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ABSTRACT 
Onion (Allium cepa L.) and shallot (A. cepa Aggregatum group) exhibit wide variation in bulb fructan content and the Frc locus on 
chromosome 8 conditions much of this variation. To understand the biochemical basis of Frc we conducted biochemical and genetic 
analyses of Allium fistulosum (FF) - shallot alien monosomic addition lines (AALs; FF+1A-FF+8A), onion mapping populations and 
shallot - A. fistulosum addition lines. Sucrose and fructan levels in leaves of FF+2A were significantly lower than FF throughout the year. 
FF+8A showed significantly higher winter sucrose accumulation and sucrose phosphate synthase (SPS) activity. Markers for additional 
candidate genes for sucrose metabolism were obtained by cloning a major SPS expressed in onion leaf and exhaustively mining onion 
EST resources. SPS and sucrose synthase (SuSy) loci were assigned to chromosome 8 and 6 respectively using AALs and linkage 
mapping. Further loci were assigned, using AALs, to chromosomes 1 (sucrose phosphate phosphatase), 2 (SuSy and 3 invertases) and 8 
(neutral invertase). The shallot - A. fistulosum AAL (AA+8F) also showed the high fructan accumulation. The concordance between chro-
mosome 8 localization of SPS and elevated leaf sucrose levels conditioned by high fructan alleles at the Frc locus in bulb onion or alien 
monosomic additions of chromosome 8 in A. fistulosum and in A. cepa suggest that the Frc locus may condition variation in SPS activity. 
_____________________________________________________________________________________________________________ 
 
Keywords: Japanese bunching onion, mapping, onion, shallot, sucrose 
Abbreviations: AAL, monosomic alien addition line; ACSO, S-alk(en)yl-L-cysteine sulfoxide; DP, degree of polymerization; HPAEC, 
high-performance anion exchange chromatography; QTL, quantitative trait locus; SPS, sucrose-phosphate synthase; SuSy, sucrose 
synthase 
 
 
INTRODUCTION 
 
The most conspicuous feature of Allium cepa L. (onion and 
shallot), which distinguishes it from Welsh or Japanese 
bunching onion (A. fistulosum L.), is the formation of a 
well-defined bulb, where the reserve carbohydrate fructan is 
stored in the thickened sheaths of bladeless leaves (Darby-
shire and Henry 1981). Fructan content in A. cepa bulbs 
varies very widely, comprising less than 4% of bulb dry 
matter in sweet and salad types to over 30% in shallots and 
dehydrator onions (Chope et al. 2006; Muir et al. 2007). 
Although A. fistulosum does not form bulbs (Brewster 
1994), it has limited capability to accumulate the same 
types of soluble carbohydrate and fructan reserve as A. cepa 
in leaf bases and sheaths (Mizuno and Kinpyo 1955; Ernst 
et al. 1998). Although the enzymes involved in biosynthesis 
of fructan from sucrose in onion have been characterized 
(Vijn et al. 1998; Ritsema et al. 2003; Fujishima et al. 
2005), the physiological and genetic basis for the wide vari-
ation in A. cepa fructan accumulation is only partly under-
stood. There is a physiological basis on fructan accumula-
tion in A. cepa that is mainly caused by drought stress and 
partially triggered by bulb abscisic acid concentration 
(Chope et al. 2006). The most notable gap in understanding 
of Allium carbohydrate metabolism is that the pathways of 
sucrose synthesis and degradation have been little studied 

(Lercari 1982; Pak et al. 1995; Thomas et al. 1997; Kahane 
et al. 2001). 

The wide variation in onion carbohydrate accumulation 
offers opportunities for functional studies of the regulation 
of carbohydrate metabolism. However, unlike the forage 
and cereal grasses in which fructan accumulation has been 
intensively studied (Turner et al. 2006; Ruuska et al. 2008), 
genomic resources in onion are very limited. Development 
of the onion genetic linkage has recently allowed quanti-
tative trait locus (QTL) analysis of loci underlying variation 
in onion bulb carbohydrate composition. The first-genera-
tion low-density map was used by Galmarini et al. (2001) to 
detect QTLs on chromosomes 3, 5 and 8 that affect onion 
bulb dry matter and solids content. Interestingly, QTLs on 
chromosomes 3 and 5 were associated with RFLP revealed 
by cDNAs encoding an acid invertase (API89; AA451557) 
and a phloem-unloading sucrose transporter (SUT; API66; 
BE205593), both candidate genes for carbohydrate metabo-
lism. QTL analysis based on the more detailed map of Mar-
tin et al. (2005) revealed a major dominant gene (Frc) on 
chromosome 8 affecting fructan content and confirmed the 
effect of the chromosome 5 QTL on dry matter content 
(McCallum et al. 2006). Central roles for chromosomes 5 
and 8 in the regulation of A. cepa carbohydrate metabolism 
were independently demonstrated using monosomic A. fis-
tulosum - shallot alien monosomic addition lines (AALs) 
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originally developed by Shigyo et al. (1996). Hang et al. 
(2004) showed that the A. fistulosum - shallot AALs carrying 
chromosome 8 from shallot also accumulated non-reducing 
carbohydrates in leaf blades during winter. 

