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ABSTRACT 
Computational genome analysis requires sophisticated workflows, seamlessly uniting multiple tools and algorithms. In order to maximize 
the productivity of genomics research with bioinformatics, a computational framework that allows rapid integration of available resources 
is desirable. G-language Genome Analysis Environment is a generic open-source workbench for this purpose, with the aim to: 1) 
construct an integrated analysis and development environment for bioinformatics, 2) systematically accumulate and implement existing 
algorithms and data, and to 3) aid the construction of analysis workflows. This system provides over 200 analysis methods for genome 
informatics and systems biology, with programmable interfaces, an interactive command-line shell, and a graphical user interface. Here 
we review the methods and algorithms implemented in this system especially focusing on genome informatics analysis, including 
methods for the identification of sequences with significant information content using information theory, observation of nucleotide 
composition and genomic compositional asymmetry, calculation of codon bias measures and prediction of gene expression levels, and 
statistical analysis of short oligomers such as short tandem repeats and palindromes. Since these methods are combined with several other 
applications and algorithms to produce a workflow in genome informatics research for studying specific biological questions, we also 
present brief overviews of workflows utilizing these algorithms used in several genomic studies. 
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INTRODUCTION 
 
Molecular biology has quickly become a data-driven science. 
Bioinformatics is now an indispensable means in order to 
cope with the ‘explosion’ of data, exemplified by the hun-
dreds of completely sequenced genomes and evermore-in-
creasing omics information produced by high-throughput 
experiments (Butler 2001; Arakawa et al. 2006b; Liolios et 
al. 2006). Computational biology has initially evolved 
synergistically with the genome projects, especially in se-
quence assembly, gene identification, and annotation of the 
genomic information, greatly contributing to the success of 

the Human Genome Project (Stein 1996; Chicurel 2002; 
Collins et al. 2003; Hood et al. 2003). At this stage the pri-
mary role of bioinformatics was data processing and gene-
ration, but with the progress in genomics and the advent of 
systems biology, it is rapidly expanding into the fields of 
knowledge discovery through data integration and mining 
of the masses of information, and hypothesis generation and 
testing (Kitano 2002a, 2002b; Kell et al. 2004; Ideker et al. 
2006). Central to the advent of this new paradigm is the 
availability of effective software infrastructures. A myriad 
of bioinformatics tools have been developed for specific 
analyses, including de facto standard sequence analysis 
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software tools such as BLAST (Altschul et al. 1997), 
HMMER (Eddy 1998), and ClustalW (Thompson et al. 
1994). 

Since computational biology encompasses extremely 
broad areas of molecular biology that are at the same time 
rapidly expanding and evolving, development of any one 
feature-rich and versatile application for bioinformatics 
would likely not work to suit the diversity of research fields. 
Instead, specialized software tools and components that are 
developed to perform specific analyses can be dynamically 
linked together, creating a workflow to achieve the intended 
research depth (Swertz et al. 2007). Development of tailor-
made software by combining functional units to meet 
diverse needs using the command-line environment of 
UNIX operating systems has been shown to be efficient, 
because the programs can be “piped” to perform complex 
functions. For example, the combination of merely 10 com-
mand-line programs is possible in theory to generate 10! = 
3,628,800 variations, which requires much less develop-
ment cost than one multi-functional application with 100 
features. A similar design principle can be seen in the orga-
nization of the human genome, where extremely diverse 

biological functions arise from a limited number of genes. 
This approach, called “mash-up”, is actively utilized in the 
current developments of web-applications as a cost-effec-
tive means to create diverse products (Belleau et al. 2008). 
In order to connect different software tools in a pipeline, at 
lease some computer programming is essential to filter the 
inputs and outputs, and a software infrastructure that allows 
minimal programming and easy connection of the compo-
nents is necessary for effective computational molecular 
biology. 

Current efforts for such bioinformatics software infra-
structures mainly focus on one of the three interfaces of the 
computational environment: application programming inter-
face (API), command-line user interface (CUI), and graphi-
cal user interface (GUI). BioPerl, BioPython, BioJava, and 
BioRuby, collectively known as the Bio* toolkits (Manga-
lam 2002; Stajich et al. 2002), provide APIs for easy hand-
ling of the various biological databases and software tools 
in corresponding programming languages. With these tool-
kits, bioinformatics developers can access the data as native 
objects without worrying about the differences in data 
formats, and at the same time take advantage of the text 

Fig. 1 Graphical User Interface (GUI) of G-language GAE. Viewing clockwise from top left corner, shown windows are 1) main control panel, 2) 
console, 3) text output window, 4) result from view_cds program showing nucleotide contents around start/stop codons, 5) result from genomicskew 
program showing GC skew of multiple regions of genome, 6) result from genome_map program showing gene locations and nucleotide contents, and 7) 
configuration window for the manipulation of workflow. Using the GUI, users can run the programs implemented in G-language GAE in a workflow 
without writing a single line of code. 
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string processing abilities of the scripting languages that are 
especially convenient for biological sequence information. 
The Bioconductor project (Gentleman et al. 2004) also pro-
vides APIs for bioinformatics especially focusing on gene 
expression analyses, data visualization, and statistical ana-
lyses, taking advantage of the rich features of R statistics 
language, which is available at http://www.r-project.org/. 
Since the R language is equipped with an interactive shell 
environment, the user experience of Bioconductor is similar 
to that of CUI. EMBOSS (European Molecular Biology 
Open Source Software Suite) (Rice et al. 2000) and NCBI 
SEALS (System for Easy Analysis of Lots of Sequences) 
(Walker et al. 1997) provide large collections of command-
line applications for data retrieval and manipulation, se-
quence analyses, phylogenetic analyses, and numerous 
others that can be linked into workflows. The majority of 
bioinformatics software is distributed in the form of com-
mand-line applications, and therefore these toolkits can 
work seamlessly together. Moreover, these command-line 
tools are also often provided as web-services based on Sim-
ple Object Access Protocol (SOAP) or Representational 
State Transfer (REST) with BioMOBY standards (Wilkin-
son et al. 2005), and Taverna workbench provides a GUI to 
utilize these web-services and to formulate workflows 
(Oinn et al. 2004). It is worth noting that these projects are 
mostly based on open-source development for high accessi-
bility, dynamism, and transparency that is required for sci-
entific purposes in order to be able to examine the methods 
and algorithms employed within the software tools. All of 
these interfaces are practical solutions depending on the use 
cases, due to the tradeoffs between scalability and accessi-
bility. Programming using APIs is the most scalable inter-
face, but it is also the least accessible one since it requires 
certain level of programming knowledge and skills. Con-
versely, GUI is most accessible with the intuitive interface 
that can be manipulated with a mouse, but applications of 
this type are limited in terms of scalability. Multiple inter-
faces are sometimes employed to improve the flexibility of 
the software. For example, EMBOSS also provides compre-
hensive development APIs and a graphical front-end named 
Jemboss (Carver et al. 2003), and BioPerl includes inter-
faces for EMBOSS. SOAP-based web-services can be ac-
cessed through APIs, and Taverna also allows scripting by 
Java within the GUI application for customized filtering of 
the data. 

