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ABSTRACT 
Information about the side-effects of pesticides on biological control agents is an essential requirement of integrated pest management 
(IPM). Different methods to test the effects of pesticides on natural enemies have been used and new methods are being developed. In the 
past, evaluations were mostly based on individual level (lethal or sublethal) endpoints. Differences in the used methods and the measured 
endpoints make it difficult to compare the results. There is increasing emphasis on using standard methods to combine the lethal and 
sublethal effects to a total effect. Especially, population-level effects or demographic toxicology has been concluded as a better measure 
because of its ecological relevance and is the current centre of attention. Very recently, molecular and biochemical methods, primarily, 
have been developed for detecting potential damage to populations at early stages. But these types of responses (i.e. biomarkers) to toxic 
stress are only demographically relevant if the response can be linked to effects at higher organism levels. We describe the methods used 
to study the effects of pesticides on beneficial arthropods and the current status of the evaluation of side-effects. We also provide new 
suggestions. In addition to methodological discussion, in the last part we presented a table containing summary database on the effect of 
key classes of commonly used pesticides on various natural enemies. This data may be helpful for researchers or IPM users. 
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INTRODUCTION 
 
The significance of biological control (BC) agents for the 
management of agricultural pests has been increasingly 
realized during the last three decades; however BC is not a 
panacea for all pest problems. The integration of biological 
and chemical control agents is more effective for the man-
agement of insect pests. In fact, pesticides and BC agents 
are two important com-ponents of integrated pest manage-
ment (IPM). But the use of pesticides must be compatible 
with the other agents of pest management. Most contact in-
secticides from different chemical classes are broad spec-

trum and so affect both prey and predator. A few physiolo-
gically selective pesticides from each class are available 
that may be used in IPM. A physiologically selective pesti-
cide is one that is toxic to some pests, but has little or no 
effect on other similar species. Ecological selectivity, on the 
other hand, can be accomplished by manipulation of the 
pesticide formulation, timing of application, method of ap-
plication, spatial distribution of treatment, and other means 
(Croft 1990) 

Pesticides have direct and indirect effects on beneficial 
arthropods. Studies on the direct effect of pesticides are done 
by measurement of toxicity to beneficial arthropods and 

® 



Pest Technology 2 (2), 87-97 ©2008 Global Science Books 

 

determination of the median lethal dose (LD50) or lethal 
concentration (LC50). In the past, comparison of LD50 or 
LC50 values of insecticides to both BC agents and pests was 
vastly used to estimate selectivity. Based on LD50 benefi-
cial arthropods are even more susceptible to insecticides 
than insect pests. Because these evaluations focus on a sin-
gle life stage and generally for a short duration of time 
(often 1-4 days), the results of these bioassays do not ac-
curately assess the total effects of a pesticide on an exposed 
population (Stark and Banken 2000). Therefore, in order to 
determine the total effect of a pesticide, one has to take into 
account the indirect or sublethal effects of pesticides, too. 
Sublethal doses of pesticides can affect the physiology and 
behavior of the BC agents. 

Different methods to test sublethal effects on natural 
enemies are being developed. Effects such as altered beha-
vior, reduced reproduction, and reduced longevity of non-
target organisms are the conspicuous consequences of sub-
lethal doses. These effects may be seen in different deve-
lopmental stages of non-target arthropods. Like mortality, 
sublethal effects can severely reduce the performance of BC 
agents (Elzen et al. 1989; Roger et al. 1995). By far, de-
mography or life table response experiments (LTREs) have 
been suggested as a desirable means to evaluate the total ef-
fect of pesticides on natural enemies. LTREs take into ac-
count all effects that a toxicant might have at the levels of 
organization higher than the individual (Stark et al. 1997, 
1998, 2004). The advantage of this ap-proach is that a total 
measure of the effect is determined that incorporates lethal 
and sublethal effects into one end-point, the intrinsic rate of 
natural increase (Stark et al. 1998; Stark and Banks 2000, 
2004). Most traditional pesti-cides are broad-spectrum 
organic compounds that wipe out populations of beneficial 
as well as different pests. That is because almost all four 
groups of traditional insecticides targeted the nervous 
system, which is biochemically similar in beneficial and 
pests (van Emden 1996; Rechcigl and Rechcigl 2000). 

The literature on natural enemy/pesticide research has 
grown rapidly since the mid 1970s. Excellent reviews and 
books have been published during the last 30 years (Croft 
and Brown 1975; Smith and Stratton 1986; Croft 1990; 
Stark and Banks 2003; Desneux et al. 2007). Generally 
most traditional insecticide classes such as organophos-
phates, carbamates and synthetic pyrethroids are highly 
toxic to beneficial arthropods. Therefore it is hard to find a 
true selective compound among traditional toxic insecti-
cides. In many crops the most widely used insecticide class 
is now the organophosphates. Some organophosphates are 
somewhat selective. The mite predators (Neoseiulus falla-
cies, German) of orchard spider mites have acquired their 
own resistance to organophosphates. On the other hand, 
partial selectivity can be attained in application when take 
advantage of formulations. Systemic organophosphate in-
secticides such as demeton-s-methyl, dimethoate and ace-
phate are selective for natural enemies of aphids and mites. 
The carbamate insecticide pirimicarb is toxic to aphids and 
Diptera, yet not to other insects at equivalent doses (van 
Emden 1996). The organochlorine endosulfan is selective 
for Hymeonoptera which include valuable BC agents. Some 
newer classes of insecticides such as pyrethroids are ex-
tremely toxic to insects. However, even in this class of in-
secticide a single compound such as fluvalinate is selective 
for honeybees (Hill 1985; Walter et al. 1988). 