Because the Frc locus conditions a very large pheno-
typic effect on onion bulb composition it is desirable to 
develop a more detailed understanding of the gene or genes 
underlying it, to enable cloning and/or development of 
tightly linked molecular markers suitable for marker-aided 
breeding. However, there are limited genomic resources 
available in Allium; no relevant model system and compar-
ative studies have shown a lack of microsynteny between 
onion, asparagus and rice (Jakše et al. 2006). Genetic stud-
ies in onion are further complicated because it is a biennial, 
out-crossing and highly heterozygous species. These con-
straints, combined with the interesting phenotypes observed 
in A. fistulosum - shallot AALs, suggest that a complemen-
tary strategy for identifying Frc and other major carbohy-
drate metabolism genes in onion is to make use of the A. 
fistulosum - shallot AALs for functional studies. 

In this study we combined biochemical characterization 
of sucrose metabolism in A. fistulosum - shallot AALs and 
inbred onion lines differing at the Frc locus with candidate 
gene approaches shown to be highly productive for genetic 
dissection of carbohydrate metabolism in other species 
(Pflieger et al. 2001). This revealed concordance between 
chromosomal locations of candidate genes involved in 
onion carbohydrate metabolism and regions of chromo-
somes 2 and 8 revealed by QTL mapping and studies of 
addition lines. Furthermore, biochemical characteristics of 
several types of shallot - A. fistulosum chromosome ad-
dition plants were evaluated to determine the effect of A. 
fistulosum genes on sugar productions in shallot and to 
reveal the availability for using these plants in place of 
existing shallot varieties. 

 
MATERIALS AND METHODS 
 
Plant materials 
 
The plant materials were a complete set of A. fistulosum - shallot 
AALs (2n = 2x + 1 = 17, FF+1A - FF+8A) and a control plant, 
Japanese bunching onion (A. fistulosum cv. ‘Kujyo-hoso’, 2n = 2x 
= 16, FF). Moreover, one shallot - A. fistulosum monosomic ad-
dition plants (2n = 2x + 1 = 17, AA+8F) and three shallot - A. fis-
tulosum single-alien deletion lines (2n = 3x - 1 = 23, AAF-1F, 
AAF-4F and AAF-8F) were used for the bulb sugar and sulfur-
containing amino acid analyses. Shallot (AA) and allotriploid 
between shallot and A. fistulosum (AAF) were used as controls for 
bulb compositions. All the plants were grown in an experimental 
field at Yamaguchi University (34°N, 131°E). The A. fistulosum - 

shallot AALs were maintained over two years (January 2002 - 
December 2003) through vegetative propagation. The bulb com-
positions were analyzed in August 2005. Biochemical analyses 
were based on samples taken from at least three plants. Cultivation 
and fertilizer applications were carried out according to the proce-
dures of Shigyo et al. (1997). 
 
Sugar analysis 
 
Sugar extraction from three or more leaf blades (2.0 g) of each 
strain of A. fistulosum - shallot AALs and three or more bulbs 
(10.0 g) of each strain of shallot - A. fistulosum single-alien dele-
tion lines was performed as described previously (Hang et al. 
2004). Free fructose, sucrose and fructan in extracts were deter-
mined by the thiobarbituric acid method (Percheron 1962) with a 
slight modification as described by Yaguchi et al. (2008). Fructan 
compositions in several extracts were analyzed by high-perfor-
mance anion exchange chromatography (HPAEC) according to the 
procedure of Shiomi et al. (1997). 
 