Bioinformatics currently belongs to the molecular bio-
logy domain, and therefore genome sequence data is central 
to this discipline. The digital nature of biological sequence 
information makes computer programming a highly suitable 
means for the manipulation of this data (Hood et al. 2003), 
especially for scripting languages such as Perl that is spe-
cialized for text processing. Programming is also necessary 
for genome informatics research in terms of scalability of 
software development by mash-ups of existing tools and al-
gorithms. However, interactive and responsive CUI as well 
as accessible and user-friendly GUI would also facilitate the 
research processes. In light of these requirements for com-
putational genome informatics, the G-language Project at 
the Institute for Advanced Biosciences, Keio University, 

Japan have been developing a generic workbench desig-
nated G-language Genome Analysis Environment (G-lan-
guage GAE) since 2001 (Arakawa et al. 2003). The soft-
ware system is equipped with interchangeable interfaces as 
API, CUI, and GUI for high scalability and accessibility, 
with Perl-based API that is compatible with BioPerl, more 
than 200 analysis applications especially focusing on ge-
nome informatics studies many of which are not available 
through other software packages, and an intuitive GUI that 
can be easily converted from Perl scripts (Fig. 1). G-lan-
guage GAE is developed as an open-source software, dis-
tributed under GNU General Public License at http:// 
www.g-language.org/. Currently available version of the 
software is 1.8.4, but version 2 with enhanced user interface 
is also under development. Details of the internal architec-
ture of the software system is reviewed elsewhere (Arakawa 
et al. 2006a). 

G-language GAE is especially strong for genome infor-
matics analyses, with numerous algorithms implemented to 
be directly accessible from Perl programming language 
(and with BioPerl sequence object). In this work, we review 
the methods and algorithms implemented in G-language 
GAE for genome informatics studies, concentrating on the 
following areas: identification of binding sites based on 
information theory, analysis of genomic compositional 
skew, and analysis of synonymous codon usage bias. Com-
bined with other software tools and scripts, utilization of 
these algorithms should facilitate the development of work-
flows for computational genome analysis. 
 
IDENTIFICATION OF BINDING SITES WITH 
INFORMATION THEORY 
 
A typical starting point in sequence analysis is the identifi-
cation of conserved sequence elements or motifs in order to 
characterize functional sequence structures, such as trans-
cription factor binding sites and Shine-Dalgarno (Shine et 
al. 1974)/Kozak (Kozak 1987) sequences for ribosome bin-
ding sites. In order to identify such binding sites, multiple 
sequences are typically aligned to formulate a position 
weight matrix (PWM) (Stormo et al. 1982), and conserva-
tion is thereby quantified mathematically based on Claude 
Shannon’s information theory (Shannon 1948), which is ap-
plied to nucleotide and protein sequences by the works of 
Schneider and colleagues (Schneider 1997; Schneider 2002). 
Commonly used indices for this purpose include Shannon 
uncertainty (entropy) H, information content I, and Kull-
back-Leibler divergence. Sequence Logo software (Schnei-
der et al. 1990) and WebLogo online generator (Crooks et 
al. 2004) are frequently utilized to visualize the information 
content in a given set of aligned sequence data (Fig. 2). 
Naïve calling of the most frequent alphabets for the identi-
fication of “consensus” sequence can be erroneous, since 
such method ignores the frequency information and 
subsequently the degree of sequence conservation in the 
given alignment. Methods based on information theory 
avoid this pitfall by measuring the amount of information 
(or randomness) to identify conserved residues (Schneider 
2002). 

Fig. 2 Sequence Logo for Shine-Dalgarno sequence in Escherichia coli. Sequence Logo graphically displays the amount of information content at each 
position, represented by the height of the stacked alphabet. Height of each nucleotide corresponds to its contributing frequency. Here one can clearly see 
the conservation of ATG start codon, and purine rich Shine-Dalgarno sequence can be found at positions -7 to -12 (4 to 9 in the figure). WebLogo (Crooks 
et al. 2004) was utilized for visualization. 
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When conserved regions are identified with information 
theory, PWM for the putative binding site of interest can be 
used as training set for machine learning methods, for fur-
ther search of similar conserved regions and motif predic-
tion (Cartharius et al. 2005; Hertzberg et al. 2005). 
HMMER software based on Hidden Markov Model (HMM) 
algorithm has been especially popular in genomics and pro-
teomics (Eddy 1998). Other machine learning approaches 
frequently utilized for the prediction of protein binding sites 
include artificial neural networks, self-organizing maps, and 
support vector machines (SVM), that are reviewed else-
where (Schneider et al. 2004). 

