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ABSTRACT 
Beet necrotic yellow vein virus is the etiological agent of one of the most devastating sugar beet viral diseases: rhizomania. This review 
describes the molecular biology of the rhizomania disease, the functions of the BNYVV encoded proteins, the consequences of their 
expression as well as the biology of the BNYVV vector, Polymyxa betae. Root proliferation is an important part of the well-known 
characteristics of the viral infection that leads to yield and sugar losses. The extensive use of sugar beet cultivars displaying partial 
resistance or tolerance against virus infection allows containment of sugar yields. However, such extensive uses also permit viruliferous 
vector to be amplified and therefore the appearance of resistance breaking isolates. We review as well the defence strategies that may be 
used against rhizomania. 
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INTRODUCTION 
 
Sugar beet rhizomania possesses the potential to lower the 
sugar contents in the roots of susceptible sugar beet cul-
tivars up to 20%. However, sugar companies report yield 
losses of 50 to 70% during sugar purification (Richard-
Molard 1985). Rhizomania was first reported during the fif-
ties in Italy (Canova 1959). Nowadays the disease is present 
in almost every sugar beet growing area in the world. The 
etiological agent was discovered by Tamada and Baba in 
1973 who demonstrated that rhizomania was induced by the 

phytovirus named Beet necrotic yellow vein virus, BNYVV 
(Tamada and Baba 1973). Such pathogen classified among 
the alphavirus-like supergroup is assigned to the genus 
Benyvirus (ICTVdB, http://www.ncbi.nlm.nih.gov/ICTVdb/ 
ICTVdB/). BNYVV is transmitted by the soil-borne ob-
ligate parasite Polymyxa betae Keskin (Keskin 1964), a pro-
tist initially classified in the fungus kingdom. P. betae is 
able to form spores that are extremely resistant to biodegra-
dation, drought and pesticides treatment, that allow viru-
liferous spores to rest for more than two decades in the in-
fested soils. Breeding efforts were carried out in order to 

® 



Plant Viruses 2 (1), 14-24 ©2008 Global Science Books 

 

maintain the sugar production yields, resulting in the deve-
lopment of sugar beet hybrids partially resistant to BNYVV 
systemic infection. Such crops are commonly used for com-
mercial production. Their intensive uses among the infested 
soils applied a positive selection pressure that raised RB 
isolates. Interestingly, emerging viral species possess se-
quence variation particularly within RNA-3; the viral com-
ponent that encodes the pathogenicity determinant p25, in-
volved in root proliferation (Tamada et al. 1999). 

Actual molecular studies of the rhizomania syndrome 
tend to reveal the resistance mechanism mediated by the Rz 
resistance gene products as well as the virus induced pro-
cesses, leading to the root proliferation, particularly by the 
study of the RNA-3-encoded p25 protein. However, the 
identification of other P. betae-transmitted viruses associ-
ated with the rhizomania syndrome rise new questions about 
the disease etiology. As an example, Beet black scorch 
virus has been shown to induce rhizomania-like symptoms 
(Weiland et al. 2007). 
 

RHIZOMANIA DISEASE 
 
Symptoms 
 
The Rhizomania syndrome refers to root madness (Rhizo: 
root; Mania: madness). Infected sugar beets display more or 
less a dwarfism that reduces the taproot size, which har-
bours necrosis (Fig. 1C). Infection shapes a wine-glass-like 
taproot and induces rootlet proliferations that become nec-
rotic, abundant and fragile. These root symptoms reduced 
water uptake that provoke leaf fading (Fig. 1A). Sometimes, 
when the infection becomes systemic, vein yellowing, nec-
rosis and foliar local lesions appear (Fig. 1B). Beet necrotic 
yellow vein virus was named according to these systemic 
symptoms. 
 
Histological and biochemical properties of 
rhizomania diseased plants 
 
Histological sections performed on infected taproot sug-
gested that the infection and/or the necrosis of lateral roots 
induce the reprogramming of the pericycle cells to meris-
tematic cells, which might cause the synthesis of new root-
lets (Pollini and Giunchedi 1989). Moreover, viral sequen-
ces could also induce a modulation of the cellular messen-
ger and protein expression profiles leading to root morpho-
genesis. Thus, root proliferation favors the viral replication 
and transmission. Indeed, rootlet cells are the targets of 
BNYVV vector, the parasite P. betae. 

The plant hormone auxine plays a major role in plant 
development and particularly on root morphogenesis. Indol-
3-acetic acid assays performed onto susceptible and tolerant 
sugar beet varieties revealed auxin level three times higher 
in infected plants (Pollini et al. 1990). Interestingly, tolerant 
crops possess lower auxin contents than susceptible plants. 
One of the questions that still need an answer is to deter-
mine if auxin variations are the initiator or the consequence 
of the cellular disorders induced by BNYVV infection. 
Comparisons of the root transcriptome of healthy beets with 
rhizomania infected beets lead to the identification of auxin, 
cell cycle, defence signalling and ubiquitin-related regu-
lated genes (Schmidlin et al. 2008). 
 