Enzyme assays 
 
Enzyme extraction from three or more leaf blades (5.0 g) of each 
strain of A. fistulosum - shallot AALs was performed once a month 
from April 2002 to March 2003 according to the procedure of 
Yaguchi et al. (2008). Sucrose synthase (SuSy) activity as sucrose 
cleavage, Sucrose phosphate synthase (SPS) and Acid invertase 
activities were measured by the method of Pressey (1969), Nielsen 
et al. (1991) and Shono et al. (1997), respectively. 
 
Biochemical analysis of high and low fructan lines 
from the ‘W202A x Texas Grano 438’ mapping 
population 
 
Analytical methods and development of the ‘W202A x Texas 
Grano 438’ mapping population were described previously 
(McCallum et al. 2006). Seed of 12 inbred F2:3 families (6 high 
and 6 low fructan) were direct sown on September 2005 at West 
Melton, Christchurch, New Zealand, in a three block row/column 
design of 36 plots. Plots were laid out in five rows 2.5 m long with 
0.5 spacing. Each block contained six low fructan (< 20% DW 
fructan) and six high fructan (> 25% DW fructan) lines, based on 
previous analyses. Parent populations were sown in adjoining 
plots. The crop was managed according to standard commercial 
practice. Leaf tissue was sampled from the youngest fully expand-
ed leaf of developing plants on 21 December 2005 prior to initia-
tion of bulbing and on 13 January 2006 after commencement of 
bulbing. 

Leaf blades and base tissue were frozen at -80°C and freeze-
dried. These samples were analysed for sucrose synthase activity 
by the method of Dancer et al. (1990). Assays were duplicated. 

Table 1 PCR primer sets used in this study. 
Primer set Genbank accession number Putative function Forward and reverse primer (5� to 3�) Chromosome
SUCS CF440928 Sucrose synthase TTTGAAGTGTGGCCTTACCTTGAG 6 
   TGATGAAGTCTGTTCGATCATGGC  
ACP013 CF452518 Sucrose synthase TTCACCCTGAAATCGAGGAG 2 
   TCGGCTTGTTCTTCCTTGTC  
SPS3’UTR EU164758 Sucrose phosphate synthase AAAGGGAGATACAGACCAT 8 
    ATTATACATCTCATCATGTCACA  
SPS4 EU164758 Sucrose phosphate synthase GAAGGCTGATATTGTTGGTGAAG 8 
    TGTGTCGTAGGAGCCTGATG  
ACP041 CF437610 Acid invertase GGTTCAAAAGACGCATCCAA 2 
   TAATCCTGCCCATTATCAGAAGT  
ACP042 CF437950 Neutral invertase GATTTTGTGCCCTCTGCAAT 8 
   AAACTAGCTGGCATCAATCCTT  
ACP047 CF437145 Alkaline/neutral invertase AAGGATCTGCCGACCAAGA 2 
    TCAGGCATCCATTCAACAAG  
ACP054 CF435784 Invertase GCTCAATGTAGGTGGTGCTG 2 
   CTGCCGTCTGATTTCTTGCT  
ACP057 CF437606 Cell wall invertase CAGATATGCGAATGGTTTTGC 2 
   TGTCTACAAAGCCTCCAGACG  
ACP059 CF441209 Sucrose phosphate phosphatase GAATTGTTCAGCATTCCAGATG 1 
    CGTTCAGTTGCATGAATTATCCT  
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Glucose, fructose, sucrose and total fructan content were analysed 
by high-performance liquid chromatography (HPLC) and enzy-
matic methods as described previously (McCallum et al. 2006). 
Mature bulbs were hand-lifted after 90% of tops had fallen, field-
cured for 10 days and stored at 4°C and 65% RH for one month 
before analysis. Pooled samples of 10 bulbs were analysed for 
total fructan. 
 
Genetic mapping of sucrose synthase and 
sucrose phosphate synthase loci and assignment 
of genes affecting carbohydrate metabolism 
 
PCR primer sets employed in this study are shown in Table 1. 
PCR conditions and genetic mapping populations were employed 
as described previously (McCallum et al. 2006). The assignments 
were conducted by using A. fistulosum - shallot AALs as described 
previously (Martin et al. 2005). 
 
Determination of S-alk(en)yl-L-cysteine sulfoxide 
(ACSO) in single-alien deletion lines 
 
ACSOs in three or more bulbs (20.0 g) of each strain of single-
alien deletion lines were extracted and analyzed by HPLC ac-
cording to the procedure of Yaguchi et al. (2009). 
 
