. 2004). The total fresh weight of 
microtubers in 2 × 10-3 M theobroxide medium was about 
five times that of the microtubers grown in control medium. 
The treatment of SHAM, a JA biosynthesis inhibitor, sup-
pressed the inductive effects of both theobroxide and SD 
photoperiod in potato tuber formation (Gao et al. 2003). In 
additional treatments of the theobroxide in the culture me-
dium containing JA increased the tuberization ratio and 
fresh weight of microtubers more than the theobroxide and 
JA treatments alone (Gao et al. 2005). The yield of tubers of 
theobroxide-treated potato plants in the field was 20, 20 and 
10% higher than that of untreated plants for cvs. ‘Irish Cob-
bler’, ‘Kitaakari’, and ‘May Queen’, respectively (unpub-
lished data). Moreover, our unpublished study demonstrated 
that under suitable temperatures for potato tuberization, 
tuber inductions were enhanced by theobroxide, especially 
at low temperatures. In addition, high concentrations of 
theobroxide induced tubers even under non-inductive tem-
perature conditions, that is 30°C, but it seems that excess 
amount of theobroxide only plays a neutral or even negative 
role in potato tuber induction. 

In contrast to [2-14C] (±) JA (Yoshihara et al. 1996), 
neither metabolism nor transportation occurred in an expe-
riment involving the application of [3,6-3H] (±) theobroxide 
to potato plants (unpublished data). It was concluded that 
theobroxide is not a single trigger for the tuber formation 
and might stimulate the biosynthesis of a common plant 
growth regulator. A number of studies showed a close rela-
tionship between theobroxide and JA in potato tuberization. 
Tuber induction of the potato, induced by theobroxide, is 
correlated with the stimulation of JA and TA syntheses and 
enhances the activity of LOX, a key enzyme for JA biosyn-
thesis (Gao et al. 2003). Endogenous levels of JA reached a 
peak at a day 3 after theobroxide treatment, whereas no sig-
nificant increase up to a day 28 was shown in control plants. 
Endogenous levels of TA in theobroxide-treated potato 
plants were almost the same up to one week as compared to 
the levels in non-treated plants, but a sharp increase of TA 
level was observed 2 weeks after theobroxide treatment. 
The activity of LOX after 60 min in theobroxide-treated 
plants was two times higher than in control plants. However, 
a JA biosynthesis inhibitor, SHAM, suppressed the induc-
tive effect of theobroxide on potato tuberization and resul-
ted in a reduction of the activity of LOX and the endoge-
nous contents of JA and TA (Gao et al. 2003). In tissues ob-
tained from in vitro cultures of potato single-node segments 
treated with theobroxide, endogenous JA was observed in 
both segments and microtubers, whereas TA was only de-
tected in segments (Yang et al. 2004). Also, in both old and 

newly formed potato tissues, theobroxide increased the 
endogenous levels of JA and the activity of LOX (Gao et al. 
2005). Simulative effect on LOX activity by theobroxide 
treatment was not stronger following an application of JA 
application. In addition, histological observation of the sec-
tions of potato stolons cultured in vitro showed that theo-
broxide may play a role in the swelling of microtubers 
formed in vitro in a similar manner as that of JA, suggesting 
that theobroxide may be trigger of JA production (Gao et al. 
2005). 

In contrast to tuberization, flowering of potato plants is 
promoted under LD photoperiods (Turner and Ewing 1988). 
In experiments on the metabolism and transportation of JA 
in potato plants grown under different photoperiods, high 
accumulations of TAG were detected in tubers and flower-
buds (Yoshihara et al. 1996). These results suggested that a 
common mechanism may be applicable to both tuberization 
and flower formation. Application of theobroxide stimu-
lated flower-bud formation in potato plants grown under LD 
photoperiods (Yoshihara et al. 2000). Furthermore, theobro-
xide treatment of the leaf surfaces of P. nil plants induced 
flower-bud formation under non-inductive LD conditions 
and enhanced the number of flowers of seedling under in-
ductive SD conditions (Yoshihara et al. 2000). Flower-bud 
formation in P. nil plants was suppressed by night-break and 
cotyledon-removal (Ogawa and King 1980; Vince-Prue and 
Gressel 1985), but this inhibitory effect was reversed by 
treatment with theobroxide (Gao et al. 2006). Besides, 
flower formation in LD rosette plants, such as spinach, was 
inhibited by application of theobroxide (Kong et al. 2006). 

Theobroxide-induced flower bud formation in P. nil 
caused the increase of the endogenous levels of JA (Yang et 
al. 2004). Kong et al. (2005a) reported that theobroxide 
treatment resulted in high accumulations of JA under both 
SD and LD conditions and increased accumulation of LOX, 
AOS, and AOC proteins. Immunoblotting analysis of pro-
tein levels demonstrated a biphasic activation of AOC pro-
tein; the first and second activation of which were displayed 
at 30 min and 6 h, respectively after application of theobro-
xide. While LOX and AOS proteins are activated by theo-
broxide after the activation of AOC protein, suggesting that 
AOC is essential for theobroxide-induced JA biosynthesis 
in P. nil. Additionally, AOS protein, which is closely related 
to biosynthesis of a flowering inducing factor, 9,10-�-ketol 
octadecadienoic acid, accumulated markedly under SD 
conditions and by treatment of theobroxide, indicating that 
AOS probably plays a role in flower-bud formation in P. nil. 
On the other hand, the endogenous GA1 and GA3 contents 
in P. nil treated with theobroxide were relatively low, sug-
gesting that GAs may be negatively involved in theobro-
xide-induced flower bud formation of P. nil (Gao et al. 
2006). 