BEET NECROTIC YELLOW VEIN VIRUS 
 
Taxonomy 
 
BNYVV possesses a multipartite linear positive-sense sin-
gle-stranded RNA genome that consists of four to five RNAs 
possessing 5� cap and polyadenylated 3� ends. BNYVV 
belongs to the supergroup of alphavirus-like and is the type 
species of the Benyvirus genus, which contains as well the 
Beet soil-borne mosaic virus (BSBMV, ICTVdB: 00.088.0. 
01.002) (Lee et al. 2001). BNYVV and BSBMV are rod-
shaped, share a similar genomic organization (Lee et al. 
2001), host range, and are transmitted by the protist vector P. 
betae. However, BSBMV has only been detected within 
North America. BSBMV and BNYVV are closely related 
but are distinct viruses since Rz resistant genes have no 
effect on BSBMV accumulation (Wisler et al. 2003) and no 
cross reaction with coat protein antisera, nor cross pro-
tection have been described. Recent studies demonstrated 
that BNYVV RNA-1 and -2 were able to amplify BSBMV 
RNA-3 and -4, but only in the absence of BNYVV small 
RNAs (Claudio Ratti and David Gilmer, unpublished). Both 
viruses could compete for similar host factors. Such hypo-
thesis will be tested as soon as full-length infectious clones 
of BSBMV RNA-1 and -2 will be available. 

Tentative members within Benyviruses are Burdock 
mottle virus (BdMV, ICTVdB: 00.088.0.01.004) (Rush 
2003) and Rice stripe necrosis virus (RSNV, ICTVdB: 
00.088.0.01.003) (Morales et al. 1999; Van Regenmortel et 
al. 2000; Fauquet et al. 2005). 
 
 

A 

B 

C 

Fig. 1 Symptoms of sugar beet rhizomania. (A) During warm period, 
water deficiencies induced by rhizomania disease provokes plant wilt. (B) 
Foliar symptoms are rather rare and correspond to plant systemic infec-
tion. Vein yellowing and yellow chlorotic spots are induced by the expres-
sion of the RNA-3-encoded p25 protein. (C) Typical root symptoms: in-
fected taproot (I) are shorter, wine glass shaped and display characteristic 
necrosis and root proliferation compared to healthy plant (H). (Photos A 
and C: INRA-Colmar, B: Institut Technique de la Betterave, Paris). 

15



Rhizomania. Peltier et al. 

 

Host range 
 
BNYVV infects plants within Amaranthaceae, Chenopodi-
acea and Tetragoniaceae families. Systemic infection oc-
curs naturally onto Beta vulgaris (sugar beet) and Beta 
macrocarpa. Nicotiana benthamiana and Spinacia oleracea 
are systemically infected even in the absence of RNA-3 and 
-4. On experimental hosts, BNYVV is propagated onto Che-
nopodium quinoa or Tetragonia expansa that respond to the 
infection by chlorotic or necrotic local lesions, depending 
on the inoculum composition (Tamada et al. 1989; Koenig 
et al. 1991; Jupin et al. 1992). 
 
Structure 
 
Viral particles display a right-handed helical symmetry (Fig. 
2) with a 2.6 nm pitch, 49 capsid protein subunits per repe-
tition of 4 turns, with each subunit interacting with 4 nuc-
leotides (Steven et al. 1981). The particles are not enve-
loped and have a diameter of 20 nm with lengths propor-
tional to the sizes of the encapsidated RNAs, i.e, 390, 265, 

105, 89 and 80 nm (Putz 1977; Tamada et al. 1989). Coat 
proteins constitute about 95% of the particle weight. The 
minor coat protein, a CP amber readthrough gene product 
(CP-RT) is present at one extremity of particles and parti-
cipates both to the morphogenesis (Schmitt et al. 1992; 
Haeberle et al. 1994) and to the transmission of the virions 
(Tamada et al. 1996). 
 
Genomic organization 
 
BNYVV has a segmented RNA genome composed of 4 to 5 
genomic components (Tamada 1999). All components poss-
ess a 5� Cap (m7GpppG) and a 3� polyA tail. Sequencing 
together with the full-length infectious clones (Quillet et al. 
1989; Link et al. 2005) permitted to decipher the viral geno-
mic organization and the main functions of virally encoded 
proteins (Fig. 3). 

 RNA-1 is involved in the replication of viral RNAs 
(Gilmer et al. 1992a) and RNA-2 is necessary for encapsida-
tion, cell-to-cell movement and RNA silencing suppression 
(RNA-2), as proven by protoplast and mechanical infection 
of leaves. RNA-1 and -2 are necessary and sufficient for the 
infection following leaf mechanical inoculations where 
small components are dispensable and, if they are present, 
can undergo deletion or disappear (Bouzoubaa et al. 1991). 
In natural infection, however, these small components are 
required. Indeed, RNA-3 allows the viral amplification in 
sugar beet roots and its expression influences symptoms 
(Tamada et al. 1989; Jupin et al. 1992), whereas RNA-4 is 
involved in viral transmission (Tamada and Abe 1989). 
Moreover, RNA-4-encoded p31 is described as a root spe-
cific silencing suppressor (Rahim et al. 2007). Therefore, 
BNYVV is a unique virus as it behaves as a bipartite virus 
when rub inoculated or as a tetra or pentapartite virus in 
natural infection. Such a property has been utilized to ob-
tain viral expression vectors, named replicons, and derived 
from RNA-3 and RNA-5 (Schmidlin et al. 2005). Such rep-
licons allow the expression of various sequences within in-
fected tissues (Schmidlin et al. 2005). 
 
Genomic functions 
 
RNA-1 is 6746 nts long (without polyA) and harbours only 
one open reading frame (ORF). It encodes a 237 kDa poly-
peptide (Bouzoubaa et al. 1987) that contains consensus 
methyl-tranferase (MTR), helicase (HEL), papain-like pro-
tease (PRO) and polymerase (POL). Autoproteolysis of 
p237 between the domains PRO and POL leads to two pro-
teins: p150 and p60, which contain respectively the MTR, 
HEL, PRO and the POL motifs (Hehn et al. 1997). This 

Fig. 2 Immunocaptured BNYVV particles observed by electron 
microscopy. (Photo M. Erhardt, IBMP). 