RESULTS 
 
Quantitative analysis of total sugar contents in A. 
fistulosum - shallot AALs leaf blade tissues 
 
Monthly analysis of total leaf blade carbohydrates over two 
years revealed increased storage of sucrose and fructan in 
the winter months in A. fistulosum and in all A. fistulosum - 
shallot AALs with the exception of FF+2A (Fig. 1), which 
hardly accumulated any sucrose and fructan. Sucrose levels 
were significantly higher in FF+8A. Sucrose content was 
correlated with fructan content in A. fistulosum and each A. 
fistulosum - shallot AAL (r = 0.23 - 0.85). Because of their 
marked differences in sucrose and fructan accumulation 
compared to A. fistulosum, the FF+2A and FF+8A lines 
were selected for more detailed analysis of sucrose meta-
bolic enzymes. 
 
Qualitative analysis of fructan in A. fistulosum - 
shallot AALs leaf blade tissues 
 
HPAEC analysis identified glucose, fructose, sucrose and 
fructan isomers (Table 2) in leaf blade extracts of A. fistu-
losum and A. fistulosum - shallot AALs (Fig. 2). The chro-
matograms of sugar extracts from four AALs (FF+1A, 
FF+3A, FF+5A and FF+7A) were qualitatively similar to 
that of the extract from A. fistulosum. The maximum degree 
of polymerization (DP) of fructan in the extract varied from 

DP 4 in FF+2A to DP 9 in FF+4A and the concentration of 
individual oligosaccharides progressively decreased with 
increasing DP. DP 4 fructans were barely detected in extract 
from FF+2A, FF+8A showed a predominance of tri-sac-
charides (50.3% of total fructan) and in FF+4A approxi-
mately 43% of total fructan consisted of DP higher than 5. 
The total content of neokestose-series saccharides (3b, 4b-c, 
5b-d and 6b-d) was higher than that of 1-kestose-series sac-
charides (3a, 4a, 5a, 6a and 7a) in every determination. 

Table 2 The structural composition of the different fructan in this study. 
 Structure 
1-Kestose (3a) 1F-��-D-fructofuranosylsucrose 
Neokestose (3b) 6G-�-D-fructofuranosylsucrose 
Nystose (4a) 1F (1-�-D-fructofuranosyl)2 sucrose 
4b 6G (1-�-D-fructofuranosyl)2 sucrose 
4c 1F, 6G-di-�-D-fructofuranosyl sucrose 
5a 1F (1-�-D-fructofuranosyl)3 sucrose 
5b 6G (1-�-D-fructofuranosyl)3 sucrose 
5c 1F (1-�-D-fructofuranosyl)2-6G-�-D-fructofuranosyl sucrose 
5d 1F-�-D-fructofuranosyl-6G (1-�-D-fructofuranosyl)2 sucrose 
6a 1F (1-�-D-fructofuranosyl)4 sucrose 
6b 6G (1-�-D-fructofuranosyl)4 sucrose 
6c 1F (1-�-D-fructofuranosyl)3-6G-�-D-fructofuranosyl sucrose 
6d1 1F-�-D-fructofuranosyl-6G (1-�-D-fructofuranosyl)3 sucrose 
6d2 1F (1-�-D-fructofuranosyl)2-6G (1-�-D-fructofuranosyl)2 sucrose 
7a 1F (1-�-D-fructofuranosyl)5 sucrose 
7 1F (1-�-D-fructofuranosyl)m-6G (1-�-D-fructofuranosyl)n sucrose (m + n = 5) 
8 1F (1-�-D-fructofuranosyl)m-6G (1-�-D-fructofuranosyl)n sucrose (m + n = 6) 
9x 1F (1-�-D-fructofuranosyl)m-6G (1-�-D-fructofuranosyl)n sucrose (m + n � 7) 
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Fig. 1 Year-round variations of fructan and sucrose contents in 
FF+2A, FF+4A, FF+6A and FF+8A, which showed a different sugar 
accumulation from that of A. fistulosum (FF). Values denote monthly 
means from Jan. 2002 to Dec. 2003. Values in parentheses show the mean 
difference (±SE) of fructan and sucrose content between A. fistulosum and 
each A. fistulosum - shallot AAL. Dunnett’s multiple comparison test was 
used to test mean separations. *, ** significant at P < 0.05, 0.01, respec-
tively. 
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Enzymology of sucrose metabolism 
 
Enzyme activities, related to sucrose metabolisms, and 
sugar variations in the leaf blades of A. fistulosum and the A. 
fistulosum - shallot AALs FF+2A and FF+8A are shown in 
Fig. 3. Acid invertase activities of A. fistulosum and FF+8A 
were higher in summer but remained constant in FF+2A. 
SuSy activity, as sucrose cleavage, was constant except for 
a high level observed in FF+2A in April. The SPS activities 
in FF+8A were significantly higher in the autumn and were 
correlated with sucrose content (r = 0.74). By contrast, SPS 
activity and sucrose content were not correlated in A. fistu-
losum (r = 0.15) or FF+2A (r = 0.05). 
 