In the following paragraphs, we describe three methods 
based on the information theory for the analysis of sequence 
conservation: uncertainty, information content, and Kull-
back-Leibler divergence. In addition, we describe the z-
score method for consensus sequence calling by statistical 
means. All of these methods are implemented in G-lan-
guage GAE (Table 1). 
 
Shannon uncertainty and information content 
 
Uncertainty of information H (also known as entropy) at 
given position i with distribution Pi is defined as follows: 

 
(bits per symbol) 
 
 

where M is the set of alphabets representing the sequence 
units (for DNA, {A, T, G, C}) and Pij is the frequency of a 
certain alphabet at position i (Shannon 1948). Unit of H is 
“bits” when binary logarithm is used, as in the above for-
mula. H(Pi) is zero and minimum when distribution is most 
biased and therefore the entire information is represented by 
only one letter of the alphabet. H(Pi) takes the maximum 
value of log2 |M| bits when the distribution is uniform for all 
alphabets, where |M| is the cardinality of M (4 for DNA, 
therefore the maximum H is 2). 

Information content I is obtained by subtracting H from 
the maximum uncertainty log2|M|, 

 
therefore I(Pi) is maximum when the frequency is most bi-
ased to certain single alphabet (Schneider et al. 1990). 
 
Kullback-Leibler divergence (relative entropy) 
 
Above described uncertainty and information content as-
sume uniform distribution of all alphabets. However, in rea-
listic conditions, background nucleotide composition (e.g., 
genomic G+C content) varies among species, and distribu-
tion is even more diverse for protein sequences. In order to 
account for this heterogeneity of the innate distributions of 

the alphabets, relative entropy H(Pi || �) or Kullback-Leibler 
divergence from given background distribution � is derived 
as follows: 

 
where �j is the background frequency of alphabet j. Note 
that H(Pi || �) = I(Pi) when � = 1/|M|. Sequence Logo for 
protein motifs is developed using Kullback-Leibler diver-
gence by Schuster-Böckler et al. (2004). 

Although Kullback-Leibler divergence is commonly 
utilized to quantify the conservation in amino acid sequen-
ces, one should note that this is a divergence measure from 
the background distribution and it is not an information mea-
sure (Schneider 1999). This measure is called “divergence” 
since the calculation is asymmetric and therefore not suf-
ficient as a distance measure. Moreover, Kullback-Leibler 
divergence can result in values exceeding the maximum 
uncertainty log2|M|, and consequently it is inappropriate to 
be considered using the unit of “bits”. 
 
z-score cutoff 
 
Simplest means for the statistical testing of the significance 
of conservation is the use of z-score (also called the stan-
dard score), defined as: 

 
 

 
 

where � is the mean and � is the standard deviation of all 
Pij, for the most frequent alphabet j. The z-score represents 
how many standard deviations a raw score deviates from 
the mean. For example, representation of most frequent al-
phabet scoring z > 2 with upper case letters and those 2 > z 
> 1 with lower case letters for regions surrounding the start 
codon in Escherichia coli K12 shown in Fig. 2 results in a 
following putative binding site: --a-ggGga---a--ATGaa-aa. 
Note that the z-score statistics can be used to identify sig-
nificant positions within a binding site, but this is different 
from the amount of sequence conservation computed by the 
information theory. Comparison of indices based on infor-
mation theory with z-score cut-off is discussed in a work 
using human cDNA sequences and G-language GAE (Ara-
kawa et al. 2005b). 
 
ANALYSIS OF NUCLEOTIDE COMPOSITION BIAS 
 
A genome is primarily shaped by the requirements of its 
coded genes, but at the same time, it is also highly orga-
nized as a functional medium that undergo replication, es-
pecially in fast growing bacteria where doubling time is in 
the order of less than a couple of hours. Circular bacterial 
chromosomes have single finite origin of replication from 
which replication forks progress bi-directionally, until the 
two forks meet at the replication terminus typically located 
directly opposite of the origin, maintaining a physical 
balance (Rocha 2004b, 2004c). Therefore, a single strand of 
circular bacterial chromosome is divided into two repli-
chores by the replication origin and terminus, where the two 
replichores correspond to the leading strand of one replica-
tion arm and the lagging strand of another arm, respectively 
(Lobry et al. 2003). Because of the discontinuous strand 
synthesis in the lagging strand, mutational bias in the two 
strands of DNA molecule result in the asymmetry in nucleo-
tide composition (Lobry 1996; Frank et al. 1999; Lobry et 
al. 2002). This characteristic genomic polarity can be visua-
lized by plotting the relative abundance of C over G along 
the genomic positions, which is known as the GC skew 
graph (vide infra). FtsK translocase senses this genomic 

H (Pi ) � � Pij
j�M
� log2 Pij

I(Pi ) � log2 M � H (Pi ) � log2 M � � Pij
j�	
� log2 Pij




��



��

H (Pi � ) � H (Pi ,� ) � H (Pi ) � Pij
j�M
� (log2 Pij � log2 � j )

� Pij
j�M
� (log2

Pij

� j

)

z �
Pij � �
�

Table 1 Programs for consensus analysis implemented in G-language 
GAE. 
Name Description 
base_entropy Calculates and graphs the sequence 

conservation in regions around the start/stop 
codons using Shanon uncertainty (entropy).

base_information_content Calculates and graphs the sequence 
conservation in regions around the start/stop 
codons using information content. 

base_relative_entropy Calculates and graphs the sequence 
conservation in regions around the start/stop 
codons using Kullback-Leibler divergence 
(relative entropy). 

consensus_z Calculates and graphs the sequence 
conservation in a given array of sequences, 
and names a consensus using z-score cutoff.
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compositional asymmetry by recognizing KOPS oligomers 
in E. coli, in order to identify the dif sequence located near 
the replication terminus targeted by XerCD during chromo-
some dimer resolution (Perals et al. 2000, 2001; Levy et al. 
2005; Pease et al. 2005; Bigot et al. 2007). Accordingly, 
regions surrounding the replication terminus are enriched in 
skewed oligomers (Hendrickson et al. 2006), and coupled 
with the A+T enrichment around the replication terminus, 
background nucleotide composition bias affect the codon 
usage of genes depending on their locations within the ge-
nome (Daubin et al. 2003). 