The newly marketed insecticides with a novel mode of 
action are less toxic to beneficial arthropods. Azadirachtin, 
indoxacarb, spinosad and pymetrozine are extremely toxic 
to target pests, while significantly less toxic to natural ene-
mies (Boyd and Boethel 1998; Babul Hossain and Poehling 
2006). The selectivity and low toxicity make them conveni-
ent for utility in Integrated Pest Management (IPM). The 
type of formulation affects their toxicity to non-target orga-
nism including natural enemies. Some formulations are less 
toxic to beneficial insects and mites. For example granule 
and soil-applied formulations are less toxic than spray 
simply because they do not leave a residue on the leaf sur-

face. Systemic pesticides injected or applied to soil pose 
minimal hazard to beneficial arthropods. Wettable powders 
and microencapsulated formulations are the most toxic. 

The aim of this paper is to review the development of 
methods for measurement and interpretation of the side-
effects of pesticides on BC agents. Aspect of this topic such 
as interpretation of standardized side-effect testing, lethal, 
sublethal, and multiple endpoints are discussed. The second 
part of the review is concerned with the impact of indivi-
dual pesticide classes on selected natural enemies. In this 
part we summarize the results of some toxicity testing using 
different methods in a table. 
 
METHODS OF EVALUATING SIDE-EFFECTS OF 
PESTICIDES 
 
Scientific methods are needed to assess the risk of pesti-
cides on natural enemies and apply as pre-registration tools 
as well as determine the compatibility with IPM after regis-
tration (Stark et al. 1995; Jepson and Croft 1998). 

Various types of pesticide effects on arthropod biocon-
trol agents have been studied and reviewed several times 
(Croft 1990; Stark and Banks 2003; Desneux et al. 2007). 

Different methods and endpoints used to study the ef-
fects of pesticides and the current statuses as well as the 
new suggestions are discussed below. 
 
Pre-registration research 
 
Data on physiology and toxicology of arthropod natural 
enemies has been mainly extrapolated from phytophagous 
species and there is not enough knowledge in this respect. 
On the other hand effective methods to study the side-ef-
fects of pesticides at earlier stages of their development and 
early detection of potential hazards have not been deve-
loped. 

These problems are considered as the reasons for lim-
ited research in the pesticide development process (Jepson 
and Croft 1998). However, specific guidelines have been 
developed in order to test side-effects for registration of 
plant protection products. The Organization for Economic 
Co-Operation Development (OECD) with 30 member coun-
tries worldwide has developed guidelines for registration 
requirements of various products (OECD, 2002, 2003). In 
the European Union (EU) it is currently conducted ac-
cording to the Council Directive of 91/414/EEC. The Fede-
ral Insecticide, Fungicide, and Rodenticide Act (FIFRA) is 
followed in the United States (Candolfi et al. 2000; Des-
neux et al. 2007). 
 
Post-registration research 
 
Individual-level effects 
 
Toxic substances can cause changes at all levels of biologi-
cal organization from molecular to community (Hyne and 
Maher 2003). Traditional methods based on individual level 
endpoints are dominant in the literature. Acute and chronic 
toxicity tests are the two focal ways to study the impacts of 
pesticides on individuals. 
 
Acute toxicity tests 
LD50 or LC50, have been used mostly to measure the toxic 
effects of pesticides on beneficial arthropods (Desneux 
2007). 

LD50 is an estimate of the dose that causes 50% morta-
lity of a group of individuals under test. A sigmoid curve is 
fitted to the number of survivors as a function of the dose of 
toxicant. This curve is usually the log-logistic or log-probit 
curve (Finney 1971). In some cases the exact dose origin-
ally given to the insect (e.g. larval stage of aquatic insects) 
cannot be determined but the concentration of the insecti-
cide in the peripheral media can, so that the LC50 is used 
(Matsumura 1985). LD50 have also been used to estimate 
the selectivity ratios (LD50 of the beneficial/pest arthro-
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pods) (Croft 1990). 
Acute toxicity tests use single endpoint (mortality) and 

are performed during short duration (1 to 4 days in many 
cases) (Walthall and Stark 1997). This kind of studies has 
been used on both parasitoids and predators (Rosenheim 
and Hoy 1988; Mizell and Sconyers 1992; Hamilton and 
Lashomb 1997; Desneux et al. 2003). 
 
Chronic toxicity tests 
Besides lethal effects pesticides may cause some important 
sublethal effects on individuals that survive the toxicant 
exposure. Short-term acute toxicity tests usually ignore this 
kind of effects (Laskowski 2001). Some examples of end-
points of interest in chronic studies are fecundity, body size, 
development rate, behavior, sex ratio, and longevity (Des-
neux 2007). 

For risk assessment purposes there is a need to deter-
mine low or no toxic effect levels (van Leeuwen and Her-
mens 1995; Koojman et al. 1996; de Bruijn and Hof 1997; 
van der Hoeven 1997). Several measures have been pro-
posed to use as estimates for these concentrations. 

NOEC (no observed effect concentration), NOEL (no 
observed effect level), ECx (the concentration causing an 
effect of x per cent), and NEC (no effect concentration) can 
be applied to various endpoints of sublethal effects. The 
negative and positive aspects of these measures have been 
previously discussed (Moore and Caux 1997; van der Hoe-
ven 1997; Crane and Newman 2000; van der Hoeven 2004). 
 