Biochemical analysis of high and low fructan lines 
from the ‘W202A x Texas Grano 438’ onion 
mapping population 
 
Analysis of carbohydrate contents of leaf blades and bases 
in developing plants revealed that sucrose content was sig-
nificantly higher (P < 0.001 for harvest date × fructan phe-
notype interaction) in leaf blades and bases of high fructan 
lines prior to bulbing. Analysis of total fructan in mature 
bulbs of the selected inbred lines confirmed that mean fruc-
tan content of low fructan lines was below 20% of dry mat-
ter content while that of high lines was over 20%. Fructan 
levels in leaf blades and bases during development were 
also higher in the high fructan lines, and negatively cor-
related with fructose content (r = -0.82), as previously re-
ported for mature bulbs (McCallum et al. 2006). The SuSy 
activity, measured as sucrose cleavage, ranged from 13-57 
nmol min-1 mg protein in leaf blades and 117-254 nmol 
min-1 mg protein in leaf bases. Leaf blade SuSy activity was 
significantly higher prior to bulbing (P < 0.001) but was not 
significantly affected by fructan phenotype (P = 0.26). Leaf 

base SuSy activity increased to a small extent after bulbing 
and was not affected by fructan phenotype (P = 0.78). Leaf 
blade SuSy activity was correlated with leaf blade hexose 
content (r = 0.75). 
 
Genetic mapping of sucrose synthase and 
sucrose phosphate synthase loci and assignment 
of genes affecting carbohydrate metabolism 
 
Two marker assays were designed from SPS sequence 
(GenBank Accession EU164758), one spanning two exons 
toward the N-terminus (SPS4) and another targeting the 3� 
UTR (SPS3�UTR). Both assignment using A. fistulosum - 
shallot AALs (Fig. 4) and mapping in an inter-specific cross 
placed these markers on chromosome 8 (Fig. 5). SPS3�UTR 
mapped outside the interval ACM033-ACABE58 to which 
Frc was previously mapped in ‘BYG15-23 x AC43’ 
(McCallum et al. 2006) but close to the dry matter QTL 
identified previously in this population using a partial map 
(Galmarini et al. 2001). To date we have not been able to 
map SPS markers in an onion pedigree due to high levels of 
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Fig. 2 High-performance anion-exchange chromatography (HPAEC) 
profiles of sugars extracted from the leaf blades of A. fistulosum (FF), 
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extracts obtained on Feb. 2002. a, 1-kestose; 3b, neokestose and 1F(1-�-
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Fig. 4 Assignment of a sucrose phosphate synthase (SPS4) marker to 
A. cepa chromosomes using A. fistulosum - shallot AALs (1A-8A). 
Control lanes on left of gel contained amplicons from A. fistulosum (FF) 
and shallot (AA) donor lines. Arrows point to the shallot-specific bands. 
M, molecular size marker (100 bp DNA ladder). 
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heterozygosity in parent lines (data not shown). 
Several sucrose synthase homologs were identified in 

onion EST collections and two were assigned to distinct 
locations on chromosome 6 (CF440928; SUCS) and chro-
mosome 2 (CF452518; ACP013) using A. fistulosum – shal-
lot AALs. The SUCS marker was polymorphic across 
several onion populations segregating for carbohydrate 
composition and linked with the same markers as the su-
crose synthase RFLP marker (SS-Msp1-9_6) previously re-
ported by Martin et al. (2005; Fig. 6). Invertase homologs 
were identified in onion EST collections (Table 1). We 
assigned two neutral invertase homologs (ACP042 and 
ACP047) to chromosomes 8 and 2, a cell wall invertase 
homolog (ACP057) to chromosome 2, and two acid inver-
tase homologs (ACP041 and ACP054) to chromosome 2. A 
sucrose phosphate phosphatase homolog was identified in 
onion EST collections (CF441209; ACP059) and assigned 
to chromosome 1 using A. fistulosum - shallot AALs. 
 