Finally, theobroxide is associated with the inhibition of 
stem elongation in spinach and P. nil plants. Applied theo-
broxide suppressed stem elongation in P. nil under both SD 
and LD conditions and treatment of SHAM and GA3 parti-
ally restored the inhibitory effect of theobroxide on stem 
elongation (Kong et al. 2005b). Stem length of seedlings 
exposed to night break and cotyledon removal in P. nil was 
shortened by supplemental applications of theobroxide 
(Gao et al. 2006). Stem elongation of spinach plants was 
declined by treatment of theobroxide under inductive LD 
conditions, but was reversed by the application of GA3 
(Kong et al. 2006). 

LOX activity and endogenous JA levels were signifi-
cantly enhanced, while endogenous GA1 levels were de-
creased by theobroxide sprayed under both SD and LD 
conditions in P. nil. Therefore, stem elongation in P. nil may 
be caused by the balance between JA and GA biosynthesis 
(Kong et al. 2005b). Exogenous application of SHAM and 
GA3 reversed the inhibition of stem elongation by theobro-
xide treatment controlling the endogenous JA level and 
LOX activity. It was also reported that the inhibitory effect 
of stem elongation in P. nil may be achieved through af-
fecting endogenous contents of GA1+3 (Gao et al. 2005). In 

77



Fruit, Vegetable and Cereal Science and Biotechnology 2 (Special Issue 1), 69-81 ©2008 Global Science Books 

 

spinach plants, the endogenous level of JA was unchanged 
and endogenous level of GA1 was reduced by exogenous 
application of theobroxide under inductive LD conditions, 
suggesting that the suppression of stem length by theobro-
xide was likely due to a reduction of GA1 biosynthesis 
(Kong et al. 2006). 
 
CONCLUDING REMARKS 
 
The potato tuber is a specialized storage organ formed by 
the differentiation of the underground stolon and tuberiza-
tion of potato is very much affected by the interaction 
between environmental, biochemical, and genetic factors. 
Based on an early grafting experiment (Gregory et al. 1956), 
it was proposed that a tuber-inducing substance is produced 
initially in leaves by environmental signals and transported 
into the stolons where the initiation of tuber development is 
carried out. Under SD conditions and cool temperatures, 
potato plants produce tubers, whereas they do not form 
tubers under LD conditions or high temperatures (Ewing 
and Struik 1992). Other factors such as plant hormones and 
several endogenous regulators have also been involved in 
potato tuberization (Xu et al. 1998a; Jackson 1999). Using 
the bioassay of a potato single-node stem segment culture, 
TAG has been identified in potato leaves as a tuber-indu-
cing signal substance (Koda and Okazawa 1988; Koda et al. 
1988; Yoshihara et al. 1989). TA which is the aglycone of 
TAG and JA exhibited similar activities on tuber induction 
to TAG (Yoshihara et al. 1989; Koda et al. 1991). In ad-
dition, several compounds isolated from the culture filtrates 
of the fungus L. theobromae showed strong microtuber in-
ducing activity (Nakamori et al. 1994; Matsuura et al. 1998; 
Yang et al. 2000a, 2000b; Li et al. 2005). The generation of 
TAG, an endogenous tuber-inducing substance, is associated 
with a LA cascade. TAG is derived from JA, which can be 
synthesized from 13(S)-HPOT catalyzed by LOX as an 
initial enzyme in LA cascade (Siedow 1991). In the present 
review, the effects of LOX activity and LOX-derived meta-
bolites on potato tuber induction in relation to growing tem-
perature were presented. 

A low temperature (15°C) was favorable for tuber in-
duction of potato, while a relatively high temperature (20 
and 25°C) was adaptable for tuber growth (Nam et al. 2005). 
LOX activity appeared at high level at the initial stage of 
potato tuberization and was stimulated by low growing tem-
peratures of 15°C (Nam et al. 2005). This suggests that po-
tato tuber induction is correlated with LOX activity depen-
ding on growing temperature. The enhanced LOX activity 
at a given temperature enhances both reactions of LA to 
9(S)-HPOT and 13(S)-HPOT. Because neither 9(S)-HPOT 
nor 13(S)-HPOT is a final product in the LA cascade, they 
are transformed via a series of reactions to the next meta-
bolites in each pathway. At this stage, the high level of 9(S)-
HPOT may imply that the successive reactions are very 
slow and the low and constant level of 13(S)-HPOT sug-
gests that the next reactions to JA, TA and TAG are very 
facile. As expected, the high endogenous levels of JA at low 
temperature were consistent with that of LOX protein (Nam 
et al. 2008). Also the endogenous levels of both TA and 
TAG showed a similar dependence on growing temperature, 
compared to that of JA (Nam et al. 2008). Therefore, it is 
proposed that the increase in LOX, which is activated by 
low temperature, results in large amounts of endogenous JA, 
TA and TAG, which have a crucial role in potato tuber in-
duction. 

Theobroxide, isolated from the culture filtrate of the 
fungus L. theobromae, has been proposed as a natural tuber-
inducing compound in potato plants. Exogenously applied 
theobroxide strongly induced potato tuberization in vitro 
and in vivo under non-inductive photoperiod conditions 
(Nakamori et al. 1994; Yoshihara et al. 2000) and stimu-
lated the activity of LOX and endogenous levels of JA and 
TA (Gao et al. 2003, 2005). Furthermore, theobroxide pro-
moted the potato tuberization at low temperature, which is 
suitable for tuber induction, but it did not support the potato 

tuber growth step (unpublished data). Tubers were induced 
even under unsuitable temperatures, that is, 30°C by the 
treatments of theobroxide at higher concentration (unpub-
lished data). 
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