Total effects 
 
One of the limitations of traditional methods is that sub-
lethal and lethal effects are not combined and thus the total 
effect of a pesticide is not determined (Stark and Wenner-
gren 1995). Several efforts have been made and methods 
have been introduced to solve this problem. These efforts 
and methods are described below. 
 
IOBC methods 
These methods were developed by the ‘pesticides and bene-
ficial organisms’ working group of the International Organi-
zation for Biological Control (IOBC). The working group 
was founded in 1974 and its major aim was to encourage 
the development of standard methods for testing the side-
effects of pesticides on natural enemies to support the IPM. 
A further aim was therefore to test the side-effects of com-
monly used pesticides on the most important natural ene-
mies (Hassan 1998a). 

The group established cooperation with other internatio-
nal organizations such as the Beneficial Arthropod Regula-
tory Testing (BART), the European and Mediterranean 
Plant Protection Organization (EPPO), the European Union 
(EU), and the Food and Agriculture Organization (FAO) 
(Hassan 1998b). 

The IOBC method has been designed to evaluate the 
acute residual toxicity as well as sublethal effects of pesti-
cides on reproductive performance (Vogt et al. 2000). The 
mean mortality (M) and average fecundity (R) are measured 
and then the total effects of the pesticides (E%) are calcu-
lated by the formula proposed by Overmeer and Van Zon 
(1982):  

 
E%= 100 -(100-M) × R× 100. 

 
There are several works in which this formula have 

been used to take into account both lethal and sublethal ef-
fects on the reproductive performance (Oomen et al. 1991; 
Blümel et al. 2000; Van de Veire et al. 2002; Kavousi and 
Talebi 2003; Rezaei et al. 2007; Sáenz-de-Cabezón Irigaray 
et al. 2007). 

Based on the total effects the pesticides are classified 
using IOBC evaluation categories (Sterk et al. 1999). 

Recognizing that no single test method would provide 
sufficient information to assess the side-effects of pesticides 
on a beneficial organism, a combination of tests is recom-

mended. The IOBC suggests a sequential scheme in which 
pesticides are first tested in the laboratory. If no meaningful 
effect is observed, they are considered compatible for use in 
IPM programs. In the case of a meaningful adverse effect in 
the laboratory, tests are further performed under semi-field 
conditions. If significant effects are still observed in this tier 
a more complex field study is considered to assess the im-
pact of the pesticide under realistic field conditions. Com-
pounds with no significant adverse effects in the semi-field 
and field experiments are recommended for use in IPM 
(Dohmen 1998). 

Laboratory experiments are conducted under ‘worst 
case’ conditions which aims to ensure a maximum exposure 
of the organisms to the test substance. In the semi-field tests 
no extreme exposure, as in the laboratory tests, is applied; 
however, a realistic worst case with respect to exposure is 
simulated. In the last stage, extensive field tests may be em-
ployed. 

Oomen et al. (1991) reported the side-effects of 100 
pesticides on the predatory mite Phytoseiulus persimilis 
using a combination of laboratory, semi-field and field tests. 
Van de Veire et al. (2002) described laboratory to field se-
quential testing scheme for testing side effects of pesticides 
on anthocorid bugs using Orius laevigatus as the test spe-
cies. 

The ‘pesticides and beneficial organisms’ working 
group of the IOBC develops standard methods based on la-
boratory to field tests to evaluate the side-effects of pesti-
cides on important beneficial organisms. Joint pesticide tes-
ting programs by members of the working group have been 
organized every two years since 1977. Since 1980, the re-
sults of seven joint pesticide testing programs carried out by 
the IOBC/WPRS-Working Group ‘Pesticides and Beneficial 
Organisms’ have been published. Within these seven prog-
rams more than 120 pesticides have been tested on various 
beneficial organisms including arthropod natural enemies 
using laboratory, semi-field and field methods (Sterk et al. 
1999). Stark et al. (2007) have criticized IOBC approach 
and argued that the ecological relevance of IOBC methods 
is questionable. 
 
Life table studies 
To better estimate the side-effects of pesticides there is an 
increasing attention and awareness to use more realistic 
endpoints. Demography or LTREs have been suggested as 
the best way to combine lethal and sublethal effects and use 
to estimate the total effects of pesticides (Daniels and Allan 
1981; Bechmann 1994; Stark and Wennergren 1995; Stark 
et al. 1998; Forbs and Calow 1999; Stark and Banks 2003; 
Robertson et al. 2007; Stark et al. 2007). Experiments in 
which life tables, or more generally a set of vital rates, are 
the dependent variable are called LTREs. Demographic to-
xicological analysis incorporates survivorship and repro-
duction of test organisms into one endpoint (i.e. population 
growth rate) (Caswell 2000). 

Population growth rate is expressed as intrinsic rate of 
increase (r) or finite rate of increase (� = er). To calculate 
the population growth rate, life tables are constructed using 
a cohort of the test organism exposed to the toxicant. The 
probability that a new individual is alive at age x (lx) and 
the number of female offspring produced by a female with 
attributed x (mx) are recorded. From these two functions, 
the Maltusian parameter (population growth rate), r, is cal-
culated using Euler’s equation: 

 
 
 
Positive values of r indicate an exponential population 

increase, the value equal to zero indicates the stable state of 
a population, and r values less than zero indicate that the 
population is declining exponentially and heading to extinc-
tion (Carey 1993). 

