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ABSTRACT 
The phytohormone ethylene is involved in the modulation of a variety of growth and developmental processes in plants, including fruit 
ripening. Many forms of visual changes observed in rose flowers, including flower opening, petal senescence and changes in floral scent 
emission are correlated to ethylene levels in flowers. As 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) is one of the key 
regulatory enzymes in ethylene biosynthesis, ACS genes have been intensively investigated. Here we describe the structure of three full-
length ACS genomic clones from Rosa hybrida cv. ‘Kardinal’. These genes contain four exons and three introns and share sequence 
homologies with other plant ACSs with typical features that are characteristic of all ACSs. Plants selectively activate genes via interaction 
between transcription factor(s) and their specific binding motifs located in the genes’ promoters. To identify/analyze cis-acting 
elements/motifs located in promoters of ACS genes, we have taken a computational approach using PLACE and AGRIS databases on the 
assumption that commonalities of cis-regulatory elements in the promoters are related in each gene to their expression in response to a 
particular signal. The resulting ethylene related cis-elements have been identified. The relative positions of these common regulatory 
elements vary among these promoters suggesting that protein-protein interactions among transcription factors may be another factor(s) in 
determining differential gene regulation. In future, as more full-length ACS genes from the Rosa multi-gene family are identified, a better 
picture of their differential regulation will emerge. This knowledge may allow the development of new rose cultivars with desirable 
characteristics through genetic manipulations/modifications. 
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INTRODUCTION 
 
The plant hormone ethylene is primarily responsible for the 
senescence process (Woltering and van Doorn 1988; Abeles 
et al. 1992; O’Neil et al. 1993; van Doorn 2002) and is also 
involved in fruit ripening, plant growth, and development 
(reviewed in Sato and Theologis 1989; Matto and Suttle 
1991; Abeles et al. 1992; Zarembinski and Theologis 1994; 
Bleecker and Kende 2000; van Doorn 2002). In the cell, 
ethylene synthesis is initiated by the conversion of L-methi-
onine into S-adenosyl-L-methionine, which is transformed 
into 1-aminocyclopropane-1-carboxylate (ACC) by ACC 
synthase (ACS). ACC is converted into ethylene by ACC 
oxidase (reviewed in Yang and Hoffman 1984; Kende 
1989) (Fig. 1). ACS catalyzes the first rate-limiting step in 
the biosynthesis of ethylene and is thus considered to be the 
key regulatory enzyme (reviewed in Yang and Hoffman 
1984; Bleecker and Kende 2000). ACSs in many plants 
have been shown to be encoded by a multi-gene family in 
which each gene is differentially regulated in response to 
internal and external signals (reviewed in Yip et al. 1990; 
Rottmann et al. 1991; Liang et al. 1992; Zarembinski and 
Theologis 1993; Bleecker and Kende 2000; Tsuchisaka and 
Theologis 2004; Chen et al. 2005). The expression of ACS 
genes is primarily regulated at the transcriptional level (re-
viewed in Rottmann et al. 1991; Bailey et al. 1992; Liang et 
al. 1992; Bleecker and Kende 2000; Chang and Bleecker 
2004; Chen et al. 2005). 

ACS genes are differentially regulated by numerous 
growth, developmental and external stimuli (reviewed in 
Rottmann et al. 1991; Liang et al. 1992; Bleecker and 
Kende 2000; Chang and Bleecker 2004; Fan et al. 2004; 
Tsuchiasaka and Theologis 2004; Wang et al. 2004; Chen 

® 

Methionine

S-AdoMet synthase

S-adenosyl-methionine
(S-AdoMet)

ACC synthase

1-Aminocyclopropane-1-carboxylate
(ACC)

ACC oxidase

Ethylene

Fig. 1 Ethylene biosynthetic p 
athway. Based on Yang and Hofan 



Genes, Genomes and Genomics 2 (1), 68-76 ©2008 Global Science Books 

 

et al. 2005). Therefore, elucidation of control mechanisms 
that uncover important regulatory elements will provide sig-
nificant information about how these genes are expressed in 
response to various internal and external cues. As a continu-
ation of our work on ACS genes in Rosa, in the current 
study we have identified and isolated several full-length 
ACS gene members from Rosa hybrida cv. ‘Kardinal’ and 
carried out promoter analysis on the cis-acting regulatory 
elements responsible for the controlled expression of ACS 
genes. We have searched for motifs in the non-coding pro-
moter region 5� to the translational start site/codon of these 
ACS genes. Our basic assumption is that important regula-
tory motifs found in Arabidopsis that are potential binding 
sites of transcription factors are likely to be conserved in 
genes with similar expression patterns in other plant species. 
By unmasking regulatory elements in the promoter region 
of gene members belonging to the ACS multi-gene family, 
we hypothesized that different plant systems showing simi-
lar spatial and temporal expression patterns in response to 
ethylene may also have common regulatory elements in the 
promoter region. 

Here, we report the characterization of three full-length 
genomic clones of ACS genes of rose screened from a 
genomic library of R. hybrida ‘Kardinal’. The complete 
nucleotide sequences of the genes, RhACS1, RhACS12, and 
RhACS17, have been determined, including about a thou-
sand base pairs (bp) upstream from the start codon. All 
these genes contain four exons and three introns and share 
sequence homologies with other ACS genes from various 
plants (reviewed in Matto and Suttle 1991; Abeles et al. 
1992; Zarembinski and Theologis 1994; Bleecker and Ken-
de 2000; van Doorn 2002). The genes also contain the con-
served amino acid residues and the substrate and pyridoxal 
5�-phosphate binding sites that are characteristic of all 
ACSs (reviewed in Yip et al. 1990; Huang et al. 1991; Za-
rembinski and Theologis 1994; Bleecker and Kende 2000; 
Chang and Bleecker 2004). 

Also, we have taken a computational approach in which 
the promoter region encompassing about 1000 bp from the 
5�-upstream sequences from the start codon of the three R. 
hybrida ACS genes have been analyzed and compared them 
with the complete list of Arabidopsis ACS gene family 
using database comparisons and weight matrices to identify 
cis-acting elements/motifs that may contribute to gene regu-
lation. Our overall analyses show the presence of common 
regulatory elements which include general transcription fac-
tors binding elements, such as several TATA boxes, CAAT 
boxes (Le Gourrierec et al. 1999), and others in which ethy-
lene is an important factor in gene regulation such as GCC 
GCC, core of GCC-box that functions as ethylene-respon-
sive element and is found in many pathogen-responsive 
genes (Ohme-Takagi and Shinshi 1995; Brown et al. 2003; 
Chakravarthy et al. 2003)(see results section). We also note 
that in spite of the presence of many common cis-acting 
elements in promoters of the three Rosa ACS genes, their 
relative position in each promoter varies, suggesting, there-
fore, that besides binding of respective transcription factors 
to these elements, protein-protein interactions between trans-
cription factors may be another important factor in deter-
mining differential regulation of the ACS multi-gene family 
members. 

 
MATERIALS AND METHODS 
 
Material 
 
DNA primers used in this study were synthesized at Macromole-
cular Resources, Colorado State University, Fort Collins, CO. 
 