Qualitative and quantitative analysis of fructan in 
shallot - A. fistulosum single-alien deletion lines 
 
Bulb sugar analyses were conducted three shallot - A. fistu-
losum single-alien deletion lines (AAF-1F, AAF-4F and 
AAF-8F) and one shallot - A. fistulosum AAL (AA+8F) 
(Table 3). There was a significant difference in the total 
sugar content between shallot [73.9 mg g-1 fresh weight 
(FW)] and shallot carrying A. fistulosum chromosomes, i.e., 
single-alien deletion lines (AAF-1F and AAF-8F), AA+8F 
and AAF, in which sugars over 200 mg g-1 FW were detected. 
There were significant differences in the fructan content 
with DP 3 or higher between shallot and shallot carrying A. 
fistulosum chromosomes. While there were no significant 
difference in the mono- and disaccharides content between 
shallot and shallot carrying A. fistulosum chromosomes. 
Moreover, shallot could not produce fructan with DP 12 or 
more, although the single-alien deletion lines, AA+8F and 
AAF produced fructan with DP 20 or more, especially 
AA+8F, which had the longest chains (Fig. 7). 
 
Determination of ACSO content in shallot - A. 
fistulosum single-alien deletion lines 
 
There was a great difference in total contents of bulb ACSO 
between shallot (5.57 mg g-1 FW) and shallot carrying A. 
fistulosum chromosomes, i.e., AAF (1.64), the three types 
of single-alien deletion lines [AAF-1F (2.23), AAF-4F 
(2.67) and AAF-8F (2.16)] and AA+8F (3.15). The contents 
of PeCSO, the primary ACSO of A. cepa and A. fistulosum, 
were almost identical in all the examined plants. On the 
other hand, the shallot showed a significant increase in the 
contents of AlCSO, the principal ACSO of garlic (A. sati-
vum), compared with each single-alien deletion lines. In 
addition, MeCSO, the major ACSO of Chinese chives (A. 
tuberosum) and rakkyo (A. chinense), had a content in 
shallots (3.72) that was two to five times as high as that in 
shallot - A. fistulosum single-alien deletion lines [AAF-1F 
(1.27), AAF-4F (1.72) and AAF-8F (1.08)], AA+8F (1.54) 
and AAF (0.74). 

 

Fig. 5 Genetic mapping of the SPS locus to chromosome 8 in the ‘A. 
cepa x A. roylei’ population and alignment with the onion linkage map 
of Martin et al. (2005). Scale denotes recombination distance in Kosambi 
units. Names of AFLP loci in the interspecific map are omitted for clarity.

 

Fig. 6 Genetic mapping of a sucrose synthase locus (SUCS) to onion 
chromosome 6 in bulb onion mapping populations. Scale denotes 
recombination distance in Kosambi units. Names of AFLP loci in the 
interspecific map are omitted for clarity. 

 

Table 3 Carbohydrate contents in leaf sheaths of shallot - A. fistulosum 
single-alien deletion lines (AAF-1F, AAF-4F and AAF-8F), shallot - A. 
fistulosum AAL (AA+8F), shallot (AA) and allotriploid (AAF). 

Carbohydrate contents (mg g-1 FW)z Genomic 
constitution DP = 1 + 2 DP � 3 Total 
AAF-1F 27.6 a 267.3 b 294.9 b 
AAF-4F 15.1 a 191.5 ab 215.6 ab 
AAF-8F 17.8 a 217.6 b 235.4 b 
AA+8F 20.9 a 231.3 b 252.2 b 
AA 18.1 a 58.8 a 73.9 a 
AAF 16.6 a 231.2 b 247.8 b 

z Mean separation with each column by Tukey’s multiple range test (P < 0.05). 
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DISCUSSION 
 
The present study demonstrates that important candidate 
structural genes for sucrose metabolism are located on 
chromosomes 2 and 8 of shallot and that monosomic ad-
ditions of these chromosomes cause significant changes in 
sucrose levels and sucrose metabolic enzymes in the leaf 
blades compared to A. fistulosum. The PCR-based markers 
evaluated in this study were derived from an exhaustive 
search of existing onion EST resources. We therefore sug-
gest that the current findings, together with earlier linkage 
mapping (Martin et al. 2005) and assignment studies 
(Masuzaki et al. 2007), have defined the chromosomal 
locations of major sucrose and fructan metabolism genes 
expressed in vegetative tissues of onion. However, since 
onion EST resources are relatively limited and plant glyco-
syltransferases share extensive sequence similarity, the 
functional roles of these genes are still uncertain. 