The rate of increase of a population can also be gene-
rated using matrix algebra. In this method the age distribu-
tion of the population at time t (Nt), considered as a column 
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vector (nt) is multiplied by a transition matrix referred to as 
Leslie’s matrix or population projection matrix (L) to get 
the age distribution at time t+1 (Nt+1): 
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fx = Age-specific fecundity, sx = Age-specific survival rate, 
nx = Number of individuals of age x. 

Repeated iterations of the multiplication of the popula-
tion vector and the transition matrix result in a stable popu-
lation vector (stable age distribution). At this condition the 
population is multiplied by a constant factor per time inter-
val. This factor, the dominant eigenvalue of the projection 
matrix, is the finite rate of increase (�). 

An alternative population growth rate, the instantaneous 
rate of increase (ri) has been introduced that simplifies the 
gathering of population-level data. It reflects the actual 
growth of a population and is calculated by the following 
equation: 

 
 

 
where Nf is the final number of animals, N0 is the initial 
number of animals and �T is the change in time (Walthall 
and Stark 1997). 

To date most life table data have been collected using 
only the female individuals. Chi (1988, 2005) introduced 
new method to conduct life tables using both females and 
males (age-stage, two-sex life table analysis) and developed 
computer software to calculate the life table parameters. 

All above mentioned population growth rates measure 
the numerical aspects of population. A new population level 
index has been proposed (van Straalen and Kammenga 
1998) that measures the qualitative aspects of the popula-
tion. This index named ‘intrinsic biomass turnover’ mea-
sures the productivity of the population (rate of which bio-
mass is produced, relative to the biomass present). 

 
Advantages of measuring population level effects 
Several authors have emphasized the priority of population 
level effects in comparison to various individual level end-
points. The greatest value of the use of population para-
meters lies in their ecological relevance, and the possibility 
of summarizing a variety of possible effects in the course of 
a life-cycle by a single measure (Daniels and Allan 1981; 
Allan and Daniels 1982; Stark et al. 1997; Stark et al. 1998; 
Kammenga and Laskowski 2000; Stark and Banks 2003). 

Forbs and Calow (1999) reviewed the literature and 
concluded that population growth rate is a better measure of 
response to toxicants than the individual-level endpoints. 
Their reasoning was that it integrates potentially complex 
interactions among life-history traits and provides a more 
relevant measure of ecological impact. They also mentioned 
that r makes it possible to evaluate the conflicting effects of 
toxicants on survival and reproduction. 

For example, it has been demonstrated that aphids could 
maintain high population growth rates after exposure to 
LC60 (Walthall and Stark 1997). On the other hand Bech-
mann (1994) showed that in some cases the demographic 
parameters may be affected by sublethal concentrations 
(32% of LC50). It has been demonstrated that in such cases 
the extinction of population may occurs by sublethal con-
centrations. Thus, short-term acute toxicity tests may over-
estimate or underestimate the effects of different pesticides. 
This shows the necessity of conducting long-term assays 
(e.g. life table studies) to find the realistic results on im-
pacts of pesticides. Another advantage of studying the ef-
fects of toxic substances on populations rather than indivi-

duals can be seen in case of compounds like insect growth 
regulators (IGRs) which have slow action. This kind of pro-
ducts cannot be adequately evaluated using short-term labo-
ratory tests based on individual level endpoints (Stark et al. 
1998; Sáenz-de-Cabezón et al. 2006). Stark et al. (1997, 
1998) showed that different species may show similar acute 
susceptibility to certain pesticides while their responses at 
population level are very different. Besides, Kim et al. 
(2006) showed that different pesticides may cause compara-
ble acute toxicity but completely different total effect on a 
known species. 
 
Biomarkers 
 
Toxic substances can cause changes at all levels of biologi-
cal organization from molecular to community (Hyne and 
Maher 2003). Processes at one level take their mechanisms 
from the level below and find their consequences at the 
level above. The ecological relevance increases from the 
sub-cellular to the ecosystem level (De Coen 1999). As 
mentioned above, several authors have suggested that stu-
dying population level effects of toxicants by use of demo-
graphic toxicological analysis is the best approach and pro-
vides a more relevant measure of ecological impact. In 
demographic toxicology both lethal and sublethal effects 
are combined into one integrative parameter, the intrinsic 
rate of increase (rm) (Bechmann 1994; Stark and Wenner-
gren 1995; Forbs and Calow 1999; Stark and Banks 2003). 
The major disadvantage to the use of demographic toxico-
logy is that development of life table data is expensive and 
time consuming (Forbs and Calow 1999; Stark and Banks 
2003). In addition, an understanding of the population level 
effects of a toxicant without understanding of the damage 
that a toxicant causes at biochemical level and knowledge 
of how it is causing these effects is not enough (Stark and 
Banks 2000). Kammenga and Laskowski (2000) refer to the 
relationship between toxicant-induced biochemical or cel-
lular alternations (i.e. biomarker responses) and subsequent 
demographic changes as a pressing problem in ecotoxico-
logy. Biomarkers are useful as markers for both exposure 
and effect in organisms (Pretti and Cognetti-Varriale 2001) 
and could be used in monitoring for effects before they 
reach the population or community levels (Lagadic et al. 
1994). Invertebrate biomarkers and their use in monitoring 
of ecosystem quality have been reviewed and the lack of 
knowledge on the linkages between biomarker and popula-
tion level responses has been highlighted. The potential use 
of biomarkers related to energy metabolism for predicting 
effects of stressors on population structure and dynamics 
have been mentioned by several authors (Lagadic et al. 
1994; De Coen and Janssen 1997; Lagadic 1999; De Coen 
et al. 2000; Verslycke and Janssen 2002; De Coen and 
Janssen 2003). Bio-energetic or physiological energetic, in 
general, offer the advantage to provide information on key 
processes in the organism’s energy acquisition and expendi-
ture, possibly also elucidating the mode of action of the 
toxicant. Moreover, changes in the energy metabolism, in 
general, will ultimately influence the future life characteris-
tics of an organism (De Coen et al. 2000). The response of 
biomarkers to toxic stress is only demographically relevant 
if the response can be linked to effects at higher organism 
levels, such as individual (life-cycle traits) or population 
level (Kammenga and Laskowski 2000). 