Plant material 
 
Rosa hybrida commercial variety, ‘Kardinal’, widely used in the 
cut flower industry, was chosen in this study. Flower petals and 
young leaves were harvested, immediately frozen in liquid nitro-
gen, and stored at -70°C until used. 

Preparation of genomic library 
 
Genomic DNA library was prepared from DNA extracted from 
young, healthy leaves essentially according to Guillemaut and 
Marechal-Drouard (1992). Partial digestion of DNA with Sau3AI 
was prepared and size fractionated by sucrose density gradient 
[10-40% in 10 mM Tris-HCL (pH 8.0), 10 mM NaCl and 1 mM 
EDTA] centrifugation at 22,000 rpm for 22 h at 20°C in a Beck-
man Ultracentrifuge SW40 rotor. Fractions in the molecular 
weight range of 10-25 Kb were used for construction of a library 
into the compatible BamHI site of the Lambda (�) Dash II replace-
ment vector essentially according to the instructions provided by 
Stratagene, La Jolla, California. Wild-type � bacteriophage with 
the active red and gam genes are unable to grow on the host-strain 
of E. coli containing P2 lysogen [XL1-Blue MRA (P2)]. Therefore, 
wild type lambda phage cannot grow on XL1-BlueMRA(P2) but 
recombinant phage containing genomic DNA fragments of about 
20 Kb will grow and were used for selection of recombinant pha-
ges. Genomic DNA predigested with alkaline phosphatase (to pre-
vent self-ligation) was ligated into compatible (predigested) 
BamHI � Dash II arms at 4°C for 24 h. Gigpack II Gold � pack-
aging extract was used for in vitro packaging of the recombinant � 
DNA essentially according to instructions of Stratagene. The 
phage library was screened with a probe prepared from a full-
length Rose ACC synthase cDNA (RKacc7) described previously 
(Wang et al. 2004). After three cycles of screening, a total of 22 
different clones were isolated. 
 
Characterization of DNA inserts and recombinant 
phage DNA preparation 
 
Size of insert in the recombinant � phage genomic clones was 
determined after digestion with NotI which results in the release of 
the insert. Results showed that the insert in each clone had an ave-
rage molecular weight of 20 Kb (results not shown). Recombinant 
phage DNA from the clones was prepared with the Qiagen Midi 
Kit Qiagen, Inc. 27220 Turnberry lane, Velencia, CA 91355) using 
confluent plate lysis method for phage growth. 
 
 
 
 

Table 1 List of primers used to sequence ACS clones. 
Primer Sequence 5'- 3' 
1035F CCTTCAAATCCTGGTGGC 
1523R CTGTAAGAGCGAATTAACCC 
22-1140-9 CTTCGTCTCGGGTCCGGGTC 
P1 AAGGTATGCACCTAGGTCG 
P2 AACTCAACCTGCAAATTGCC 
12-21 P3 CACCCAGTATTGCATCCCT 
17-40 P3 CAAGTCCAAAGCTAACTACC 
Rose 12 ACGGAGCCGAGAACGAG 
cDNA-723 CTCTGTGAACTTTACTCTGG 
cDNA1604 GAACCGGGATGGTTCCG 
M13R-1727 GACCCTCAGACTGTGAC 
639-656 GCTCGCTGAACAGCAAGC 
1-1122-103R GTCTCGGGTCCGGGTC 
1-1513-529R AGACCCAACCTCTCCCC 
1035F CCTTCAAATCCTGGTGGC 
Race-end1 GCCACCAGGATTTGAAGG 
Race-7F GGGTTAATTCGCTCTTACAG 
M13R GCGGATAACAATTTCACACAGG 
M13F GTAAAACGACGGCCAGT 
rose 7a GGTGATAATCAGGCCCAC 
rose 7b CCCTGATTTGATACATGCTG 
rose 7c GCCGTATTATGTCGGTAC 
rose 12R CTCGTTCTCGGCTCCGTCAT 
rose12 ACGGAGCCGAGAACGAG 
rose 13 ACCCAACTCGTCGTACGGATC 
rose 13r CTAGGCATGCTGCTCAACCCA 
rose 15a CGGGCCATAAACTGATATA 
rose 14 CTCCGGGRTCAGCCAAGCAAAA 
ARA1 CCARCTCAAYTCTCTATCYAATCTG 
ARA2 CTGATTTTCWGCYAGACCCATTTG 
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DNA sequencing 
 
Based on restriction digestion analyses of the 22 clones after di-
gestion with restriction enzymes: NotI, EcoRI, BamHI, HindIII, 
XbaI, XhoI and SalI, three clones were selected for DNA sequence 
work. These clones are RhACS1, RhACS12, and RhACS17. The 
clones were sequenced by direct PCR based sequencing initially 
using primers from RKacc7 cDNA (Forward primer 1035F, 5�-CC 
TTCAAATCCTGGTGGC and reverse primer 1532R, 5�-CTGTAA 
GAGCGAATTAACCC). To obtain additional sequences in both 
directions (Fan et al. 1996; Sanger et al. 1977; Ranu 1996) further 
sequencing was developed through a combination of sub-cloning 
of restriction fragments or carried out by genomic walking; by de-
signing additional primers based on new gene sequence informa-
tion. In this fashion, sequences covering about 1000 bases upstream 
of the translational start site (into the promoter region) and 60-
1000 bases towards the 3�-end of each gene were obtained. DNA 
sequencing was performed either by the Macromolecular Resour-
ces at Colorado State University, Fort Collins, Colorado or by the 
Macrogen Sequence Resources Seoul, South Korea. All of the pri-
mers designed to sequence these clones are listed in Table 1. 
 
Other procedures 
 
The following procedures have been described in our previous re-
ports on rose and geranium ACC synthases (Wang et al. 2004; Fan 
et al. 2007); construction of cDNA library; Southern blot analysis; 
preparation of [32P] labeled ACC synthase probe; screening of 
genomic library for ACC synthase genes; assay of ACC synthase 
transcripts by RT-PCR; and, ethylene measurement by gas chro-
matography. Other methods have been described by Sambrook et 
al. (1989). 
 
RESULTS AND DISCUSSION 
 
Characterization of Rosa ACC synthase genomic 
clones 
 
In a previous study, this laboratory described the complete 
sequence of an ACS cDNA (RKacc7; Genbank #AY378152) 
from ‘Kardinal’ petals and showed that the expression 
levels of this gene correlate with the opening and senes-
cence of rose blooms and flower petals (Wang et al. 2004). 
Also, our Southern blot analysis of the genomic DNA 
probed with full-length RKacc7 probe at high and low strin-
gency showed multiple DNA bands which suggested that a 
related-multi-gene family may encode for ACC synthases in 
rose as well (Wang et al. 2004). Screening of a ‘Kardinal’ � 
bacteriophage genomic library with the full-length RKacc7 
cDNA probe led to the isolation of an additional three clones 
whose make-up on restriction enzyme analysis including 
the amplification of a 500 base pairs (bp) fragment cor-
responding to the last exon of RhACS1 (RKacc7) with pri-
mers 1035F and 1532R (Table 1) suggested that they con-
tain complete gene body and promoter sequences. These 
clones were sequenced; they are RhACS1, RhACS12 and 
RhACS17. 