Near the replication origin, genes are preferentially 
located in the leading strand, especially for longer genes, 
operons, highly expressed genes, and essential genes 
(McLean et al. 1998; Rocha et al. 2003 Omont et al. 2004; 
Price et al. 2005). These tendencies are speculated to be 
formed by avoiding head-on collisions of DNA and RNA 
polymerases in the interplay of replication of transcription 
(Brewer 1988; Liu et al. 1995), and also due to the gene 
dosage effects of fast growing bacteria where multiple 
rounds of replication take place, especially for genes related 
to transcription and translation (Ardell et al. 2005; Coutu-
rier et al. 2006). In light of the many replication-related 
constraints that govern the chromosomal organization in 
bacterial genomes, it is essential to have the knowledge of 
accurate positions of replication origin and terminus, and 
subsequently the sequences for leading and lagging strands. 
Computational prediction of replication origin is a common 
practice in genome projects as a cost effective and suffici-
ently accurate alternative to experimental methods, and 
most bacterial genome projects use putative replication ori-
gin as the first base position when submitting the sequence 
data to public repositories. 
 
GC skew analysis 
 
GC skew is defined as the excess of C over G normalized 
by the G+C content [(C – G) / (C + G)] in a given region 

(Lobry 1996). By graphing the GC skew values continu-
ously along the genome sequence using sliding windows 
(for example, 10000 bp), most bacterial genomes are divi-
ded into C-rich lagging strand and G-rich leading strand 
(Fig. 3B). Replication origin and terminus are located in the 
vicinity of the shift points between two strands. Cumulative 
graph of GC skew is a frequently utilized alternative to 
clarify the shift points, where the maximum and minimum 
points correspond to the replication origin and terminus, 
respectively (Grigoriev 1998) (Fig. 3C). GC skew can be 
observed in both coding and intergenic regions, and 
sometimes GC skew of third codon positions is preferred to 
avoid the compositional bias of the coding regions (Frank et 
al. 2000). Similarly derived AT skew [(A – T) / (A + T)] 
shows less significant polarity compared to GC skew, but 
the use of keto excess (G + T – C – A) / (A + T + G + C) or 
purine excess (G + A – C – T) / (A + T + G + C) is sug-
gested to be more accurate in prediction of the replication 
origin and terminus for some bacterial species (Freeman et 
al. 1998). All of these measures are partial projections of 
the DNA walk diagrams, a pseudo-random walk representa-
tion of all nucleotides in a sequence, which is the trail 
drawn by moving a pixel in the direction of the type of 
nucleotide (in Fig. 3A, A-up, T-down, G-right, C-left). 
 
Prediction of replication origin and terminus 
 
Sequence-based prediction of replication origin and termi-
nus identifies the peak positions of the aforementioned cu-
mulative skew graphs. Oriloc is a popular implementation 
of this kind of algorithm, which detects the intersection of 
the DNA walk trajectory and its linear regression based on 
the nucleotide content of third codon positions (Frank et al. 
2000). Although these methods are sufficiently accurate es-
pecially for replication origin, prediction of replication ter-
minus usually has an error margin of around 10 kbp from 
the experimentally identified sites, due to high insertion and 
horizontal transfer rates (Moszer et al. 1991). To improve 

Fig. 3 Compositional asymmetry of Bacillus subtilis genome. (A) DNA walk graph: starting from the origin (where thin white axis cross), pixel is 
moved and colored according to the type of the nucleotide (A-up, T-down, G-right, C-left). (B) GC skew graph: G-rich region shifts to C-rich region near 
the replication terminus located near 2,000,000 bp position. (C) Cumulative GC skew graph: shift point of GC skew becomes clearly visible as the 
maxima and minimum. 

 

5



Genes, Genomes and Genomics 2 (1), 1-13 ©2008 Global Science Books 

 

�1

the prediction accuracy for terminus regions and to clarify 
the skew shift points under the presence of background 
“noise”, low-pass filtering using Fast Fourier Transform 
(FFT), a common method to reduce innate noise in image or 
signal processing disciplines, has been proven to be suc-
cessful (Arakawa et al. 2007a). In low-pass filtering, a 
given discrete signal with length N, f(n), n = 0, 1, …, N – 1, 
at frequency k, is transformed to frequency domain repre-
sentation by FFT as follows, 
 
 

  
 

where i =� � . The power spectrum PS(k) of F(k) is sub-
sequently obtained as follows, 

 
 
 

at each frequency k. Since noise in data are distributed in 
the high frequency domain and replication-related selection 
should belong in low frequency domain considering the 
global nature of replication, zero-ing the power spectrum of 
the high frequency regions (thus “low-pass”) and reverse 
transforming the spectrum regenerates a skew graph with 
reduced noise. Obtaining the peak positions of the noise-
filtered cumulative skew graph results in better prediction. 

In addition to the skew-based methods, locations of cis-
acting sequence elements related to replication are typically 
combined to support the computational prediction. For 
example, DnaA boxes (5�-TTATCCACA-3� in E. coli) 
where DnaA proteins bind to unwind the DNA molecule in 
order to initiate the replication fork are indicative of the 
position of replication origin (Kaguni 1997), and the orien-
tation of Ter sites where Tus proteins bind to block the 
replication fork progression only in one direction (Hill 
1992) as well as the previously described dif sequence help 
identify the replication terminus. In bacterial plasmids, ite-
ron sequences (5�-TGAGGG G/A C/T-3�) are indicative of 
replication origins (Haines et al. 2006). All methods des-
cribed in this section including the identification of these 
sequence features are implemented in G-language GAE 
(See Table 2 for complete listing). 
 