Recently a biomarker has been developed based on 
“metabolic cost” hypothesis called Cellular Energy Alloca-
tion (CEA). This methodology could provide an integrative 
quantification of the organism’s energy budget based on a 
biochemical comparison of the organism’s energy consump-
tion and the energy reserves available for metabolism (De 
Coen et al. 2000). Energy consumption is determined by 
measuring the electron transport activity (ETS activity) 
which is a biochemical measure of the potential metabolic 
activity and is nearly universal in all organisms (Packard et 
al. 1971). The energy reserves are determined by measuring 
the total lipid, protein and carbohydrate content of the test 

tt NLN ��1

TNNr fi �� /)/ln( 0
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Table 1 Impact of selected pesticide groups on certain natural enemies. 
Reference Method Impact Biological control agent Pesticide 
    Organochlorine insectides 
Edwards and Thompson1973 Contact toxicity Relatively non toxic Acarina spp. Dieldrin 
Easwaramoorthy et al. 1990 Residual test Highly toxic Sturmiopsis inferens Lindane 
Price and Schuster 1991 Contact toxicity Relatively non toxic Encarsia sp.; 

Aleurodiphilus sp. 
 

Price and Schuster 1991 Contact toxicity Harmful Encarsia sp.; 
Aleurodiphilus sp. 

Endosulfan 

Vieira et al. 2001 Residual test Delaying preimaginal 
development 

Trichogramma cordubensis  

  Organophosphorous and carbamates 
Villanueva and Walgenbach 2005Leaf disk Moderately toxic Neoseiulus fallacis Azinphosmethyl 
Wilkinson et al. 2001 Residual test Harmful Bassus dimidiator Azinphosmethyl 
Galvan et al. 2006a Topical application and 

insecticide residues 
Harmful Harmonia axyridis Carbaryl 

Easwaramoorthy et al. 1990 Residual test Harmless Sturmiopsis inferens Carbaryl+Lindane Sevidol® 
Easwaramoorthy et al. 1990 Soil application Harmless Sturmiopsis inferens Carbofuran 
James et al. 2005 Foliar application Harmless Phytoseiid mites Chlorpyrifos 
Prischmann et al. 2005 Residue test Harmful Phytoseiid mites  
Barbar et al. 2007 Residue test Harmful Typhlodromus exhilarates 

T. phialatus 
Chlorpyriphos –ethyl 

Sheikhi-Garjan 2000 Topical application Harmful Trissolchus grandis Diazinon 
Easwaramoorthy et al. 1990 Residual test Highly toxic Sturmiopsis inferens Dimethoate 
Booth et al. 2007 Direct application Harmful Micromus tasmaniae  
Kohno et al. 2007 Direct application Harmless Labidura riparia  
Grützmacher et al. 2004 Residual test Harmful Trichogramma cacoeciae Fenthion 
Kavousi and Talebi 2003 Residual test Harmless Phytoseiulus persimilis Heptenophos 
Easwaramoorthy et al. 1990 Residual test Highly toxic Sturmiopsis inferens Malathion 
Sabahi et al. 2002 Residual test Harmful Bathyplectes curculionissss  
Wakgari and Giliomee 2003 Direct spray Harmfull Coccidoxenoides peregrinus Methidathion 
Wakgari and Giliomee 2001 Direct spray Harmful Aprostocetus ceroplastae Methomyl 
Wakgari and Giliomee 2003 Direct spray Harmful Coccidoxenoides peregrinus  
Wakgari and Giliomee 2003 Direct spray Harmful Coccidoxenoides peregrinus Methyl-parathion 
Easwaramoorthy et al. 1990 Residual test Highly toxic Sturmiopsis inferens Monocrotophos 
Wakgari and Giliomee 2003 Direct spray Harmful Coccidoxenoides peregrinus Parathion 
Sabahi et al. 2002 Residual test Moderately harmful Bathyplectes curculionissss Phosalone 
Umoru and Powell 2002 Contact toxicity Affects reproductive 

performance 
Diaeretiella rapae Pirimicarb 

Farag and Gesraha 2007 Direct application Slightly harmful Diaertiella rapae  
Cabral et al. 2008 Direct spray Harmless Coccinella undecimpunctata  
Kavousi and Talebi 2003 Residual test Harmful Phytoseiulus persimilis Pirimiphos-methyl 
Wakgari and Giliomee 2003 Direct spray Harmful Coccidoxenoides peregrinus Profenofos 
Wakgari and Giliomee 2003 Direct spray Harmful Coccidoxenoides peregrinus Prothiofos 
Easwaramoorthy et al. 1990 Residual test Highly toxic Sturmiopsis inferens Quinalphos 
Grützmacher et al. 2004 Residual test Harmful Trichogramma cacoeciae Trichlorfon 
    Artificial Pyrethroids 
Galvan et al. 2006a Topical application and 

insecticide residues 
Harmful Harmonia axyridis Bifenthrin 

Sak et al. 2006 Rearing on diet con-
taining sublethal dose 

Affects total body weightPimpla turionellae Cypermethrin 

Easwaramoorthy et al. 1990 Residual test Moderately harmful Sturmiopsis inferens Decamethrin 
Garcia et al. 2006 Indirect spray Reducing parasitism rate Trichogramma cordubensis Deltamethrin 
Price and Schuster 1991 Contact toxicity Harmful Encarsia sp.; 