An analysis of the sequences of these three clones re-
vealed that they all contain three introns and four exons 
(Figs. 2-4). The complete sequence of RhACS1 is presented 
in Fig. 2 and the four exons of this gene show complete 
sequence homology with RKacc7 cDNA (Genbank # 
AY378152). The sequence also covers 1715 bp upstream of 
the start codon and 983 bp downstream of the stop codon 
(Genbank #EF584008) with a region encoding 480 amino 
acids. The three introns vary in length from 80 (#3) to 
121(#1) and 145 (#2). Fig. 3 shows the complete sequence 
of the second clone, RhACS12 (Genbank #EF584009). 
Besides the exons encoding 481 amino acids and the three 
introns, the sequences cover 1448 bp upstream of the start 
codon and 63 bp downstream of the termination codon. In 
this case, intron length varies from 80 (#3) to 212 (#1) and 
768 (#2). The complete sequence of the third clone, 
RhACS17, is presented in Fig. 4 (Genbank #EF584010) and 
covers 1061 bp upstream of the start codon and 57 bp down-

stream of the stop codon with exons encoding 488 amino 
acids. The intron length varies from 72 (#3), 86 (#3), and 
818 (#2). 

In all cases a consensus dinucleotide representing AG/ 
GU slice site is located at the boundary of each exon-intron 
junction. Each gene contains the conserved GISKDLSLPG 
FRV peptide sequence that is common to all ACS genes 
with conserved lysine (K) residue in the active site that 
binds pyridoxal phosphate and S-AdoMet (Yip et al. 1990; 
Zarembinski and Theologis 1994; Eliot and Kirsch 2004). 

Overall, based on differences in the three intron lengths, 
sequence differences in promoter segments and in the 3�-
end untranslated region, the three ACS genes are clearly dif-
ferent. As with other ACC synthases they share amino acid 
sequence homologies with each other that varies from 87 to 
95% using RhACS1 as 100%. 
 
Promoter analysis 
 
One of the challenges in biology today lies in the identifica-
tion of sequence elements/motifs that are involved in regu-
lation of gene activity. Plants selectively activate genes via 
the interaction between sequence specific motifs located in 
the promoter region and their corresponding transcription 
factors. Transcription of a gene is not only shaped by the 
transcription factor(s) and their interaction with a specific 
motif (Le Gourrierec et al. 1999), but also by remodeling of 
chromatin in preparation for gene expression (Wasserman 
and Sandelin 2004). Thus, characterization of cis-acting ele-
ments in promoter sequences may provide important clues 
in linking their role with gene activity and in determining 
expression patterns that link a multitude of genes (Lenhard 
et al. 2003). Compared to the number of genes, very few 
promoters have been well characterized (Cazzonelii et al. 
2005), due primarily to the complex nature of interactions 
that take place between large numbers of cis-acting ele-
ments and transcription factors. It appears that transcription 
factors function in networks along with other regulatory 
proteins, which in turn modulate expression of other regu-
latory genes. These tight regulation patterns allow a specific 
signal to initiate and modulate coordinated expression of a 
set of genes important in the plant response to internal and 
external cues. 

The mechanism(s) of regulation of differential expres-
sion of ACS genes in the ACS multi-gene family is of great 
interest. This multi-gene family can also serve as a model 
system in identifying regulatory elements that regulate the 
differential expression of individual members of the other 
gene families to numerous internal and external cues. It is 
fair to assume that the commonality of cis-regulatory ele-
ments in the promoters is related to expression of genes in 
response to a particular signal. 

Several resources are available to search for cis-regula-
tory motifs in a promoter sequence, such as PLACE (PLAnt 
Cis-acting regulatory DNA Element at http://www.dna.affrc. 
go.jp/PLACE/signalscan.html), a cis-regulatory element 
database for plants and AGRIS (Arabidopsis Gene Regula-
tory Information Server at http://arabidopsis.med.ohio-
state.edu/) which integrates data from a variety of sources, 
such as AtTFDB and AtcisDB databases (Davuluri et al. 
2003). In our analysis we have considered that genes with 
similar expression patterns would or are likely to contain 
common motifs in their promoter regions and a common set 
of transcription factors are likely to control these genes. In 
this regard, we note that ethylene response cis-elements and 
the proteins that interact with these elements have been iden-
tified for the tomato E4 gene (Montgomery et al. 1993; 
Coupe and Deikman 1997), the carnation senescence-rela-
ted glutathione-S-transferase gene (Itzhaki et al. 1994) and 
tobacco defense genes (Ohme-Takagi and Shinshi 1995). 
Thus, in our analysis of the promoter regions of the three 
RhACS genes, we have taken a computational approach 
using database comparisons to identify binding motifs. The 
5�-upstream sequence encompassing about 1000 bp from 
the start codon of RhACS1, RhACS7, and RhACS17 was 
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input into the PLACE data website (http://www.dna.affrc. 
go.jp/PLACE/signalscan.html) and compared with those of 
other ACS genes from Arabidopsis. The resulting ethylene 
related elements were selected to be putative binding motifs 
that may be involved in ACS regulation. The motifs identi-
fied have common (or shared) sequences with 100% se-
quence homology across the three R. hybrida genes. We 
point out in these analyses no attempt is being made to pre-
sent an exhaustive details of all the cis-acting elements. 

The first point to emerge from these studies is that in 
spite of a great deal of sequence homologies in the ACS 

(coding sequences) protein sequences (varying from 87-
95%), the promoter regions showed no clear cut sequence 
conservation. In fact, the prevailing message is a high level 
of variability. Based on the response of many genes to ethy-
lene, we identified the following cis-acting elements that 
may be involved in the expression of these genes: 

1. GCCGCC, core of GCC-box found in many patho-
gen-responsive genes and functions as ethylene-responsive 
element (Ohme-Takagi and Shinshi 1995; Brown et al. 
2003; Chakravarthy et al. 2003). 