 
 

GC Skew Index 
 
Although GC skew is commonly observed in a wide variety 
of bacterial species, the “degree” or “visibility” of the skew 
is quite diverse. For example, slow growing bacteria such as 
Cyanobacteria and Mycoplasma exhibit only weak skews, 
and archaea do not show visible skew due to their different 
replication machinery (Daubin et al. 2003). Suitability of 
GC skew-based prediction methods for replication origin 
and terminus significantly relies on the clarity of GC skew, 
and therefore it is useful to quantify the degree of skew to 
allow comparative studies. GC Skew Index (GCSI) is a 
quantitative indicator for this purpose, calculated by com-
bining the spectrum ratio (SR) between 1Hz spectrum and 
the average of all spectra of 2Hz and above of FFT, and the 
Euclidean distance (dist) between the two vertices of cumu-
lative graph. Here SR captures the fitness of the “shape” of 
GC skew graphs, and dist measures the degree of bias 
(Arakawa et al. 2007c). GCSI is normalized to range from 0 
to 1, and genomes with GCSI < 0.05 have no observable 
skew (majority of archaeal genomes belong to this cate-
gory). E. coli has GCSI of around 0.1, above which clear 
shift points can be discerned. Therefore, GCSI should be a 
useful criterion to test the applicability of skew-based pre-
dictions, although one should also note that GCSI is not 
necessarily a measure of replication selection (Arakawa et 
al. 2007b). 
 
G+C content 
 
G+C content is the percent of guanine and cytosine in the 
nucleotide sequence, expressed as 100 x (G + C)/(A + T + 
G + C). Genomic G+C content varies widely among dif-
ferent bacterial species, and this variation is most pro-
nounced at the third position of codons because the first two 
positions of codons are constrained by protein-coding re-
quirements (Muto et al. 1987). For example, among 80 bac-
terial species tested by Sharp et al. (2005), genomic G+C 
content ranged from 22 to 72%, whereas G+C content at 
synonymously variable third positions ranged from 9 to 
93%. Various factors have been proposed as determinants of 
G+C content, including genome-wide mutational bias 
toward G+C or A+T (Sueoka 1962), higher energy cost and 
limited availability of G+C over A+T (Rocha et al. 2002), 
increment in G+C in aerobiosis (Naya et al. 2002), and 

F(k) � f (n)e�i2� kn / N

n�0

N �1

�

PS(k) � F(k) 2 , k � 0,1,2,..., N �1

Table 2 Programs for genomic compositional analysis and sequence pattern searches implemented in G-language GAE. 
Name Description 
gcskew Calculates and graphs the GC skew of the genome. By specifying the optional parameter, this method can also graph AT skew, 

purine and keto excess, and cumulative skew. 
genomicskew Graphs the GC skew of whole genome, coding regions, GC3, and intergenic regions. Optionally shows AT skew or purine / keto 

excess for those regions. 
dnawalk Graphs the DNA walk of given sequence. 
find_ori_ter Predicts the replication origin and terminus by identifying the peaks of cumulative GC skew graph at single base-pair resolution. 

Optionally uses AT skew or purine / keto excess for prediction, and the use of FFT-based noise reduction filtering can be specified.
rep_ori_ter Returns the locations of replication origin and terminus by referring to the internal database of experimentally verified loci. If data 

is not available in internal database, loci are predicted using find_ori_ter. 
gcsi Quantifies the degree of skew (GCSI). 
leading_strand Returns the sequence of leading strand. 
query_strand Given a position and direction of the strand, returns whether it is on the leading or lagging strand. 
query_arm Given a position, returns whether it is on the left or right arm of replication. 
set_strand Sets the strand information for all genes. 
set_gc3 Sets the GC3 information for all genes. 
genes_from_ori Retrieves gene names in the order of distance from the origin. 
dist_in_cc Calculates the distance of given position from the origin. 
gcwin Calculates and graphs the GC content along the chromosome. Optionally calculates AT content. 
signature Calculates the oligonucleotide relative abundance (genomic signature). 
palindrome Searches for palindrome sequences of given length. 
find_dif Searches for dif sequence 
find_ter Searches for Ter sites 
find_dnaAbox Searches for dnaA-boxes 
find_iteron Searches for Iterons 
oligomer_search Searches for given oligomer. Degenerate nucleotide code or regular expressions can be used. 

 

6



Computational genome analysis using G-language system. Arakawa et al. 

 

horizontal DNA transfer among distantly related species 
with different genomic G+C contents (Lawrence et al. 
1997). To identify putative foreign genes, G+C content is 
determined for overall protein-coding regions and/or at dif-
ferent positions of codons (Lawrence et al. 1997 Garcia-
Vallve et al. 2000). To identify genomic islands (clusters of 
foreign genes), G+C content is computed using sliding win-
dows (Karlin 2001), and this is sometimes also useful to 
identify the putative coding regions especially in A+T rich 
genomes (Chen et al. 2004b). 
 
Genomic signature 
 
Karlin and his coworkers proposed that each organism has 
its characteristic “genomic signature” defined as the ratios 
between the observed and expected frequencies of dinucleo-
tides (dinucleotide relative abundances) (Karlin et al. 1995; 
Karlin et al. 1998a). The dinucleotide relative abundance 
value (�*

XY) is calculated as: 
 

 
 
 

where f*
X and f*

Y denote the frequency of the mononucleo-
tide X and Y respectively, and f*

XY denotes the frequency of 
the dinucleotide XY, computed from the sequence concate-
nated with its inverted complement sequence. Because the 
genomic signature is relatively constant throughout the ge-
nome and similar between closely related species, it has 
been used to construct phylogenetic trees (Coenye et al. 
2003; Coenye et al. 2004; van Passel et al. 2006) and to 
detect anomalous genomic regions such as genomic islands 
(Karlin 2001; van Passel et al. 2005). The analysis of dif-
ferent word length (e.g., 4-letter words = tetranucleotide) in 
different size of sliding window (Dufraigne et al. 2005) can 
be implemented in G-language GAE. 
 