 

Fig. 3 BNYVV genomic organization. The sizes of the five genomic RNAs are presented. Black dot represents Cap structure and An, the polyadenylated 
sequence. Squares correspond to ORF. Arrow designates the cis proteolysis of the RNA-1-encoded p237 polyprotein leading to the p150 and the p66 pro-
teins. MTR, Methyltransferase domain; HEL, Helicase domain; PRO, Protease domain; POL, Polymerase domain. Star denotes the CP amber readthrough 
mechanism leading to the expression of minor CP-RT protein. 
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proteolytic clivage of the replicase protein is the significant 
feature of the Benyviruses. However, the stoechiometry of 
replication complex is not known. 

RNA-2 is 4612 nts long and encodes for six proteins. 
The first cistron drives the synthesis the 21 kDa major 

capsid protein, CP. In about 10% of the translation events, 
CP amber stop codon is suppressed and the resulting read-
through leads to the synthesis of the 75 kDa minor coat pro-
tein, CP-RT (Niesbach-Klosgen et al. 1990; Haeberle et al. 
1994). CP-RT is needed for the viral transmission (Tamada 
et al. 1996) and for the transient anchoring of the viral par-
ticles around mitochondria (Erhardt et al. 2001; Valentin et 
al. 2005). These latter studies suggest that the viral genome 
packaging occurs around mitochondria. 

Following the structural protein encoding ORFs, a clus-
ter of three genes, partially overlapping, known as “triple 
gene block” (TGB) ensures the viral cell-to-cell movement. 
TGB clusters are also found on other plant viral species, in-
cluding Pomo-, Peclu-, Potex-, Carla- and Hordeivirus 
(Morozov and Solovyev 2003). For BNYVV, these three 
proteins are encoded by subgenomic RNA-2sub-a for TGB-
p1 (42 kDa) and RNA-2sub-b for TGB-p2 (13 kDa) and 
TGB-p3 (15 kDa) (Gilmer et al. 1992a). TGB-p1 protein 
contains a helicase domain and is able to bind nucleic acids 
in vitro (Bleykasten et al. 1996). 

Complementation studies of TGB-p1 protein with a 
virally expressed GFP::TGB-p1 fusion protein permitted to 
localize TGB-p1 in plasmodesmata only in the presence of 
the TGB-p2 and -p3 proteins (Erhardt et al. 2000). More-
over, TGB-p2 and -p3 are detected within plasmodesmata 
only when all the TGB proteins are expressed in the same 
cell (Erhardt et al. 2005). 

ORF VI product encodes for a cystein-rich protein of 14 
kDa. P14 is expressed from RNA-2sub-c. This protein is in-
volved in the regulation of the virus replication (Gilmer et 
al. 1992a), enhances the expression of CP protein (Hehn et 
al. 1995) and acts as a weak silencing suppressor (Dunoyer 
et al. 2002). 

RNA-3 is 1773 nts long and is involved in viral patho-
genicity. Its presence exacerbates root and foliar symptoms 
(Tamada et al. 1989; Jupin et al. 1992). This RNA is also 
necessary for the long distance movement of the virus (Lau-
ber et al. 1998) and is responsible for the rhizomania phe-
notype on Beta vulgaris (Tamada et al. 1989; Koenig et al. 
1991). 
 

p25 
 
The p25 protein is expressed from RNA-3 and modulates 
foliar (Jupin et al. 1992) and root symptoms (Tamada et al. 
1999). No sequence homology is found with known pro-
teins, except with BNYVV RNA-5-encoded p26, which 
only shares the Fx3FRGPGNx2L motif with p25 (Fig. 4). 

Nucleo-cytoplasmic localization of p25 has been shown 
(Haeberle and Stussi-Garaud 1995). Its nuclear addressing 
involves the N-terminal 57KRIRFR62 NLS (Vetter et al. 
2004). Moreover, a nuclear export sequence (NES), 
169VYMVCLVNTV178, has been found in the C-terminal 
part of the protein. Hence, such two sequences allow p25 to 
shuttle between the two compartments by the way of impor-
tin alpha and exportin 1, independantly of other viral factors 
(Vetter et al. 2004). Foliar symptom variations observed 
with p25 mutants suggest a partial correlation between p25 
function and its subcellular localization (Vetter et al. 2004). 
If all of the p25 functions are not yet unraveled, the protein 
displays some common properties with transcription activa-
tors (nuclear localization, Zinc-finger-domain, acidic do-
main). Indeed, in yeast, its fusion to GAL4BD or LexA al-
lows a weak transcription activation of reporter genes (Klein 
et al. 2007), as it has been reported previously for NAC 
transcription factor (Xie et al. 2000). The domain responsi-
ble for such transcription activation has been mapped bet-
ween amino acid residues 103 and 160 (Klein et al. 2007). 
P25 is able to form multimers as well, only if full-length 
proteins are maintained (Klein et al. 2007). Post-transla-
tional modifications of p25 have been evidenced by its 
electrophoretic mobility (Niesbach-Klosgen et al. 1990; 
Klein et al. 2007) and its immunodetection after two dimen-
sional gel eletrophoresis reveals different isoforms that 
mainly differ by their isoelectric point corresponding to 
phosphate group addition (unpublished). Aspartic acid and 
alanine scanning mutagenesis of predicted phosphorylation 
sites revealed the importance of such phosphorylation for 
the multimerization, nuclear import as well as the transcrip-
tion activation. Only mass spectrometry analyses will per-
mit the exact identification of such phosphorylation events 
on the p25 sequence. 
 