We previously reported that, in multiple additions con-
taining shallot chromosome 5, the absence of chromosome 
2 was associated with increased bulb formation (Masuzaki 
et al. 2007). Since we were able to assign five candidate 
genes for sucrose metabolism to chromosome 2, we hy-
pothesise that altered expression of one or more of these in 
FF+2A lines alters sucrose pools. Both invertases, including 
cell wall invertase and acid invertase (Roitsch and Gonzalez 
2004) and sucrose synthases (Paul and Foyer 2001) play 
roles in regulating cycles of sucrose-hexose interconversion 
that regulate sink strength in carbohydrate-accumulating tis-
sues (Nguyen-Quoc and Foyer 2001). The strong correla-
tion observed between SuSy cleavage activity and hexose 
levels in leaf blades of onion inbreds is consistent with a 
key role in driving sink strength (Paul and Foyer 2001) but 
not in determining the Frc phenotype. The observation that 
both FF+8A addition lines and Frc inbred high fructan 
onions exhibiting higher sucrose levels suggests that a gene 
or genes on this chromosome also play a key role in con-
ditioning high sucrose levels. Since SPS catalyses the rate-
limiting step in sucrose biosynthesis (Huber and Huber 

1996) we hypothesise that different expression of SPS may 
underlie the FF+8A and Frc phenotypes. Studies in sugar-
cane have shown a strong correlation between SPS activity 
and sucrose content within and between cultivars (Grof et al. 
1998; 2007). It has been reported that the genes encoding 
sucrose:sucrose 1-fructosyltransferase (1-SST), which cata-
lyze the first step of fructan synthesis (Vijn et al. 1998), 
were induced by high sucrose contents in barley leaves 
(Muller et al. 2000; Wang et al. 2000). It could be possible 
that the inducing expression of genes encoding 1-SST by 
high sucrose contents caused an increase of fructan ac-
cumulation in FF+8A and high fructan Frc_inbred onions. 

The assignment of the SuSy (SUCS) locus to chromo-
some 6 in this study using A. fistulosum - shallot AALs and 
linkage mapping is in agreement with previous RFLP map-
ping (Martin et al. 2005). Previous studies have also located 
both fructan biosynthetic genes, 1-SST (Havey et al. 2004) 
and fructan:fructan 6G-fructosyltransferase (6G-FFT) 
(McCallum et al. 2006) to this chromosome. 

While the assignment of genes to chromosomes using 
AALs is unambiguous, interpretation of biochemical and 
other phenotypes is challenging since genes on the alien 
chromosome are expressed in the diploid genetic back-
ground of a divergent parent (Chang and de Jong 2005). 
Support for the idea that heterozygosity or polyploidy in 
sucrose metabolism genes such as SPS and SuSy can induce 
marked changes in carbohydrate metabolism is provided by 
studies in maize. Causse et al. (1995) observed significant 
heterosis for SPS activity in maize hybrids and subse-
quently reported co-location of the QTL for SPS activity 
with the structural gene (Prioul et al. 1999). More recent 
studies of gene expression in diploid (Auger et al. 2005) 
and triploid (Swanson-Wagner et al. 2006) maize hybrids 
have also revealed non-additive expression of SuSys and 
SPS. 

In the present study, no candidate genes related to sugar 
metabolism were assigned on chromosome 4 using AALs. 
Further biochemical and genetic studies related to sugar 
metabolism could make clear the details of fructan accumu-
lation in FF+4A. The clarification of the Frc and AAL bio-
chemical phenotypes, combined with assignment of ad-
ditional sucrose metabolism genes to the Allium map, now 
provide a more comprehensive framework for genetic and 
physiological analysis of economic traits in Allium vegeta-
bles, including consumer attributes such as sweetness as 
well as production traits such as bulbing, heterosis and dry 
matter accumulation. The observation that key candidate 
genes map at or near locations of several QTL affecting 
carbohydrate traits in onion confirms similar findings in 
other crops (Pflieger et al. 2001). In conclusion, our obser-
vation that FF+8A addition lines and high fructan Frc onion 
lines exhibit high sucrose levels suggests that targeted stud-
ies of sucrose metabolism genes, notably SPS, on this chro-
mosome should be undertaken to determine the functional 
nature of Frc. 