Aleurodiphilus sp. 
Esfenvalarate 

Villanueva and Walgenbach 2005Leaf disk Highly toxic Neoseiulus fallacis  
Villanueva and Walgenbach 2005Residual test Moderately harmful Neoseiulus fallacis Fenpropathrin 
Heidari et al. 2004 Dipping method Harmful Encarsia formosa Fenpropathrin 
Villanueva and Walgenbach 2005Leaf disk Moderately toxic Neoseiulus fallacis  
Easwaramoorthy et al.1990 Residual test Highly toxic Sturmiopsis inferens Fenvalerate 
Booth et al. 2007 Direct application Toxic Micromus tasmaniae Lambda-cyhalothrin 
Kohno et al. 2007 Direct application Harmless Labidura riparia  
Kobori and Amano 2004 Residual test Harmful Aphidius gifuensis Permethrin 
    Microbials 
Carvalho et al. 2003 Residual test Harmful Trichogramma pretiosum Abamectin 
Nadimi et al. 2008 Residual test Harmful Phytoseiulus persimilis; 

Phytoseiulus plumifer 
 

Brunner et al. 2001 Topical application Harmful Colpoclypeus florus 
Trichogramma platneri 

 

Grützmacher et al. 2004 Residual test Harmless Trichogramma cacoeciae  
Yoshizawa and Aizawa 2007 Direct spray Harmless Orius strigicollis Bacillus thuringiensis 
Brunner et al. 2001 Residual test Harmless Colpoclypeus florus  
Dutton et al. 2003 Greenhouse 

experiments 
Increase in mortality, 
slight decrease in weight 

Chrysoperla carnea  
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Table 1 (Cont.) 
Reference Method Impact Biological control agent Pesticide 
Vieira et al. 2001 Residual test Harmless Trichogramma cordubensis  
Kohno et al. 2007 Direct application Harmless Labidura riparia Beauveria bassiana 
Castagnoli et al. 2005 Residual test Harmless Neoseiulus californicus  
Amano and Haseeb 2005 Contact toxicity Harmful Diadegma semiclausum 

Oomyzus sokolowskii 
Emamectin benzoate 

Yoshizawa and Aizawa 2007 Direct spray Harmless Orius strigicollis Milbemectin 
Charles et al. 2000 Residual test Harmful Trichogramma exiguum Spinosad 
Van Driesche et al. 2006 Residue test Harmless Neoseiulus =Amblyseius 

cucumeris 
 

Van Driesche et al. 2006 Residue test Slightly harmful Iphiseius degenerans  
Galvan et al. 2006b Topical application and 

direct spray 
Harmless Harmonia axyridis  

Villanueva and Walgenbach 2005Leaf disk Harmful Neoseiulus fallacis  
    Neonicotinoids 
Villanueva and Walgenbach 2005Leaf disk Moderately toxic Neoseiulus fallacis Acetamiprid 
Cloyd and Dickinson 2006 Direct application Harmful Leptomastix dactylopii Dinotefuran 
Kohno et al. 2007 Direct application Slightly harmless Labidura riparia  
Brunner et al. 2001 Topical application Highly toxic Colpoclypeus florus Imidacloprid 
Brunner et al. 2001 Topical application Highly toxic Trichogramma platneri  
Huerta et al. 2003 Topical application Highly toxic Chrysoperla carnea  
Potter and Rogers 2003 Residual test Decrease in parasitism Tiphia vernalis  
Villanueva and Walgenbach 2005Leaf disk Moderately toxic Neoseiulus fallacis  
Farag and Gesraha 2007 Direct application Slightly harmful Diaertiella rapae  
Torres et al. 2003 Residual test Harmful Aphelinus gossypii; 

Delphastus pusillus 
Thiamethoxam 

Mullin et al. 2005 Feeding treated seeds Highly toxic 10 Genera of carabid beetles 
Agonum, Amara, 
Anisodactylus, Bembidion, 
Chlaenius, Harpalus, 
Patrobus, Poecilus, Pteros-
tichus, and Scarites 

 

Galvan et al. 2006a Topical application and 
insecticide residues 

Harmful Harmonia axyridis  

Farag and Gesraha 2007 Direct application Slightly harmful Diaertiella rapae  
    Botanicals 
Huerta et al. 2003 Topical application Harmless Chrysoperla carnea Acetonic fractions of 

Trichilia havanensis 
Saber et al. 2004 Residual test Reduced life table 

parameters 
Trichogramma cacoeciae Azadirachtin 

Thoeming and Poehling 2006 Soil-applied Harmless Amblyseius cucumeris  
Thoeming and Poehling 2006 Soil-applied Moderately harmful Hypoaspis aculeifer  
Price and Schuster 1991 Contact toxicity Reduce the parasitoids 

papulation 
Encarsia sp.; 
Aleurodiphilus sp. 