2. TGACG “ASF-1 binding site” ASF-1 binds to two 

gggcgctggcaagtgtagcggtcacgctgcgcgtaaccaccacacccgccgcgcttaatgcgccgctacagggcgcgtccattcgccattcaggctgcgc 
aactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggt 
tttcccagtcacgacgttgtaaaacgacggccagtgaattgtaatacgactcactatagggcgaattgggccctctagatgcatgctcgagttgggcggt 
ggtgctgtaggtcgatctgtgacggggcaggaaggccaagacaatttcgacggtggtcgggtcggggccaaggttggctgggactggtctggcaatgatg 
gtgacggcggcaagctgcgaggaagatttggaaaaaccggcggcaatccctagttttgaactagggttgactttgaccgggctgatttgggcttctggac 
tgcaggttattggggctgctttcaatggctcgttaatgatgactgggcctatttgtggggggctcaattttggagaagggttgcagaccttcaagcatag 
tccaaggagcaacctgttttccgaggttgttggctactgaggatggtgccggttccaaccctatggggaagggactagcgctctcttaaattatctcggc 
ttttggacattctggactcaagccttttaaagtaggggtaaattctataaattttctaagacgtttctagttgatatttgtaccccaattgcgtgattga 
cagattagactagatgaatatttattccttagagagcgagtcagcaagactactcttatttagtttaggcttgctgttcagcgagcgtctctttaaattt 
taatgagtttagagtgacttagataggttattcagtttgtcccggattttcttatgtaagttctgttagactctcacatattttcatgactttaatatct 
aataacatcaaatttttttatttttttaaaaagaatattaaacacatatcacaatcggatcatcaaacagaaccactagatcaacattccaccatccacg 
actccatgtcatattcggatcgaaaactacatttccaacatcaaatcttacaaataccaaaataaaaatccattttagcaattccccctcctcctacagc 
taaaaccaagcaaacaaatgaaacaaaggaaagcgaaaacccaaaagggctatatcagtaancggcaaactncccatcnaaaaantcccaacgactggtt 
ccaaatcctggcctcaaaccaaggaagaaacggcgcccatatcaaattaaatctcaaaacaaaacaaaaaaaaaaaaacaaaaaatctcaatataccctc  
caaacatttcgctgctctctcactcactcactcgccccaaagccttggcctttcctcccttcgctttcttcttcttcttcttgatcATCATCGTACTCTC 
CGACGACCCGAAACCCCACCGCGACCCGGCCCGGATGTCTCCAATATGACCCGGACCCGAGACGAAGACCGGCGACCCAGCAGCAGCAGCAGCGGCGGCG  
GAGGAGGCGCCGACTGAGAGTTATAGTCCCTCTACAAGGCGTGGTTCAAGGCAGAGGAGGACTCGTTCTCGGCTCCGTCATACCATGCGCGCTCTTCTAT 
TTCCTCCAGCTTTATATGAAACGTCACCGTTCCAACTCCAACCCGCCGACTCCGCCGCCTTCTCCGGACTCGGACTCGGACCACCACCCCGCCGGGCAGT 
                 M  K  R  H  R  S  N  S  N  P  P  T  P  P  P  S  P  D  S  D  S  D  H  H  P  A  G  Q  
TGGTGGAAGTTCCGGTTCTGCCCCGGTCGATGTCGAGGTCCCATCTCTCTCCGAGGAACCCGGGTCCGGTACATGTCTCGGGTCGGGCCAATTCGGTTTT 
L  V  E  V  P  V  L  P  R  S  M  S  R  S  H  L  S  P  R  N  P  G  P  V  H  V  S  G  R  A  N  S  V  L  
GAAAGGCGGTGAGCCGCCGTATTATGTCGGCTTGAGGAAGGTGGCGGAGGATCCGTACGACGAGTTGGGTAACCCGGATGGGGTTATTCAGCTGGGTTTG 
  K  G  G  E  P  P  Y  Y  V  G  L  R  K  V  A  E  D  P  Y  D  E  L  G  N  P  D  G  V  I  Q  L  G  L  
GATGAAAACAAGgtgggtcgagttgggtttgccttgttttgctcaaagtctccaccttttttgaatttttgaatttttttttttgtgggttctacagctt 
 D  E  N  K 
ttttgaatttttttttgtgggttttgatgggtgTTAGCTTTGGACTTGGTTCGAGATTGGCTACTGGAGAATGCAAAGGATGCAATACTGGGTGGTGAGG 
                                  L  A  L  D  L  V  R  D  W  L  L  E  N  A  K  D  A  I  L  G  G  E   
AGCTTGGGATTAGTGGGATTGCTTGTTACCAGCCTTCTGATGGTTTAATGGAGCTCAAACTGGtacttcttttatacttttgaatcattgcttgtgtgtt 
E  L  G  I  S  G  I  A  C  Y  Q  P  S  D  G  L  M  E  L  K  L 
Catgattgttcattcgaattgtacgaaaagtatggttctttttgcttaatatggaaatctgattagcttttccactttgtacttttggggcatatgcttc 
gaattttgtCTGTGGCAGGATTCATGTCTAAGGCCATCGGAAATTCAGTTACGTACAACCCCTCACAAATTGTATTGACAGCTGGTGCAACCCCTGCAAT 
         A  V  A  G  F  M  S  K  A  I  G  N  S  V  T  Y  N  P  S  Q  I  V  L  T  A  G  A  T  P  A  I 
TGAGATTCTAAGCTTCTGCCTAGCAGACAGTGGAAACGCATTTCTCGTTCCGGCACCATATTACCCTGggtaataaccgtattcacatttctgaagagttt
  E  I  L  S  F  C  L  A  D  S  G  N  A  F  L  V  P  A  P  Y  Y  P 
cgtaggtagctgacctaagaaaaactgacttctgaactttatatgtaGTTTGGACAGAGATGTGAAGTGGCGAACTGGAGTGGAGATAATACCTGTTCCAT 
                                               G  L  D  R  D  V  K  W  R  T  G  V  E  I  I  P  V  P   
GCCGCAGTGCTGACAAATTCAATTTAAGTATAACTGCACTTGATCGAGCATTCAACCAGGCAAAGAAACGTGGTGTAAAAGTTCGTGGGATTATAATTTCA 
C  R  S  A  D  K  F  N  L  S  I  T  A  L  D  R  A  F  N  Q  A  K  K  R  G  V  K  V  R  G  I  I  I  S 
AATCCTTCAAATCCTGGTGGCAGTTTACTTACTCGTGAATCACTTTACAACCTTCTGGACTTTGCCCGAGAGAAGAACATTCATATAATCTCAAATGAATT 
 N  P  S  N  P  G  G  S  L  L  T  R  E  S  L  Y  N  L  L  D  F  A  R  E  K  N  I  H  I  I  S  N  E  L
GTTTGCTGGATCCACGTATGGAAGTGAAGAGTTTGTTAGCATGGCAGAAATCGTTGATTTGGAAGATCTCGACCAGAACAGAGTGCATATAGTATATGGCA 
  F  A  G  S  T  Y  G  S  E  E  F  V  S  M  A  E  I  V  D  L  E  D  L  D  Q  N  R  V  H  I  V  Y  G 
TATCGAAAGATCTCTCACTTCCAGGTTTCAGGGTGGGTGCCATCTACTCCTTTAACAAGAATGTCTTGACTGCTGCTAAAAAGTTGACAAGGTTCTCTTCT 