RNA-3 potentially encodes two other proteins 
 
BNYVV RNA-3 as well as BSBMV RNA-3 encode pot-
entially for two other proteins. The N-gene could allow the 

 
Fig. 4 Characteristics of the RNA-3-encoded p25: Line drawing representation of the p25 protein and of its known functional domains. (Top) The 
basic N-terminal domain contains a nuclear localization signal (NLS, 57-62), the highly variable ‘Tetrad’ sequence (67-70) and a Zinc finger domain. The 
acidic C-terminal part of the protein encompasses a domain responsible for the transcription activation (103-146) and the nuclear export sequence (NES, 
169-178)). (Center) Transient expression of a GFP-p25 fusion leads to the localization of the protein in the nucleus and in the cytoplasm of the cell, whereas 
removal of the NLS (GFP-p25�NLS, bottom left) prevents the nuclear addressing of the fusion protein. Deletion of the C-terminal domain that contains 
the NES motif leads to the accumulation of the fusion protein in the nucleus (GFP-p25�Ct, bottom right). 
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synthesis of a 6.8 kDa protein that has been found ex-
pressed only from RNA-3 truncated forms, fused or not 
with p25 ORF (Jupin et al. 1992). In such situations, ex-
pression of the protein induces severe necrosis on T. ex-
pansa and C. quinoa leaves (Jupin et al. 1992). Fused to 
GFP protein, p6.8 is localized to cortical reticulum even in 
the absence of viral infection (David Gilmer, unpublished). 
However, its expression has never been detected under 
natural conditions, leading to the hypothesis that this ORF 
is cryptic. The last ORF encodes potentially for a 4.6 kDa 
polypeptide (p4.6). Such protein could be expressed from 
the so-called RNA-3 subgenomic species (RNA-3 sub) that 
corresponds to the last 550 nts of the RNA (Balmori et al. 
1993). The functions of this short RNA and its encoded 
peptide, if it is expressed, are still unknown. 
 
A particular function for RNA-3 
 
BNYVV RNA-3 has been used to map 5� and 3� cis acting 
elements required for its replication and encapsidation and 
for the characterization of their secondary structure in solu-
tion (Jupin et al. 1990; Gilmer et al. 1992b, 1993; Lauber et 
al. 1997, 1999). However, such RNA possesses another 
function, which seems independent of its expression. Onto 
B. macrocarpa, RNA-3 is absolutely required for systemic 
spread of the virus. The RNA-3 sequence required for such 
systemic movement was located between nts 1033 and 1257 
(Lauber et al. 1998). Curiously, complementation of 
BNYVV Stras12 strain, which contains only RNA-1 and -2, 
with BSBMV RNA-3 allows systemic movement of the 
viral particles (Claudio Ratti and David Gilmer, unpub-
lished). A common sequence of 20 nts is found between 
both RNA species. Complementary experiments will allow 
deciphering the exact mechanism that permits the long dis-
tance movement. 

RNA-4 is 1467 nts long and encodes for a 31 kDa pro-
tein (p31), which is essential for the efficient transmission 
of the virus by P. betae (Tamada and Abe 1989; Rahim et al. 
2007). RNA-4-encoded protein could act in synergy with 
the minor p75 coat protein. P31 modulate foliar symptoms, 
and has been recently described as a root specific silencing 
suppressor (Rahim et al. 2007). 

RNA-5 is present only within particular isolates (see 
below) and is 1350 nts long. It encodes a 26 kDa protein 
(p26), which induces severe rhizomania symptoms, redu-
cing sugar yields (Heijbroek et al. 1999). Full-length infec-
tious cDNA clone allowed the analysis of RNA-5 expres-
sion upon viral pathogenesis and the obtention of a new 
viral expression vector (Link et al. 2005; Schmidlin et al. 
2005). Viral expression of p26 induces severe necrosis onto 
C. quinoa leaves. P26 protein is localized in the nucleus and 
in the cytoplasm of infected cells. Moreover, when p26 is 
fused to GAL4DB or LexA, the fusion proteins are able to 
strongly activate the transcription in yeast (Link et al. 2005). 
 
Sequence variations 
 
Restriction fragment length polymorphism, single-strand 
conformation polymorphism, sequence analyses and the 
presence or the absence of a fifth RNA in viral isolates 
permitted to classify BNYVV in different groups that are 
serologically identical (Kruse et al. 1994; Koenig et al. 
1995). The distinction between A and B-type is possible by 
the characterization of amino acid residues variations of the 
RNA-2-encoded CP in position 62, 103 and 172 (Table 1). 
Eight variable residues within RNA-5-encoded p26 permit 
the distinction between European (P-type) or Asian (J-type) 
RNA-5 (Table 1). European P-type RNA-5s have a shorter 
5’UTR and their coding region is four codons longer than J-
type RNA-5s (Table 1). Such composition and size dif-
ferences do not interfere on the known properties of p26 
(Link et al. 2005): both proteins induce similar foliar symp-
toms, localize in the nucleus and in the cytoplasm and are 
able to activate the transcription in yeast (Link et al. 2005) 
(David Gilmer, unpublished). It should be noted here that 