ANALYSIS OF SYNONYMOUS CODON USAGE 
BIAS 
 
Much genetic code is degenerate, meaning that most amino 
acids are encoded by more than one codon (triplet of nuc-
leotides); these synonymous codons usually differ by one 
nucleotide in the third position. Synonymous codons are not 
used with equal frequency, and their usage varies among 
different species and also among genes within the same 
genome (Sharp et al. 1988). Different factors have been 
proposed to explain variations in synonymous codon usage 
among genes, including genome-wide mutational bias (sha-
ping intergenomic variation in G+C content) (Chen et al. 
2004a), natural selection linked to optimal growth tempe-
rature (Lynn et al. 2002; Lobry et al. 2006), horizontal gene 
transfer among distantly related species (shaping intrageno-
mic variation in G+C content) (Lawrence et al. 1997; Gar-
cia-Vallve et al. 2000), strand-specific mutational bias (sha-

ping GC skew between leading and lagging strands of DNA 
replication) (McInerney 1998; Lafay et al. 1999), and natu-
ral selection for translation optimization (acting mainly on 
highly expressed genes) (Ikemura 1985; Rocha 2004a; 
Sharp et al. 2005). There are many statistical methods to 
analyze synonymous codon usage bias (Comeron et al. 
1998; Ermolaeva 2001). G-language GAE is more compre-
hensive for the analysis of synonymous codon usage bias, 
compared to the most popular package such as CodonW 
(available at http://codonw.sourceforge.net/). The analysis 
methods include (i) normalization of codon usage data, (ii) 
multivariate analysis of codon usage data, (iii) measure of 
synonymous codon usage evenness, and (iv) prediction of 
gene expression level from codon usage. We will discuss 
the performance and instruction for the use of these me-
thods (Table 3). 
 
Representation of codon usage data 
 
Five different kinds of representations of codon usage data 
(termed here R0-R4) have been used in codon usage studies 
(Perriere et al. 2002; Suzuki et al. 2005). For a single gene 
or a group of genes, the value of the jth codon for the ith 
amino acid (xij) is defined as: 

For R0, xij � nij  
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where nij is the number of jth codon for the ith amino acid, 
ki is the degree of codon degeneracy for the ith amino acid 
(e.g., ki = 2 for cysteine and ki = 6 for arginine), and nimax is 
the number of the most frequently used synonymous codon 
for the ith amino acid. The codon usage data R0, R2, R3, and 
R4 are also called as the absolute codon frequency (AF), the 
relative codon frequency (RF), the relative synonymous 
codon usage (RSCU), and the relative adaptiveness (W) of 
each codon, respectively (Sharp et al. 1986, 1987; Perriere 
et al. 2002). 
 
Multivariate analyses of codon usage data 
 
Multivariate analysis methods, such as correspondence ana-
lysis (Grantham et al. 1980) and principal component ana-
lysis (PCA) (Kanaya et al. 1996), are often used to identify 
gene features contributing to the variations in synonymous 
codon usage among genes. Different kinds of codon usage 
data have been applied to these multivariate analysis me-
thods (Perriere et al. 2002; Suzuki et al. 2005). Of the five 
codon usage data (R0-R4), only R4 is independent of all three 
biases: (i) gene length, (ii) amino acid composition, and (iii) 
codon degeneracy. Indeed, PCA of R4 data (PCA-R4) is not 
affected by any of these biases (Suzuki et al. 2005). Con-
sequently, PCA-R4 is more effective than the other four me-
thods at detecting gene features related to synonymous 
codon usage variations such as G+C content (G + C)/(A + T 
+ G + C) at the third codon position (GC3) and GC skew (C 
- G)/(C - G) at the third codon position (Fig. 4). 

**

*
*

YX

XY
XY ff

f��

Table 3 Programs for codon analysis implemented in G-language GAE. 
Name Description 
codon_usage Displays the codon table of the given genome or 

specified gene. 
codon_mva Performs multivariate analyses of codon usage data, and 

analyzes correlations between the axes and other gene 
features such as G+C content and GC skew. 

enc Calculates the effective number of codons (Nc). 
cbi Calculates the codon bias index (CBI). 
icdi Calculates the intrinsic codon deviation index (ICDI). 
Ew Calculates the weighted sum of relative entropy (Ew). 
P2 Calculates the P2 index. 
fop Calculates the frequency of optimal codons (Fop). 
w_value Calculates the 'relative adaptiveness (W) of each codon.
cai Calculates codon adaptation index (CAI) for each gene.
phx Calculates the expression measure, E(g), to identify 

predicted highly expressed (PHX) genes. 
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Fig. 5 shows the plots of first and second axis scores 
obtained by PCA-R4 for all individual genes in two fast 
growing bacteria E. coli and Bacillus subtilis as examples. 
The distribution of points reveals two horns: that correspon-
ding to constitutively highly expressed genes (encoding 
ribosomal proteins and elongation factors) and that cor-
responding to putative foreign genes (Medigue et al. 1991; 
Moszer et al. 1999). 
 
Measure of synonymous codon usage evenness 
 
Various measures of synonymous codon usage evenness 
have been proposed, including the ‘effective number of 
codons’ (Nc) (Wright 1990), the codon bias index (CBI) 

(Morton 1993), the intrinsic codon deviation index (ICDI) 
(Freire-Picos et al. 1994), Shannon uncertainty (entropy) 
from information theory (Hs) (Zeeberg 2002) and its modi-
fication, called the ‘weighted sum of relative entropy’ (Ew) 
(Suzuki et al. 2004). The entropy of the ith amino acid is 
defined as:  

�
�

��
ik

j
ijiji xxH

1
2log  

 
where xij is the relative codon frequency (R2) of the jth 
codon for the ith amino acid, and ki is the degree of codon 
degeneracy for the ith amino acid. Hs and Ew is calculated 
by combining the entropies from different amino acids: 

 

Hs � Hi
i�1
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�  
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where pi is the relative frequency of the ith amino acid in 
the protein. Ew ranges from 0 (maximum bias) to 1 
(maximum evenness). Because Ew takes into account all 
three aspects of amino acid usage, i.e., (i) the number of 
different amino acids, (ii) their relative frequency, and (iii) 
their codon degeneracy, it is little affected by amino acid 
usage biases (Suzuki et al. 2004). 
 