  I  S  K  D  L  S  L  P  G  F  R  V  G  A  I  Y  S  F  N  K  N  V  L  T  A  A  K  K  L  T  R  F  S  S
ATCTCCGCCCCATCCCAACGGTTGCTTATCTCTATGCTTTCAGACACCAAATTTATGCATAAGTTCATCGAGATTAACAGAGAAAGGCTCCGTGGAATGTA 
 I  S  A  P  S  Q  R  L  L  I  S  M  L  S  D  T  K  F  M  H  K  F  I  E  I  N  R  E  R  L  R  G  M  Y
TCTTAGATTTGTGACAGGATTGAAGCAATTGGGCATTGAGTGCACAAAGAGCAATGGGGGTTTCTACTGTTGGGCAGACTTGAGTGGGTTAATTCGCTCTT 
  L  R  F  V  T  G  L  K  Q  L  G  I  E  C  T  K  S  N  G  G  F  Y  C  W  A  D  L  S  G  L  I  R  S  
ACAGTGAGAAAGGGGAGCTTGAGCTCTGGGATAGGTTGTTGAATGTAGGTAAGCTCAATGTTACTCCTGGATCTTCTTGTCATTGTATTGAACCGGGATGG 
Y  S  E  K  G  E  L  E  L  W  D  R  L  L  N  V  G  K  L  N  V  T  P  G  S  S  C  H  C  I  E  P  G  W  
TTCCGGTTTTGTTTTACGACGTTGACTGAAAAAGATATCCCTGTTGTTATAGAACGAATTCGGAATATTGCCGAAACATGTAAATCACACAGTTGAaatgt 
 F  R  F  C  F  T  T  L  T  E  K  D  I  P  V  V  I  E  R  I  R  N  I  A  E  T  C  K  S  H  S   
tcgttcattctacacaagtacacaggttcaggttgcatacaaatttttaaaggaaatagcttttactatagctttagaatcaccagcttttgcagttgagg 
taaaccttcactctgaattcaagaacttactagagctatgcaaaattccaattgaccaagtccaatctggagcttttaatattctagttctacttggacag 
ttggacatatgccggcaacaagatctggaggtctaggttgttcaaatcagatagcaattggcctttaaattatcccatagggccatagctcatggctgcat 
tcaaggatggaatgtaataagatattcattatatgatggaaataaaataaagaaagaaccctatgacccaaaaaaaacagcacctggttaattgtttctgc 
cgtagtcatgtgttctcatgaataagggatcctaaagatttaatatttatagaatttctacagagagtaaactaggatggtgaaatggatgtttttatttg 
cagaactaaaaatattaaaaaacaattgatttgggaaaatctcaaatgattacaaaagaattctattctcttttcctatatgcaaaaaccttctactcccc 
ccaactgatccaagtccccttccatctaaacactatctctgtgaactttactctggtaaaaatgaatcattgatctgaggctgaattaagaacatagttgt 
gcagtttcattttgactactatgatgattccgacccatttctgatggactcgagcggccgccagtgtgatggatatctgcagaattccagcacactggcgg 
ccgttactagtggatccgagctcggtaccaagcttggcgtactcatggtcatacctgtttcctgtgtgaaattgttatccgctcacaattccacacaacat 

Fig. 2 Complete DNA sequence of RhACS1 and its flanking 5� and 3� regions. Coding regions are shown in uppercase letters and noncoding regions in 
lowercase letters. The derived amino acid sequence is presented in the one-letter code below the DNA sequence. The putative start site is underlined in 
green and stop codon is underlined in red. The conserved amino acid residues characteristic of ACS genes are highlighted in grey and the lysine that binds 
pyridoxal 5’-phosphate and S-AdoMet residue is boxed. 
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TGACG motifs found in promoters that are involved in 
transcriptional activation of several genes by auxin or sali-
cylic acid, light response and abiotic and biotic stress acti-
vity (Terzaghi and Cashmore 1995; Despres et al. 2003). 

3. TGTCTC site or ARF (auxin response factor) binding 
site (Ulmasov et al. 1999; Harper et al. 2000; Hagen and 
Guilfoyle 2002; Goda et al. 2004; Nemhauser et al. 2004; 
Inukai et al. 2005; Nag et al. 2005). 

4. NGATT “ARR1-binding element” response regulator 
and functions as a transcriptional activator (Sakai et al. 
2000; Ross et al. 2004). 

5. VCGCGB “CGCG box” multiple CGCG elements 
found in promoters- involved in multiple signaling path-

ways in plants (Yang and Poovaiah 2002). 
6. GATAA or “I box” conserved sequence upstream of 

light-regulated genes (Terzaghi and Cashmore 1995; Jiao et 
al. 2005). 

7. CCGAAA “LTR-1” the low temperature response 
element (Dunn et al. 1998). 

8. WAACCA MYB recognition site involved in dehyd-
ration response (Grotewold et al. 1994; Abe et al. 2003; 
Simpson et al. 2003). 

9. AACGG “myb core” activator (Planchais et al. 2002). 
10. TTGAC “W-box” recognized by salicylic acid 

(SA)-induced WRKY DNA binding proteins and act as 
negative regulatory elements (Eulgem et al. 1999, 2000; 