RNA-5-containing isolates could harbour an A or B-type 
RNA-2 (Miyanishi et al. 1999; Koenig and Lennefors 2000; 
Schirmer et al. 2005). A-type viruses are found in European 
countries, Iran, USA, China and Japan. B-type is particu-
larly present in France, Germany, Switzerland, Sweden as 
well as in China and Japan (Miyanishi et al. 1999; Suarez et 
al. 1999; Lennefors et al. 2000; Sohi and Maleki 2004). 
RNA-5 containing isolates were discovered in Japan (Ta-
mada et al. 1989; Kiguchi et al. 1996), France (Koenig et al. 
1997), China (Dawei et al. 1999), Kazakhstan (Koenig and 
Lennefors 2000) and in England (Harju et al. 2002; Ward et 
al. 2007). Phylogenetic studies were performed on RNA-3 
(Schirmer et al. 2005). Characterisation of RNA-3-encoded 
p25 sequences permitted the identification of a highly varia-
ble sequence motif between position 67 and 70 named ‘tet-
rad’ (Table 1) (Schirmer et al. 2005). Recently, new tetrad 
motifs have been found (Ward et al. 2007) (Audrey Schir-
mer, unpublished). RNA viruses endorse strong mutation 
rates that allow them to adapt rapidly to various situations 
(Domingo 2000), keeping their genetic robustness and their 
infectivity even in the presence of mutations (Drake and 
Holland 1999). Analysis of selective pressure on p25 se-
quences revealed that ‘tetrad’ sequence as well as amino 
acid residue 198 were submitted to high positive selection 
pressures (Schirmer et al. 2005) similar to those described 
for animal viruses bypassing mammalian immunity system 
(Fares et al. 2001). Such a positive selection could explain 
the adaptation of BNYVV to resistance genes (Schirmer et 
al. 2005) and has recently been validated for the tetrad mo-
tif (Acosta-Leal et al. 2008). 
 
PATHOGENICITY 
 
Root alterations occur similarly when A- or B-type viruses 
set the infection; however, isolates that contain RNA-5 are 
more aggressive, particularly onto resistant crops, accumu-
late at higher concentration and induce severe rhizomania 

Table 1 Sequence variation within BNYVV RNA-2 encoded structural 
protein CP and RNA-3 and -5 encoded pathogenicity factors p25 and p26, 
respectively. �, deletion; * and ** refer to the presence of P-type or J-type 
respectively. (adapted from Schirmer et al. 2005) 
CP1 

Position 62 103 172       
B-type S N F       
A-type T S L       

p25 ‘Tetrad’1 
Position 67 68 69 70       
A-type A C H G       
A-type A F H G       
A-type A F H R       
B-type A H H R       
A-type A H H G       
A-type A L H G *      
A-type A Y F G       
B-type A Y H R       
A/B-type A Y H G ** C. Bragard, unpublished 
A-type A Y P R  A. Schirmer, unpublished 
A-type A Y R V **      
A-type S Y H G *      
A-type T Y H G * (Ward et al. 2007) 
A-type V C H G       
A-type V L H G       

p261 
Position 30 69 77 103 142 146 149 174 200 227-

229
P-type N L D G R F G S A NNN
J-type H F � D C H R N S � 
1 Amino acid sequence variation within the coat protein that permit the distinction 
between A- or B-type of BNYVV. 
2 Amino acid sequence variation observed within the hypervariable Tetrad se-
quence of the BNYVV p25 protein. Some of those sequence variations are specific 
to A or B-type strains. 
3 Differences observed between Asian (J-type) and P-type p26 proteins. 
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symptoms (Heijbroek et al. 1999). Such a pathogenicity 
was retrieved onto host plants with artificial isolates (Link 
et al. 2005). However, the presence of RNA-5 is not suf-
ficient to explain the increased virulence of some isolates as 
RB occurred in the U.S., where RNA-5 is absent (Liu et al. 
2005). Molecular analyses of RB isolates revealed the pre-
sence of amino acid variation within the p25 tetrad se-
quence (Acosta-Leal and Rush 2007; Liu and Lewellen 
2007) as well as amino acid residue 135 (Acosta-Leal and 
Rush 2007). Using artificial isolates that mimics such chan-
ges, virologists will be able to conclude if tetrad motif by 
itself is sufficient or requires another viral partner (e.g. en-
coded by RNA-1 or -2) to overcome Rz effect. Some preli-
minary experiments performed onto p25 revealed the im-
portance of the tetrad motif upon the protein properties. 
Changing a B-type p25 tetrad sequence by one of the 
identified motifs drastically modifies the foliar symptoms, 
transcription activation and multimerization properties of 
p25 (Klein et al. 2007). Klein et al. suggested that p25 
could behave as an avirulence gene product that could mo-
dify host responses. Chiba et al. (2008) recently demons-
trated that p25 is indeed an Avr protein in B. vulgaris. 
 