Predicting gene expression level from codon 
usage 
 
Various methods of predicting gene expression level from 
codon usage bias have been proposed, including the P2 
index (Gouy et al. 1982), the frequency of optimal codons 
(FOP) (Ikemura 1985), the codon adaptation index (CAI) 
(Sharp et al. 1987), and the expression measure, E(g), for 
identifying predicted highly expressed (PHX) genes (Karlin 
et al. 2000). In some species, putative highly expressed 
genes (e.g., those encoding ribosomal proteins) do not have 
unusual codon usage, and thus codon usage cannot be used 
to predict gene expression levels (Grocock et al. 2002; Car-
bone et al. 2003). Therefore, to estimate the level of gene 
expression from codon usage bias, it is necessary first to 
check whether a genome shows evidence of translationally 

Fig. 4 Performance comparison of principal component analysis 
(PCA) of different codon usage data (R0, R1, R2, R3, and R4). The 
performance was evaluated by the number of genomes where the gene 
feature – G+C content (black) and GC skew (gray) at third codon position 
– was detected on one of four axes generated by PCA in 559 bacterial 
genomes. The gene feature was detected when its correlation coefficient 
with the axis was the highest and greater than 0.7. 

Fig. 5 Plots of first and second axis (PC1 and PC2) scores obtained by PCA-R4 for all individual genes in two fast growing bacteria Escherichia 
coli K12 and Bacillus subtilis. Genes encoding ribosomal proteins are indicated by red circles. 
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selected codon usage bias by comparing codon usage of 
highly expressed genes with that of all genes (Henry et al. 
2007), as shown in Fig. 5. 

 
P2 index. The P2 index represents the proportion of codons 
conforming to the intermediate strength of codon-anticodon 
interaction energy rule of Grosjean and Fiers (Grosjean et al. 
1982), and calculated as: P2 = (WWC + SSU) / (WWY + 
SSY), where W = A or U, S = G or C, and Y = C or U 
(Gouy et al. 1982). It indicates the efficiency of the codon–
anticodon interaction and has been used as an indicator of 
the presence of translational selection (von Samson-Him-
melstjerna et al. 2003). In fast growing bacteria such as E. 
coli, highly expressed genes have high P2 values (0.7-0.9), 
while other genes have values close to 0.5 (Shields et al. 
1987). 

 
Frequency of optimal codons (FOP). In fast growing bac-
teria such as E. coli, highly expressed genes preferentially 
use optimal codons, which optimize the efficiency of trans-
lation (determined by tRNA availability and the efficiency 
of codon-anticodon pairing) (Ikemura 1985). FOP is defined 
as the number of optimal codons divided by the sum of the 
number of optimal and nonoptimal codons. FOP takes values 
from 0.0 (where no optimal codons are used) to 1.0 (where 
only optimal codons are used). 

 
Codon adaptation index (CAI). CAI is a measure of the 
relative adaptiveness of the codon usage of a gene towards 
the codon usage of highly expressed genes (Sharp et al. 
1987), and computed as: 
 

CAI � exp
nij ln xij
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where nij is the number of the jth codon for the ith amino 
acid, ki is the degree of codon degeneracy for the ith 
amino acid, and xij is the relative adaptiveness (R4) value of 
the jth codon for the ith amino acid in a reference set of 
highly expressed genes. Thus, CAI is defined as the geo-
metric mean of the R4 values, and ranges from 0.0 to 1.0. 
CAI can be used as a ‘universal’ measure of codon usage 
bias; that is, CAI values can be correlated with gene fea-
tures other than gene expression level (e.g., G+C content, 
GC skew, and so on) using a reference set of genes which is 
representative of the bias (Carbone et al. 2003, 2005). 

 
Expression measure, E(g). Let xij(g) indicate the relative 
codon frequency (R2) value of the jth codon for the ith 
amino acid in the gene g. The codon usage difference of the 
gene g relative to the gene group G is calculated by the 
formula (Karlin et al. 1998a, 1998b): 
 

B(g | G) � pi g� � xij (g) � xij (G)
j

ki

�
i

20

�  

 
where pi(g) is the relative frequency of ith amino acid of the 
gene g. Denoted by C is the collection of all protein genes, 
and by H the putative highly expressed genes (those enco-
ding ribosomal proteins, translation/transcription processing 
factors, and chaperone/degradation proteins). The general 
form of the expression measure is: 
 

E(g) � B(g | C)
B(g | H)

 

 
A gene g is deemed ‘predicted highly expressed’ (PHX) 

if B(g|H) is lower than B(g|C); i.e., E(g) exceeds 1.0 (Karlin 

et al. 2000, 2001b, 2003, 2005). A gene g is deemed ‘puta-
tive alien’ (PA) provided both B(g|H) and B(g|C) exceed the 
median value for all genes (Mrazek et al. 1999; Karlin et al. 
2001a; Mrazek et al. 2001). 
 
EXAMPLE WORKFLOW 
 
G-language GAE is utilized in many fields of bioinforma-
tics and computational biology, including genomics, soft-
ware development for bioinformatics, systems biology, non-
coding RNAs, and cis-acting sequence elements (see http:// 
www.g-language.org/wiki/publications for a list of scien-
tific publications citing G-language GAE). Nonetheless, as 
described thus far, G-language GAE is especially compre-
hensive for the analysis of sequence conservation by infor-
mation theory, genomic compositional asymmetry, and syn-
onymous codon usage bias, in comparison with similar soft-
ware packages in each of these areas. Although program-
ming is inevitable in bioinformatics, initial screening pro-
cess for these areas may be achieved only with simple com-
bination of implemented programs within the interactive 
shell environment. G-language GAE supports the creation 
of workflows using implemented methods with minimal 
scripting, and several published works provide such work-
flow files (GCF format) as supplementary materials so that 
the procedure can be reused and configured (Sato et al. 
2003; Arakawa et al. 2005b; Yachie et al. 2006). 