ttttaccaggagtgattggggatctaggcggcagaatttggagcgcttccaatgtacagtcaatcgcgctgggccatttggagaggctctatttggaga
agggtgcagccttcatcttagtgaaggaacagctgtttcgatgtgttggttctgaagatggtccggttcacactatggggaagggactagcgctctctt 
aatatatcggctttggtcattcagactcaagcctttaaagtaggggtaaatctatatttttctaagacgtttcaagttgatatatgttccccaactgcg 
tgattgacagattagactagatgaaatatttattcgttagagagcgagtcagcaagactaaaaaaaaaaaagaataggctggctgttcaggcgagcgtc 
tctttaaattttaatgagtttagagtgacttagataggttattcagtttgtcccggattttcttatgtaagttgtgttagactctcacatattttcata 
ctttaatatctaataacatcaaatttttttatttttttaaaaagaatattaatcacataccacaatcggatcatcaaacagatccagtagatcaacatt 
ccaccatccacgactccatgtcatattcggatcgaaaaatacatttccaacatcaaatctttcaaataccaaaataaaaatccattttagcaattcccc 
ctcctgatacagctaaaaccaagcaaccaactgctagtgcaaaggagagcttttccccccgggctatatcagtaaactgcaaactccccatcaaaaaaa 
tcccatcggctggttccaaatccccgcctcaatccaaggaagaaacggcgcccatatcaaattaaatctcaaaacaaaacaaaaaaaaaaaaacaaaaa 
atctcaatataccctccaaacatttcgctgctctctcactcactcactcgccccaaagccttggcctttcctcccttcgctttcttcttcttcttcttc 
atcatcgtctctcggacgacccgaaaccccccggcccggccctttaggctccactgtaaactacggaggcgagaacgagcagcagcagccccggcggca 
cgccggcggcgccagagagaaaaagcgtatagggagtcgtaccgcaccaacccccgaaacccctccgcgacccggccccggatgtctccaatatgaccc 
cggacccgagacgaaggaccggcgacccagcagcagcagcagcggcggcggaggaggcgccgccatgagagttatagtccctctacaaggcgtggttca 
aggcagaggaggactcgttctcggctccgtcataccatgcgcgctcttctatttcctccagctttatcATGAAACGTCACCGTTCCAACTCCAACCCG 
                                                                     M  L  R  H  R  S  N  S  N  P  
CCGACTCCGCCGCCTTCTCCGGACTCGGACTCGGACCACCACCCCGCCGGGCAGTTGGTGGAAGTTCCGGTTCTGCCCCGGTCGATGTCGAGGTCCCAT 
 P  T  P  P  P  S  P  D  S  D  S  D  H  H  P  A  G  Q  L  V  E  V  P  V  L  P  R  S  M  S  R  S  H 
CTCTCTCCGAGGAACCCGGGTCCGGTACATGTCTCGGGTCGGGCCAATTCGGTTTTGAAAGGCGGTGAGCCGCCGTATTATGTCGGCTTGAGGAAGGTG 
 L  S  P  R  N  P  G  P  V  H  V  S  G  R  A  N  S  V  L  K  G  G  E  P  P  Y  Y  V  G  L  R  K  V 
GCGGAGGATCCGTACGACGAGTTGGGTAACCCGGATGGGGTTATTCAGCTGGGTTTGGATGAAAACAAGgtgggtcgagttgggtttgccttgttttgc 
 A  E  D  P  Y  D  E  L  G  N  P  D  G  V  I  Q  L  G  L  D  E  N  K 
tcaaagtctccaccttttttgaatttttgaatttttttttttgtgggttctacattttttttgaattggggaaattgtgggttttgatgggtgtagtta 
ggttaatttcttttttcatttttttttttgggttcttcagctttttggattttttttttgtgggtttgatgggagtagttagcTTGGACCTGGTTCGA 
                                                                                    L  D  L  V  R   
GATTGGCTACTGGAGAATGCAAAGGATGCAATACTGGGTGGTGAGGAGCTTGGGATTAGTGGGATTGCTTGTTACCAGCCTTCTGATGGTTTAATGGAG 
 D  W  L  L  E  N  A  K  D  A  I  L  G  G  E  E  L  G  I  S  G  I  A  C  Y  Q  P  S  D  G  L  M  E 
CTCAAACTGtatacttttgaatcattgcttgtgtgttcatgattgttcattcgaattgtacgaaaagtatggttctttttgcttaatatggaaatctga 
 L  K  L 
ttagcttttccactttgtactttttggggcatatgcttcgaattttgtctgtgtgattctgttaagacttgtttttggtggattgtgtacctaactttc 
aaaatcaggacctactttagatggaatggaattaaccaactttggctataacggcaaagtatcttctgaatacttgattttctatgactgaaagcgttg 
agcttttggtgcataatggacctaactgtcaagatttgtcaaatttgagatggaatccattaatttgggctctataaaaatggaaaattttctgaagat 
tgatattaagtggctgtttcgattggtttaatgtgagtgagtggaatataattactcttgatgttcattgcggattatttttgtcatttactagagata 
aggcagttgttttcttacaactagcagtgacttgcacgagtgcgaccttttcctttatgaaatttcctttttggttgtcagggaatattgtttttggtc 
tgatgttaattttttaggcattttgcaggttgagaagaattactttttgcttgtggtaatttttcattggcatttcaattgagttcaatatagcataac 
gaaatcagtttttttttttgttaaatacattcctttggttctgcattggttatttgtgcgctctttaagtttcctagatctgcaGCTGTGGCAGGATTC 
                                                                                     A  V  A  G  F 
ATGTCTAAGGCCATCGGAAATTCAGTTACGTACAACCCCTCACAAATTGTATTGACAGCTGGTGCAACCCCTGCAATTGAGATTCTAAGCTTCTGCCTA 
 M  S  K  A  I  G  N  S  V  T  Y  N  P  S  Q  I  V  L  T  A  G  A  T  P  A  I  E  I  L  S  F  C  L 
GCAGACATCCCCCCTCATTTTCTCGTTCCGGCGCCATATTACCCTgtaataactttaaatacatttctgaagagtttccgtaggtagctgacctaagaa 
 A  D  I  P  P  H  F  L  V  P  A  P  Y  Y  P 
aaactgacttctgaactttatatgtaGGTTTGGACAGAGATGTGAAGTGGCGAACTGGAGTGGAGATAATACCTGTTCCATGCCGCAGTGCTGACAAA 
                           G  L  D  R  D  V  K  W  R  T  G  V  E  I  I  P  V  P  C  R  S  A  D  K  
TTCAATTTAAGTATAACTGCACTTGATCGAGCATTCAACCAGGCAAAGAAACGTGGTGTAAAGGGTAAAGGGATTATAATTTCAAATCCTTCAAATCCT 
 F  N  L  S  I  T  A  L  D  R  A  F  N  Q  A  K  K  R  G  V  K  G  K  G  I  I  I  S  N  P  S  N  P  
GGTGGCAGTTTATTCACTCGTGAGTCGATTTACAACCTTCTGTACTTTGCCCGAGAGAAGAACATTCATATAATCTCACTTTGCCCGAAAGAAGAACAT 
 G  G  S  L  F  T  R  E  S  I  Y  N  L  L  Y  F  A  R  E  K  N  I  H  I  I  S  L  C  P  K  E  E  H 
TCATATTCTCTCTCAAATGAATTGTTTGCTGGATCCACGTATGGAAGTGAAGAGTTTGTTAGCATGGCAGAAATCGTTGATTTGGAAGATCTCGACCAG 
 S  Y  S  L  S  N  E  L  F  A  G  S  T  Y  G  S  E  E  F  V  S  M  A  E  I  V  D  L  E  D  L  D  Q 
AACAGAGTGCATATAGTATATGGCATATCGAAAGATCTCTCACTTCCAGGTTTCAGGGTGGGTGCCATCTACTCCTTTAACAAGAATGTCTTGACTGCT 
 N  R  V  H  I  V  Y  G  I  S  K  D  L  S  L  P  G  F  R  V  G  A  I  Y  S  F  N  K  N  V  L  T  A 
GCTAAAAAGTTGACAAGGTTCTCTTCTATCTCCGCCCCATCCCAACGGTTGCTTATCTCTATGCTTTCAGACACCAAATTTATGCATAAGTTCATCGAG 
 A  K  K  L  T  R  F  S  S  I  S  A  P  S  Q  R  L  L  I  S  M  L  S  D  T  K  F  M  H  K  F  I  E 
ATTAACAGAGAAAGGCTCCGTGGAATGTATCTTAGATTTGTGACAGGATTGAAGCAATTGGGCATTGAGTGCACAAAGAGCAATGGGGGTTTCTACTGT 
 I  N  R  E  R  L  R  G  M  Y  L  R  F  V  T  G  L  K  Q  L  G  I  E  C  T  K  S  N  G  G  F  Y  C 
TGGGCAGACTTGAGTGGGTTAATTCGCTCTTACAGTGAGAAAGGGGAGCTTGAGCTCTGGGATAGGTTGTTGAATGTAGGTAAGCTCAATGTTACTCCT 
 W  A  D  L  S  G  L  I  R  S  Y  S  E  K  G  E  L  E  L  W  D  R  L  L  N  V  G  K  L  N  V  T  P 
GGATCTTCTTGTCATTGTATTGAACCGGGATGGTTCCGGTTTTGTTTTACGACGTTGACTGAAAAAGATATCCCTGTTGTTATAGAACGAATTCGGAAT 
 G  S  S  C  H  C  I  E  P  G  W  F  R  F  C  F  T  T  L  T  E  K  D  I  P  V  V  I  E  R  I  R  N 
ATTGCCGAAACATGTAAATCACACAGTTGAtaagtacttagtttcaggttgcatactaatttttaaaggaaaag 
 I  A  E  T  C  K  S  H  S 