The Polymyxa betae vector 
 
Besides BNYVV, three other viruses are also linked with 
rhizomania, namely the Beet soil-borne mosaic virus 
(BSBMV), the Beet soil-borne virus (BSBV) and the Beet 
virus Q (BVQ) (Meunier et al. 2003). All these viruses are 
transmitted to beet by the vector P. betae Keskin, an ob-
ligate parasite that develops in the epidermal and cortical 
root cells. The Polymyxa genus is represented by two eco-
nomically very significant species: P. graminis Ledingham 
is specific to cereals (rice, wheat, barley) and P. betae to the 
Chenopodiaceae (Beta vulgaris, Spinacia oleracea, Atriplex 
patula, Chenopodium bonus-henricus, C. hybridum and C. 
polyspermum) and species like Amaranthaceae, Caryophyl-
laceae and Portulaceae (Abe and Tamada 1986; Barr 1988; 
Legrève et al. 2000; Legrève et al. 2005). Recent molecular 
studies of the characterization of the ITS (internal trans-
cribed spacers) regions of the ribosomal DNA support spe-
cies separation (Legrève et al. 2002). P. betae is ubiquitous. 
Its distribution covers all beet-growing areas (Rush 2003). 
P. betae belongs to the Plasmodiophoridae, a monophyletic 
group including ten genera. For a long time ranked among 
the lower fungi, it is now classified as a protist (Archibald 
and Keeling 2004). The host range of P. betae, long consi-
dered to be narrow, now appears to be wider. P. betae was 

recently detected by RT-PCR in the roots of some species of 
Brassicaceae, Papaveraceae, Poaceae and Urticaceae 
(Anne Legrève, unpublished). Although only a low level of 
infection was detected in these species, it could facilitate 
viral recombination or help to maintain the viral load in the 
vector. 
 
P. betae cycle 
 
The viruses transmitted by Polymyxa spp. are internalised 
by the vector (Chen et al. 1991; Rysanek et al. 1992; Camp-
bell 1996; Verchot-Lubicz et al. 2007). The biological cycle 
of the viral diseases they transmit thus depends on the vec-
tors life cycle (Fig. 5). This vectors great capacity for survi-
val explains, firstly, the recurrence of viral diseases in con-
taminated fields and, secondly, their dissemination either 
through the soil adhering to agricultural machinery and 
produce or via drainage and irrigation water. In the absence 
of host plant radicles, P. betae survives in the soil in the 
form of sporosores (which may be viruliferous). Sporosores 
are spore clusters of 5 to 7 μm in diameter with a very thick, 
strong wall that can live for many years in the soil (Adams 
1990; Maraite 1991). In the presence of host plants, resting 
spore germination releases biflagellated zoospores 4-5 μm 
in size which move through the free water in the soil before 
encysting on a root hair or epidermal cell of a host plant 
root. In order to penetrate the cell, a dagger-like structure 
called “Stachel (sting)” is formed in the encysted zoospore 
(Keskin and Fuchs 1969) and a sticky tube develops 
between the cyst and the plant cell wall. The Stachel, which 
is injected into the host cell through the tube, pierces the 
cell wall and the plasma membrane and allows the zoospore 
content to be transferred into the cytoplasm of the host cell 
(Barr 1988). Cruciform nuclear divisions indicative of mito-
sis lead to the formation of a multinucleate plasmodium sur-
rounded by a thin membrane. In the sporangial phase this 
plasmodium develops into a multi-lobed zoosporangium en-
closed by a thin wall within which the secondary zoospores 
are formed. The latters are released outside the root, or 
sometimes into the deeper root cells, by small plasmodial 
cells, which dissolve a hole in the cell wall (Barr 1988). In 
the sporogenic phase non-cruciform nuclear divisions are 
observed, with the formation of synaptonemal complexes 
characteristic of meiosis (Braselton 1988). The plasmodium 
divides into mononucleate cells by forming membrane lay-
ers within the cytoplasm. A four to five-layer wall is then 
deposited between the cells, with adjacent spores remaining 
connected by bonds between the two outermost layers 

Fig. 5 Drawing of the Polymyxa spp. life 
cycles and its developing states. (a) 
sporosore; (b) germinating zoospore; (c), 
swimming zoospore to a (d) cortical or 
epidermal cell; (e) the zoospore encyst on 
the cell and injects its contents through 
the cell wall and the cellular membrane 
via the “satchel”; (f), developing 
plasmode that will tend to a zoosporan-
gium (g) that will issue either (h) the 
secondary zoospores able to infect new 
cells or (i) to the sporogenous plasmod (j) 
leading to new sporosores. Such sporo-
sores will be further released in soil after 
root decomposition. 
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(Chen et al. 1998). The sporosores formed remain in the 
root debris and are released into the soil by root decompo-
sition. Within this life cycle the moments of cell fusion and 
karyogamy have not yet been pinpointed. Observation of 
double size quadriflagellate zoospores (Ledingham 1939) 
suggests fusion of two zoospores, but the moment of nuc-
lear fusion is not known. The determinants for development 
of the various phases are likewise unknown (Braselton 
1995). However, the host and the degree of root colonisa-
tion appear to be significant (Legrève et al. 1998). Three 
conditions are essential for root infection by this parasite: 
(1) presence of a host plant; (2) presence of free water in 
the soil to promote germination and facilitate zoospore ac-
cess to the roots, and (3) a sufficiently high temperature bet-
ween 10 and 30°C, ideally between 20 and 25°C according 
to the origin of the strains (Legrève et al. 1998 ; Webb et al. 
2000). Hot, wet springs are therefore propitious to early in-
fections, as are light, sandy, well-drained soils as these heat 
up faster than heavy organic soils with high retention capa-
city (Webb et al. 2000). The soil pH and calcium content 
also affect vector activity. Spore germination and root infec-
tion by zoospores are affected by acid pH conditions (Abe 
and Tamada 1987). They are promoted in neutral or alkaline 
pH soils, especially if the calcium and magnesium levels 
are greater than 350 and 20 mg/100 g of soil respectively 
(Goffart and Maraite 1991). Managed liming and practices 
for regulating soil pH and calcium levels would probably 
result in better control of rhizomania. 
 