Extract of neem seed 

Peveling and Ely 2006 Insecticide residues Slightly harmful Chilocorus bipustulatus var. 
iranensis 

Melia volkensii seed extract 

Peveling and Ely 2006 Insecticide residues Slightly harmful Pharoscymnus anchorago Melia volkensii seed extract 
Farag and Gesraha 2007 Direct application Harmless Diaertiella rapae Natural oil of Jojoba plant 
Huerta et al. 2003 Topical application Harmful Chrysoperla carnea Natural pyrethrins 
Rao et al. 2007 Direct application Slightly harmful Campoletic chlorideae Neem 
Babul Hossain and Poehling 2006Soil drench Harmless Opius chromatomyiae NeemAzal® 
Kraiss and Cullen 2008 Direct spray laboratory 

bioassays 
Highly toxic to first instar, 
harmless to third instar, 
pupae, or adults 

Harmonia axyridis Pyrethrins 

Castagnoli et al.2000 Residual test Highly toxic Neoseiulus californicus Rotenone 
    IGRs 
Yoshizawa and Aizawa 2007 Direct spray Harmless Orius strigicollis Buprofezin 
Cabral et al. 2008 Direct spray Moderately harmful Coccinella undecimpunctata  
Kobori and Amano 2004 Contact and ingestion 

toxicities 
Harmless Aphidius gifuensis Chlorfluazuron 

Amano and Haseeb 2005 Contact toxicity Harmless Diadegma semiclausum 
Oomyzus sokolowskii 

 

Kohno et al. 2007 Direct application Harmless Labidura riparia Chromafenozide 
Bjorksten and Robinson 2005 Contact toxicity Harmless Hemiptarsenus varicornis 

Diglyphus isaea 
Cyromazine 

Yoshizawa and Aizawa 2007 Direct spray Harmless Orius strigicollis  
Medina et al. 2003 Topical application Harmful Chrysoperla carnea Diflubenzuron 
Yoshizawa and Aizawa 2007 Direct spray Harmless Orius strigicollis Etoxazole 
Liu and Chen 2001 Topical application Moderately harmful Chrysoperla rufilabris Fenoxycarb 
Wakgari and Giliomee 2003 Direct spray Moderately harmful Coccidoxenoides peregrinus  
Amano and Haseeb 2005 Contact toxicity Harmless Diadegma semiclausum 

Oomyzus sokolowskii 
Flufenoxuron 
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organism (DeCoen and Janssen 1997). The ecological rele-
vance of CEA have been demonstrated by comparing with 
population level parameters such as intrinsic rate of in-
crease (rm) and net reproductive rate (R0) (De Coen and 
Janssen 1997; De Coen and Janssen 2003). Smolders et al. 
(2004) used this technique and concluded that it is a rapid 
and sensitive measure of the effects of environmental stress-
sors and the results can be linked to effects in the higher 
levels of biological organization. The CEA methodology 
has also been used successfully by International Council for 
the Exploration of the Sea (ICES) (ICES 2006). 

As mentioned above, theoretically, one component of 
CEA methodology (i.e. ETS) is nearly common in all orga-
nisms and consequently has been applied for very different 
taxa; decomposer microorganisms Szabó (2003), marine 
planktons (Packard et al. 1971), different daphnids (Sim�i� 
and Brancelj1997), larval stage of chironomids (Sim�i� 
2005) and zebra mussel (Fanslow et al. 2001). Likewise, 
the other component, energy content, can be determined in 
all organisms. 

To date, except for one work in which the differences in 
energy allocation between brachypterous and macropterous 
morphs of the pygmy Grasshopper, Tetrix subulata were 
studied (Lock et al. 2006), the CEA methodology have been 
mostly applied for aquatic organisms. This method has been 
used for non-target organisms other than arthropod biocon-
trol agents with the objective to environmental risk assess-

ment (De Coen and Janssen 1997; De Coen and Janssen 
2003; Smolders et al. 2003; Verslycke et al. 2004). 

Considering some applications of the CEA technique on 
arthropods (De Coen and Janssen 1997), especially on an 
insect (Lock et al. 2006) we are studying the capability of 
this method in case of plant pests and their natural enemies 
as a fast, sensitive and ecologically relevant measure of pes-
ticides’ risk to BC agents (unpublished data). 
 
EFFECTS OF DIFFERENT CLASSES OF 
PESTICIDES ON BIOCONTROL AGENTS 
 
Most of the commonly used insecticides are wide spectrum 
neurotoxic chemicals which affect target and non-target 
organisms. Some newly marketed pesticides are reported to 
be less toxic to natural enemies. Unfortunately many BC 
agents are susceptible to wide spectrum pesticides. There-
fore a potential problem arising from the application of 
these pesticides is the disruption of beneficial arthropod 
populations important in BC processes. 

In IPM it is important to determine which pesticides are 
compatible with the major BC agents. The results of some 
toxicity tests of major classes of pesticides on important BC 
agents are presented in Table 1. These classes include orga-
nochlorine, organophosphorus, carbamates, pyrethroids, 
neonicotinoids, microbials, botanicals and Insect Growth 
Regulators (IGRs). The effect of pesticides on BC agents 

Table 1 (Cont.) 
Reference Method Impact Biological control agent Pesticide 
Kobori and Amano 2004 Contact and ingestion 

toxicities 
Harmless Aphidius gifuensis Lufenuron 

Kohno et al. 2007 Direct application Harmless Labidura riparia Methoxyfenozide 
Grützmacher et al. 2004 Residual test Harmless Trichogramma cacoeciae  
Grützmacher et al. 2004 Residual test Harmless Trichogramma cacoeciae   
Medina et al. 2003 Topical application Harmless Chrysoperla carnea Pyriproxyfen 
Wakgari and Giliomee 2001 Residual test Harmful Aprostocetus ceroplastae  
Cloyd and Dickinson 2006 Direct application Harmless Leptomastix dactylopii  
Medina et al. 2003 Topical application Harmless Chrysoperla carnea Tebufenozide 
Amano and Haseeb 2005 Contact toxicity Harmless Diadegma semiclausum 