Fig. 3 Complete DNA sequence of RhACS12 and its flanking 5� and 3� regions. Coding regions are shown in uppercase letters and noncoding regions 
in lowercase letters. The derived amino acid sequence is presented in the one-letter code below the DNA sequence. The putative start site is underlined in 
green and stop codon is underlined in red. The conserved amino acid residues characteristic of ACS genes are highlighted in grey and the lysine that binds 
pyridoxal 5’-phosphate and S-AdoMet residue is boxed. 
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Maleck et al. 2000; Yu et al. 2001). 
11. GATA and SORL1 (GGGCC) that are involved in 

light regulated genes (Lam and Chua 1989; Gilmartin et al. 
1990; Teakle et al. 2002; Hudson and Quail 2003; Reyes et 
al 2004). 

12. E box element (CANNTG) that appears to be in-
volved in a variety of environmentally influenced genes 
(Szopa et al 2003). 

13. Finally, the Anaero1consensus (AAACAAA) in-
volved in anaerobic response and also found in about 13 an-
aerobic genes involved in fermentation pathway (Zarem-
binski and Theologis 1993; Mohanty et al. 2005). In ad-
dition several TATA and CAAT boxes that are present in 
many promoters and are associated with the binding of 
general transcription factors, are also present in these pro-
moters. These results are presented in Figs. 5-7. Further, we 
note that even though the promoters of these genes contain 
these common cis-acting elements, their relative location 
within the promoter sequences in each gene vary greatly 
suggesting, therefore, that besides binding of respective 

transcription factors to these elements, protein-protein inter-
actions between transcription factors may be another impor-
tant factor in determining differential regulation of the ACS 
multi-gene family members. 

 
These findings of various and multiple cis-regulatory 

elements in the three promoters suggest a complex molecu-
lar response(s) may be involved in various environmental 
and biotic stresses. They appear to require mediation 
through the interaction of multiple complex regulatory sys-
tems of gene expression and signal transduction requiring 
cis-acting elements and trans-acting factors with potential 
for cross-talk (between different systems) in which ethylene 
may play a role. Further validation of these identified cis-
regulatory elements would be necessary. These correlative 
results can, however, serve as a guide for a hypothesis-dri-
ven experimental research design to determine the mecha-
nisms of transcriptional gene regulation in which ethylene 
may be involved. 

ACS genes from a variety of plant sources have been 

              
 agtttttttttttttagttaattgaagtaatgtctcaaccaatataaagagaggagacaaagctcatcatgcaatattcccgtaaatctatatcacaca
 cctagaccaagaggttccgggtttttttagagctccacagcgaaagaggtattcccaactagttacctaaaacaatttatattacgtcaagccggatat
 catatcccaattggattatcagactgaactagtaaatctacgtttgattaatacatggtaagccaaatcccaaatccattaatagtcgcctcctccaac
 taaaaccaagcaaacaaatgaatatgcaaatgaaagccaaccccaaaaaggctatatcagtataaactctccccatcaatccccccaaaaaaatcccat
 aggactggttccaaatcctcgcctcaaaaccaaggaagaaacggcacccatatcaaattaaatctcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaattc
 caataccctccaaacatttcgctgctgctcacactcactcgccccaaagcctcggcctttcctcccttcactttcttcttcttcttcttcttcctcttc
 atcgtactctccgacgacccgaaaccccaccgcgacccggcccggatgtctccaatatgacccggacccgagacgaagaccggcgacccaccagcagca
 gcagcggcggaggcgccgccatgagagttatagtccctctacaaggcgtggttcaaggcagaggaggactcgttctcggctccgtcataccatgcgcgc
 tcttctatttcctccagctttatcATGAAACGTCACCGTTCCAACTCCAACCCGCCGACTCCGCCGCCTTCTCCGGACTCGGACTCGGACCACCACCCG
                          M  K  R  H  R  S  N  S  N  P  P  T  P  P  P  T  P  D  S  D  S  D  H  H  P
 GCCGGGCAGTTGGTGGAAGTTCCGGTTCTGCCCCGGTCGCTGTCGAGGTCCCATCTCTCGCCTAGGAACCCGGGTCCGGTTCATGTCTCGGGTCGGGCC
  A  G  Q  L  V  E  V  P  V  L  P  R  S  L  S  R  S  H  L  S  P  R  N  P  G  P  V  H  V  S  G  R  A
 AATTCGGTTCTGAAAGGCGGTGAGCCGCCGTATTGTCGGCTTGAGGAAGGTGGCGGGGGATCCGTTCGTCGAGTTGGGTATCCCGGATGCCCTTCTTCC
  N  S  V  L  K  G  G  E  P  P  Y  C  R  V  E  E  G  G  G  G  S  V  R  R  V  G  Y  P  G  C  P  S  S
 GCTGGGTTTGGTTGGTTCCTCCTCGGTGGGTCGAAATGGGTTTGGcttgttttgctcagagtgtccagcttttttttctttttgcangggttttgatgg
  A  G  F  G  W  F  L  L  G  G  S  K  W  V  W 
 gggaattttgatgggggtAAGTTAGCTTTGGACTTGGTCCGAGATTGGCTAATGGAGAATGCAAAGGATGCAATACTGGGTGGTGAGGAGCTTGGGATT
                    K  L  A  L  D  L  V  R  D  W  L  M  E  N  A  K  D  A  I  L  G  G  E  E  L  G  I  
 AGTGGGATTGCTTGTTACCAGCCTTCTGATGGTTTAATGGAGCTGAAACTGgtacttcttttatactcttgaatcgttgcttgtgtgttcatgagtatt
  S  G  I  A  C  Y  Q  P  S  D  G  L  M  E  L  K  L 
 gattcgaattgtacgaaaagtatggttctttttgcttaatatggaaatctgattagcttttgaactttgtacttttgggccatatgcttcgaattttgt
 ctctgtgattctgttaagacttgattttggtggaatgtgtaccgaactttcagaatcaggacctactttagatggaatggaattaaccaactttggcta
 taatggcaaagtatcttctgagtacttgattttttatgactgaaagcgttgagcttttggtgcataatggacctaactgacaagatttgtcaaatttta
 gatggaattcattaatttgggctctataaaaatggaaaagtttctgaagattgatattaagtggctgtttcgattggtttaatgtgtctaagtgaatgg
 aatataattactcttgacgttcgttgcggattatttttgtcatttactggagataatggtactgtgatcgtacaactagcagtgattgctcgagtgtga
 gtccattttcctctcgttcacagtgagagataatacgtaataccagtaccgtatcctcaggaaaatattggctctactccagatgttaatctttaggca
 atttgcaggttgagttttgtgtttacatgcattacctttttacttcttataatttttcatagacatttcaattgagtacaatatagcataacgaaaaca
 gttttcttttttgttaaaaacattcctttggtactgcattggttatttgtgctctctctaagtttcctagatctgcaGCTGTGGCAGGATTCATGTCT
                                                                          A  V  A  G  F  M  S   
 AAGGCCATTGGGAATTCAGTTACCTACAACCCCTCACAAATTGTATTGACAGCTGGTGCAACCCCTGCAATTGAGATTCTAAGCTTCTGCCTAGCAGAC
  K  A  I  G  N  S  V  T  Y  N  P  S  Q  I  V  L  T  A  G  A  T  P  A  I  E  I  L  S  F  C  L  A  D
 AGTGGAAACGCATTTCTTGTTCCGGCACCATATTACCCTGggtaataatcgttactgattcacatttctgaagagtttccgtaggtagctgacctaaga
  S  G  N  A  F  L  V  P  A  P  Y  Y  P 
 aaaactgacttctgaactttatatgtaGTTTGGACAGAGATGTGAAGTGGCGAACTGGAGTGGAGATAATACCTGTTCCATGCTGCAGTGCTGACAAA
                            G  L  D  R  D  V  K  W  R  T  G  V  E  I  I  P  V  P  C  C  S  A  D  K 
 TTCAATTTAAGTATAACTGCACTTGATCGAGCATTCAACCAGGCAAAGAAACGCGGTGTAAAAGTTCGTGGGATTATAATTTCAAATCCTTCAAATCCT
  F  N  L  S  I  T  A  L  D  R  A  F  N  Q  A  K  K  R  G  V  K  V  R  G  I  I  I  S  N  P  S  N  P
 GGTGGCGGTTTACTTACTCGTGAACGACTTTACAACCTTCTGGACTTTGCCCGAGAGAAGAACATTCATATAATCTCAAATGAATTGTTTGCTGGATCC
  G  G  G  L  L  T  R  E  R  L  Y  N  L  L  D  F  A  R  E  K  N  I  H  I  I  S  N  E  L  F  A  G  S  
 ACGTATGGAAGTGAAGAGTTTGTTAGTTTGGCAGAAATCGTTGATTTGGAAGATCTCGACCAGAACAGAGTGCATATAGTATATGGCCTATCTAAAGAT
  T  Y  G  S  E  E  F  V  S  L  A  E  I  V  D  L  E  D  L  D  Q  N  R  V  H  I  V  Y  G  L  S  K  D
 CTCTCACTTCCAGGTTTCAGGGTGGGTGCCATCTACTCCTTTAACAAGAATGTCTTGTCTGCTGCTAAAAAGTTGACAAGGTTCTCTTCTATCTCCGCC
  L  S  L  P  G  F  R  V  G  A  I  Y  S  F  N  K  N  V  L  S  A  A  K  K  L  T  R  F  S  S  I  S  A  
 CCATCCCAACGGTTGCTTATCTCTATGCTTTCAGACACCAAATTTATGCATAAGTTCATTGAGATGAACAGAGAAAGGCTCCGTGGAATGTATCTTAGA
  P  S  Q  R  L  L  I  S  M  L  S  D  T  K  F  M  H  K  F  I  E  M  D  R  E  R  L  R  G  M  Y  L R  
 TTTGTGACAGGATTGAAGCAATTGGGCATTGAGTGCACAAAGAGCAGTGGGGGTTTCTACTGTTGGGCAGACTTGAGTGGGTTAATTCGCTCTTACAGT
  F  V  T  G  L  K  Q  L  G  I  E  C  T  K  S  S  G  G  F  Y  C  W  A  D  L  S  G  L  I  R  S  Y  S  
 GAGAAGGGGGAGCTTGAGCTCTGGGATAGGTTGTTGAATGTAGGTAAGCTCAATGTAACTCCTGGATCTTCTTGTCATTGTATTGAACCGGGATGGTTC
  E  K  G  E  L  E  L  W  D  R  L  L  N  V  G  K  L  N  V  T  P  G  S  S  C  H  C  I  E  P  G  W  F
 CGGTTTTGTTTCACGACGTTGACTGAAAAAGATATTCCCGTTGTTATGGAACGAATTCGGAATATTGCCGAAACATGTAAATCACACAGTTGAaatgtc
  R  F  C  F  T  T  L  T  E  K  D  I  P  V  V  M  E  R  I  R  N  I  A  E  T  C  K  S  H  S    
 cattcattctacacaagtactctgttttangttgcatacaaattttaaaggaaaa 