Here we describe one example workflow that we have 
actually used in the screening process of a recent work that 
analyzed the correlation of gene positioning relative to the 
replication origin and the gene features (GC3, gene length, 
predicted gene expression level, general codon usage bias, 
essentiality, and functional classification) within circular 
bacterial chromosomes (Arakawa et al. 2007b). Workflow 
diagram for the initial screening to see if these gene features 
are correlated with their relative positions from replication 
origin is depicted in Fig. 6. Firstly, a GenBank format file is 
automatically downloaded, parsed, and loaded upon calling 
“load” function with appropriate RefSeq accession number 
of E. coli. Thus obtained genome data object is then an-
notated for the gene features of interest: gene essentiality 
using Profiling of E. coli Chromosome database (Hashi-
moto et al. 2005), GC3 of each gene, functional classifica-
tion using the NCBI COG database through “set_gpac” 
program (Tatusov et al. 2001), CAI calculated using riboso-
mal proteins as reference (predicted gene expression level), 
and CAI calculated using all proteins as reference (general 
codon usage bias). Genes are then ordered by their relative 
distances from replication origin, after the prediction of rep-
lication origin and terminus using GC skew-based methods 
and database searches. Finally, gene features and the rela-
tive positions from the origin are statistically compared and 
graphed to ease the interpretation of results. G-language 
GAE is equipped with many basic statistics tools, so the 
distribution of values are first tested for normality using 
Kolomogorov-Smirnov Lilliefors test, and then based on 
this result, the degree of correlation between two variables 
is quantified using Spearman’s rank correlation coefficient. 
Although further analysis in detail requires programming, 
all tasks in this workflow can be achieved with implemen-
ted methods only, within the interactive shell. 
 
CONCLUSIONS AND OUTLOOK 
 
G-language GAE is unique among many bioinformatics 
workbenches, since it provides numerous genome analysis 
tools and algorithms in the form of programming interface, 
examples of those especially related to bacterial genomes 
analysis are described in this review. Programming is the 
central means in computational biology research, and 
availability of useful algorithms as APIs allows maximum 
flexibility and freedom for computational molecular biolo-
gist in combination with basic interface libraries provided 
by Bio* projects. As exemplified by the methods for the 
analysis of binding sites, codons, and nucleotide composi-
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tions, G-language GAE is implemented with several algo-
rithms for a given biological problem, therefore the users 
can choose the most suitable method for their needs and ob-
jectives. Most analysis programs in G-language GAE out-
put graphical results in the form of graphs and diagrams in 
order to ease the interpretation by researchers, and they are 
also equipped with optional parameters with which analyses 
can be fine-tuned and configured. 

We would like to stress the fact that any daily research 
work including computational genome analysis is mostly 

comprised of the trial-and-error processes, where resear-
chers explore numerous datasets, tools and algorithms, and 
their parameters in combination, in order to best solve their 
biological problems. Therefore, to make the research pro-
cess more efficient, a workbench for bioinformatics should 
support the heuristic nature of research routines. G-lan-
guage shell interface with persistent memory, help com-
mand, logging as Perl script, tab-completion of file and 
program names, and interactivity coupled with the visual 
output and optional parameters is entirely designed for this 

Fig. 6 Example workflow of our recent analysis (Arakawa et al. 2007b). Round-corner rectangles represent the methods implemented in G-language 
GAE (with grayed round-corner rectangles representing significant optional parameter), bold corner rectangles represent intermediate data, and grayed 
regular rectangle represents external data. Parent programs automatically use programs connected by dotted lines internally. Although programming is 
required for further statistical analyses, initial screening can be conducted with implemented features. 
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purpose. Workflows for bioinformatics, the result of such 
trial-and-errors, are essential to allow reuse and sharing of 
methods as is commonly done in “wet” biology with expe-
rimental protocols, but the major bottleneck in current com-
putational biology, in our opinions, is in the heuristic pro-
cess in the construction of workflows. 

In addition to enriching more methods and documenta-
tions within the software system, we here propose three 
areas where bioinformatics software environment can pos-
sibly improve to make the heuristic processes more effici-
ent: web-service, scientific visualization, and user interface. 
Rapid accumulation of sequence data in public databases 
exceeds the rate of the Moore’s law of transistors (Benson 
et al. 2007), and this is expected to further accelerate with 
the introduction of next-generation sequencers (Blow 2007). 
Considering the amount of data required to transfer over 
internet in order to mirror locally besides the regular up-
dates on annotations, software installation and compatibility, 
and wealth of computational resource typically equipped in 
large database providers, it is often useful to take advantage 
of web-services in heuristic screening (Fox et al. 2007). 
Standardization of input/output data types and method 
classification, redundancy in service provision, distribution 
of computation utilizing grid environment, and client soft-
ware to support these frameworks would be necessary to 
make full use of the hundreds of services in concert (Stein 
2002). Scientific visualization is gaining much attention in 
light of the complex nature of omics data and it has been 
successful to display results of biological research (Ball 
2002; Arakawa et al. 2005a; Kono et al. 2006), but visuali-
zation that aids the heuristic processes of scientific research 
is less explored. Visualization that does not necessarily 
show the final results but that allows researchers to identify 
certain meanings and patterns within the huge masses of in-
formation, possibly through frequent interactions by resear-
chers according to their heuristics, would contribute to both 
of computational and experimental biology. In terms of 
software engineering, these new frontiers should be coupled 
with better user interfaces that give prompt response (which 
may require greater computational efficiency) upon user 
interaction to accelerate the heuristics of researchers. As a 
workbench for bioinformatics, these challenges are the cur-
rent goals for G-language Project. 
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