Vector detection 
 
Plant infection by P. betae is not apparent from any particu-
lar symptoms. Until the early 1990s this parasite was detec-
ted in roots by observing the roots under the microscope 
following colouring with Lactophenol Cotton Blue. This 
fairly laborious method was initially used to study the vec-
tors ecological requirements and the soil infectious potential 
levels by the most probable number technique, growing trap 
crops on soil dilutions (Tuitert 1990). Molecular techniques 
(DNA probes, PCR, nested PCR, ELISA) have greatly faci-
litated rapid detection of P. betae in roots and even in soil 
(Mutasa et al. 1996; Kingsnorth et al. 2003; Ward et al. 
2005). Multiplex RT-PCR enables the presence of P. betae, 
BNYVV, BSBV and BVQ to be revealed in a single test 
using a root RNA extract (Meunier et al. 2003). 
 
Virus-vector interactions 
 
Modes of virus acquisition and transmission by plasmodio-
phorids have been described (Rochon et al. 2004). These 
viruses survive in the spores in a form that has not yet been 
clarified. However, accumulated RNA and movement pro-
teins of Soil-borne wheat mosaic virus (SBWMV) and cap-
sid proteins of Wheat spindle streak virus (WSSMV) within 
the resting spores of the vector, P. graminis, probably de-
note the presence of ribonucleoprotein complexes (Driskel 
et al. 2004). In the case of BNYVV, both the sporosores and 
the plasmodia of P. betae are labelled using antibodies 
against the viral capsid protein (Doucet 2006). Structural 
and non-structural proteins have been detected in P. betae 
spores and zoospores. These results suggest that this vector 
could also be a BNYVV host (Verchot-Lubicz et al. 2007). 

When transmitted by the viruliferous zoospores, the virus is 
present in particle form. Virus transmission by plasmodio-
phorids was for many years regarded as a passive mecha-
nism, which occurred during mixing of plant cell cyto-
plasms and the protozoan, prior to membrane formation 
(Campbell 1996). However, recent research has revealed the 
special role played by some viral proteins in the process of 
transmission by the vector. The BNYVV capsid protein 
readthrough (RT) domain plays an important part in the 
transmission process, since deletions in the C-terminal por-
tion of this domain are correlated to loss of virus transmis-
sion. Substituting the four KTER amino acids located in 
position 553 to 556 of the RT domain by the ATAR motif 
completely blocks transmission (Tamada et al. 1996). A 
comparative analysis of the viral genomes transmitted by 
plasmodiophorids, which do not have the same genomic or-
ganisation, has identified the presence of two complemen-
tary transmembrane domains in the RT domains of the cap-
sid protein of Beny-, Furo- and Pomovirus and in the P2 
proteins of Bymovirus (Adams et al. 2001). Deletion or sub-
stitution of the second domain also blocks transmission by 
the vector. The molecular model is not yet detailed, but the 
transmembrane helical sequences may perhaps determine a 
particular structure facilitating membrane invagination and 
virus movement through the membrane of the vector 
(Adams et al. 2001). Although the molecular mechanism of 
the interaction is far from fully explained, the involvement 
of protein p31, coded by RNA-4, is strongly suspected. Two 
independent studies of comparative transmission of wild or 
mutated viruses in the coding sequence for protein p31 have 
in fact shown a big decrease in protein p31 mutant trans-
mission (Rahim et al. 2007) (Anne Legrève, pers. comm.). 
In addition to its role in transmission, protein p31 is also 
thought to play a part both in inducing symptoms in Nicoti-
ana benthamiana and in suppressing RNA silencing in roots, 
without affecting viral RNA accumulation (Rahim et al. 
2007). 
 
Genetic resistance strategies used against 
rhizomania disease 
 
One of the major goals of the sugar beet industry is to stabi-
lize the sugar yields. Due to the large area covered by rhizo-
mania infested fields, calculated to span approx. 610,000 ha 
in 2000 (Richard-Molard and Carriolle 2001), a qualitative 
and quantitative high yielding sugar beet production is only 
given by growth of resistant cultivars. Since the first at-
tempts in achieving rhizomania resistant breeding material, 
resistance sources were found in germplasms or wild type B. 
vulgaris ssp. maritima, which all confer phenotypes of 
quantitative resistance (Table 2). Involvement of additional 
minor genes for the expression of the rhizomania resistance 
trait is most likely (Biancardi et al. 2002). Nowadays, hyb-
rid varieties (Table 2) that do not or poorly develop symp-
toms, display reduced virus content have replaced suscepti-
ble varieties. 

The first selection of partial resistant BNYVV sugar 
beet genotypes started at the end of the seventies. Sugar 
beets characterized by reduced virus symptoms, increased 
white sugar content and increased processing quality were 
subsequently selected (De Biaggi 1987; Lewellen et al. 
1987). Although these sugar beet genotypes were also in-

Table 2 Characteristics of the Rz resistance genes and transgenic sequences (underlined) used in sugar beet crops. All Rz genes are located on Chr. III; 
PDR: pathogen-derived resistance. 
Hybrid variety Origin Resistance gene Nature Resistance level 
Holly B. vulgaris ssp. vulgaris (California) Rz1 Dominant Low < good depending on inoculum
WB42 B. vulgaris ssp. maritima (Denmark) Rz2 Dominant Rz2 > Rz1 
WB41 B. vulgaris ssp maritima (Denmark) Rz3 Partialy dominant 