Oomyzus sokolowskii 
Teflubenzuron 

Wakgari and Giliomee 2001 Residual test Slightly harmful Aprostocetus ceroplastae Triflumuron 
Wakgari and Giliomee 2003 Direct spray Moderately harmful Coccidoxenoides peregrinus  

Micellaneous classes of pesticides 
Yoshizawa and Aizawa 2007 Direct spray Harmless Orius strigicollis Acequinocyl 
Ghadamyari and Talebi 2002 Residual test Harmful Orius albidipennis Amitraz 
Kobori and Amano 2004 Residual test Harmful Aphidius gifuensis Cartap 
Amano and Haseeb 2005 Contact toxicity Harmful Diadegma semiclausum 

Oomyzus sokolowskii 
Chlorfenapyr 

Grützmacher et al. 2004 Residual test Harmless Trichogramma cacoeciae Dodine 
Sáenz-de-Cabezón Irigaray and 
Zalom 2007 

Residue test Harmful Galendromus occidentalis Fenpyroximate 

Morales et al. 2004 Ingestion toxicity Moderately Harmful Hyposoter didymator Fipronil 
Cloyd and Dickinson 2006 Direct application Harmful Leptomastix dactylopii Flonicamid 
Kraiss and Cullen 2008 Direct spray; 

Laboratory bioassays 
Moderately lethal to first 
and third larvae, no effect 
on pupae and adults 

Harmonia axyridis Insecticidal soap 

Bjorksten and Robinson 2005 Residual test Harmless Hemiptarsenus varicornis Mancozeb 
Kraiss and Cullen 2008 Direct spray; 

laboratory bioassays 
Moderately lethal to first 
and third instars, no effect 
on pupae and adults 

Harmonia axyridis Mineral oil 

Grützmacher et al. 2004 Residual test Moderately harmful Trichogramma cacoeciae  
Huerta et al. 2003 Topical bioassays Harmless Chrysoperla carnea Phloxine-B 
Rezaei et al. 2007 Residual test Harmless Chrysoperla carnea Propargite 
Yoshizawa and Aizawa 2007 Direct spray Harmless Orius strigicollis Pymetrozine 
Rezaei et al. 2007 Residual test Harmless Chrysoperla carnea  
Cabral et al. 2008 Direct spray Harmless Coccinella undecimpunctata  
Yoshizawa and Aizawa 2007 Direct spray Harmless Orius strigicollis Pyridalyl 
Kohno et al. 2007 Direct application Harmless Labidura riparia  
James et al. 2005 Foliar application Moderately harmful Phytoseiid mites Sulfur 
Prischmann et al. 2005 Residue test Moderately harmful Phytoseiid mites  
Grützmacher et al. 2004 Residual test Harmful Trichogramma cacoeciae  
Thwaite et al. 1996 Residual test Moderately harmful Typhlodromus pyri Tebufenpyrad 
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depends on pesticides properties including mode of action, 
persistence and route to the target (Residual, quasi systemic 
and systemic action), etc. (Van Emden and Peakall 1996). 
Each pesticide has its own physical, chemical and bioche-
mical properties and so its effect on a special natural enemy 
is different from other pesticides. Selective pesticides with 
low effects on natural enemy provide an opportunity to use 
them in IPM. 

In the Table, different methods and formulations of pes-
ticides are used. Furthermore, the strain and life stage of a 
natural enemy is important in the classification of pesticide 
hazard. 
 
CONCLUSION 
 
In order to develop successful IPM programs many studies 
have been carried out to find out the probable compatibility 
of pesticides and arthropod biocontrol agents, the two major 
tools, in controlling plant pest species. 

However, differences in the used methods and the mea-
sured endpoints make it difficult to compare the results. The 
traditional laboratory methods have been shown as ineffici-
ent leading to unreliable results. International Organization 
for Biological Control (IOBC) initiated to develop standard 
methods which are validated and ring tested. These methods 
make it possible to determine the hazard classes of the toxic 
compounds. Oomen et al. (1991) demonstrated the high va-
lidity of the standardized laboratory results by conducting 
more complex field trials. The methods are being developed 
and currently there is a growing emphasis on demographic 
studies which incorporates all lethal and sublethal effects as 
a summary index so called population growth rate. Life 
table assays provide more detailed information on the side-
effects of pesticides. It has been shown that in contrast to 
some suggestions the population growth rate is not more 
sensitive than the individual endpoints. On the other hand 
the most sensitive endpoints are not necessarily the best and 
most relevant ones. 

Detecting the potential damage to the populations in the 
early stages would be very helpful in protecting the bene-
ficial insects. This kind of studies is used for some non-tar-
get organisms other than the biocontrol agents. The para-
meters studied are mainly molecular and biochemical chan-
ges due to pesticides and other stressors. But, relating the 
changes in biomarkers to the population level changes is not 
easy and the probable relations are mainly correlative. 
However, the scientists who work in this field deeply be-
lieve that some day it will be possible. The authors try to 
find out the possibility of using biomarkers for biocontrol 
agents. 
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