Fig. 4 Complete DNA sequence of RhACS17 and its flanking 5� and 3� regions. Coding regions are in uppercase letters and noncoding regions are in 
lowercase letters. The derived amino acid sequence is presented in the one-letter code below the DNA sequence. The putative start site is underlined in 
green and stop codon is underlined in red. The conserved amino acid residues characteristic of ACS genes are highlighted in grey and the conserved lysine 
that binds pyridoxal 5’-phosphate and S-AdoMet residue is boxed. 
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isolated (reviewed in Chang and Bleecker 2004) and have 
been shown to be encoded by a multi-gene family in which 
each gene is differentially expressed in response to internal 
and external stimuli e.g. in the case of Arabidopsis there are 
twelve ACS genes (Tsuchisaka and Theologis 2004; http:// 
www.arabidopsis.org/). In the present study on Rosa ACS 
genes, we have described three full-length genes. Several 
groups have published partial sequences of a number of 
ACS genes including a segment of cDNA (Müller et al. 
2000; Ma et al. 2005; Mibus and Serek 2005). Since all 
these isolates differ from each other, an overall picture 

emerging from these findings is that, as in other plants, we 
are dealing with a related but divergent multi-gene family. 
This observation is also consistent with our previous results 
from Southern blot analysis of the genomic DNA probed 
with RKacc7 full-length cDNA (Wang et al. 2004) and from 
the limited data available on the expression pattern of some 
of the genes (Wang et al. 2004; Ma et al. 2005). We note 
that a more complete comparative analysis of the Rosa ACS 
gene is presented in the next paper (Ranu et al. 2008 in 
press). In future, as a full complement of full-length ACS 
genes from the Rosa multi-gene family is identified, a better 

Fig. 5 The upstream promoter region of RhACS1, showing common ethylene-related response elements. The following promoter elements have 
been identified to relate to ethylene response and signaling: ARF (Auxin Response Factor); ASF-1 binding site, Anaerobic response element, CGCG Box, 
E Box, GCC-box, GATA box, I-Box , MYB site, LTR-1, W Box 1; W Box 3. Refer to text for description of each element. The elements were identified 
using PLACE and constructed using DS gene software. See the results section for details. The start codon would be immediately to the right of the thick 
solid line with nucleotide position shown in red. 

 

Fig. 6 The upstream promoter region of RhACS12 showing common ethylene-related response elements. Other details are presented in Fig. 5 and 
results section. 

 

Fig. 7 The upstream promoter region of RhACS17 showing common ethylene-related response elements. Other details are presented in Fig. 5 and 
results section. 
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picture of their differential regulation will emerge. This 
knowledge may be used to develop new rose cultivars with 
desirable characteristics through genetic manipulations or 
modifications. 
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