Allelic to Rz2? 
Variable 

R36 B. vulgaris ssp. maritima Rz4 Allelic to other Rz? Partial resistance 
4D6834 B. vulgaris Movement protein PDR Excellent 
G018 B. vulgaris Replicase PDR/PTGS Excellent 
- B. vulgaris CP PDR Good 
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fected with BNYVV, the symptoms were less pronounced 
and plants displayed a better performance in field trils 
(Bürcky 1987). In 1983, the US-American Holly Sugar 
Company identified the “Holly” resistance representing the 
first described BNYVV resistance source (Lewellen et al. 
1987; Biancardi et al. 2002). ‘Holly‘ carryies the resistance 
gene Rz, which was renamed Rz1 (Scholten et al. 1999). 
Holly does not show rhizomania symptoms, but allows the 
virus to replicate as shown by the viral titer contents in such 
varieties (Scholten and Lange 2000). ‘Rizor’ was the first 
diploid hybrid partially resistant to rhizomania (Richard-
Molard 1985; De Biaggi 1987). In the eighties, further re-
sistance sources were identified in Danish tests of Beta vul-
garis ssp. maritima (L.) Arcang wild-beet germplasms lead-
ing to WB41 and WB42 sources (Table 2) representing Rz3 
and Rz2 resistance genes, respectively (Lewellen et al. 
1987; Whitney 1989). Greenhouse tests performed applying 
severe infestation conditions have revealed the better per-
formance of Rz2 versus Rz1 resistance genes suggesting a 
different origin of both genes (Scholten et al. 1999). How-
ever, these genes are present within ChrIII at a distance 
range of 20 cM (Scholten et al. 1994; Scholten et al. 1999) 
to 35 cM (Amiri et al. 2003). Rz3 resistance gene (Table 2) 
has been also mapped on ChrIII at about 5 cM from Rz1, 
suggesting that Rz2 and Rz3 might be allelic (Gidner et al. 
2005). Recently, the use of the hybrid line R36 permitted 
the identification of a new QTL named Rz4 (Table 2), 
which confers partial resistance to BNYVV infection (Grim-
mer et al. 2007). Rz1 or Rz2 carrying cultivars reduce viral 
titer up to 6.104 fold when compared to susceptible lines 
(Acosta-Leal et al. 2008). However, their systematic use 
might favor genetic drift of viral population that seems to 
accumulate nucleotide variation twice rapidly, leading to 
high probability for the emergence of RB isolates (Acosta-
Leal et al. 2008). 

Growing of BNYVV resistant sugar beet cultivars is 
generally accepted as the only strategy to keep sugar beet 
cultivation in infested fields profitable. Reports about in-
creased aggressiveness of BNYVV P-type (France) and ap-
pearance of new BNYVV A-types (USA: Imperial Valley, 
California and Minnesota) have been published (Liu et al. 
2005; Liu and Lewellen 2007). These interesting studies 
show the viral overcome of Rz1 carrying cultivars in the 
field and measure increased BNYVV levels in hair-roots of 
Rz1 plants in greenhouse resistance tests. 

Artificially generated resistance represents an alterna-
tive to the natural resistance (Table 2). The transgenic ex-
pression of virus-derived sequences that form double-stran-
ded RNA (dsRNA) has been obtained and lead to BNYVV 
resistance (Lennefors et al. 2008). Expression of dsRNA in-
duces RNA silencing (Baulcombe 2004, 2005; Filipowicz et 
al. 2005), an innate defense mechanism against invasive nuc-
leic acids that leads to the sequence specific degradation of 
RNA. High levels of resistance to rhizomania were obtained 
in sugar beets expressing a 0.4 kb inverted repeat construct 
based on a partial BNYVV replicase gene derived sequence 
(Table 2) (Lennefors et al. 2008). 

Transgenic sugar beets expressing the BNYVV coat 
protein (Scholten and Lange 2000), or a mutated form of 
one of the tree movement protein TGB-p3 (Lauber et al. 
2001) or the sequence derived from RNA-1 (Lennefors et al. 
2006) both generate higher protection levels than Rz1. 
 
CONCLUSIONS 
 
BNYVV RNA-3 and in particular the p25 protein consti-
tutes the rhizomania disease keystones. New emerging iso-
lates tend to bypass resistance genes by the modification of 
the p25 gene sequence. Sequence variations within p25 
combined with the post-translational modifications make 
the study of this protein rather difficult. Further studies will 
aim to characterize the major functions of p25 protein and 
the cellular genes involved in the root proliferation and the 
parasitic infection. Thereby, such studies will be performed 
within and out viral context. The characterization of the 

p25-deregulated cellular functions should allow the identifi-
cation of cellular markers that in term could help breeders 
for the selection of resistant crops. Before the extensive use 
of such new resistant varieties, prophylactic treatments are 
used to limit the infection. Indeed, the presence of P. betae 
in soils, crop transportation and scattering of soil by the 
mean of farming activities are the main factors that ensure 
the persistence and the spread of the virus. Even with some 
adapted crop rotations, the presence of highly resistant viru-
liferous vector spores prevents any reduction of the infec-
tion. Soil fumigation with methyl bromide reduces inocu-
lum intensity but the Montreal protocol prevents its use as it 
depletes the ozone layer. Crop selection and the use of new 
tolerant varieties having many resistant genes (i.e. for the 
virus and the vector) and also the use of efficient pathogen-
derived resistance may represent the most powerful alter-
native to grow sugar beet and maintain sugar yields. 
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