Shallot - A. fistulosum AAL (AA+8F), AAF and the 
three types of single-alien deletion lines (AAF-1F, AAF-4F 
and AAF-8F) differed widely from shallot regarding their 
bulb components of sugars and ACSOs. Regarding sugars, 
AAF, AA+8F and the single-alien deletion lines showed 
higher contents of fructans, which are oligosaccharides with 
chain lengths higher than DP 2, than shallot (Table 3), and 
the chain lengths in shallot were the shortest (Fig. 7). These 
results indicated that the chromosomes derived from A. fis-
tulosum in the diploid background of shallot may contribute 
to an increase in the fructan production in shallot bulbs. 
This study revealed that the important QTL (Frc) and the 
major enzyme gene SPS related sucrose synthesis were 
allocated on chromosome 8A of shallot. From the point of 
view of a close genetic relationship between A. fistulosum 
and shallot, there is a high probability that a number of 
orthologues are located on a same group of chromosomes, 
namely homoeologous chromosomes, in these two species. 
The bulbs of AA+8F showed higher fructan content than 
shallot in this study. This indicated that anonymous factors 
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Fig. 7 High-performance anion-exchange chromatography (HPAEC) 
profiles of sugars extracted from the bulbs of shallot (AA), AAF and 
AA+8F. Analyses were carried out by using extracts obtained on Aug. 
2005. 3a, 1-kestose; 3b, neokestose; 1F(1-�-D-fructofuranosyl)m-6G(1-�-
D-fructofuranosyl)n sucrose (4a: m = 2, n = 0; 4b: m = 0, n = 2; 4c: m = 1, 
n = 1; 5a: m = 3, n = 0; 5b: m = 0, n = 3; 5c: m = 2, n = 1; 5d: m = 1, n = 2; 
6a: m = 4, n = 0; 6b: m = 0, n = 4; 6c: m = 3, n = 1; 6d: m = 1, n = 3 or m = 
2, n = 2; 7a: m = 5, n = 0; 8x: n + m �6); 9 - 25, fructan with DP 9 - 25. 
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related to produce fructan, e.g. Frc and SPS, should be 
located on the chromosome 8F of A. fistulosum. The ad-
ditive experiment of the enzyme activities related to fructan 
and sucrose biosyntheses in the shallot, the shallot - A. fistu-
losum AAL and single-alien deletion lines should reveal the 
gene expression event on the alien chromosome of A. fistu-
losum in shallot. 

In ACSOs, Yoo and Pike (1998) reported that the total 
ACSO content of A. fistulosum was lower than that of shal-
lot. The bulbs of AAF and the single-alien deletion lines 
showed much lower contents of total ACSO than shallot in 
this study. This result suggested that chromosomes derived 
from A. fistulosum in the diploid background of shallot 
might carry anonymous factors to inhibit the synthesis of 
ACSOs in the bulbs of shallot. Low ACSOs content cor-
related with low pungency of A. cepa bulbs (Sinclair et al. 
1995; Lancaster et al. 1998; Crowther et al. 2005). Gene-
rally, higher soluble solid content, including fructan, cor-
related increase in pungency of the bulbs in A. cepa (Simon 
1995; Sinclair et al. 1995; Lancaster et al. 1998). However, 
Simon (1995) noted the feasibility of independent selection 
for pungency and soluble solids in onion. Several shallot 
carrying A. fistulosum chromosomes showed not only the 
high fructan accumulation but also the low ACSOs content 
in this study. Accordingly, these shallot - A. fistulosum ad-
dition lines could be a new sweet variety of the shallot. 
 
FUTURE PERSPECTIVES 
 
Genetic analysis aided by a framework molecular marker 
map has allowed rapid advances in the understanding of 
variation in onion bulb composition. In this study, the ef-
fectiveness of complete set of A. fistulosum - shallot AALs 
for chromosomal assignment of genes associated with car-
bohydrate composition suggests that these will continue to 
be a key resource for functional and genetic studies of 
major genes. Recently, six types of shallot - A. fistulosum 
single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F and -
8F) have been produced (Hang et al. 2004; Yaguchi et al. 
2009). Fifteen linkage groups based on short sequence 
repeats, cleaved amplified polymorphic sequences, and 
insertion-deletion markers of A. fistulosum have been al-
located to a single chromosome via the use of shallot - A. 
fistulosum single-alien deletion lines (Tsukazaki et al., 
2008). They have started to integrate the A. fistulosum link-
age map with the A. cepa map developed by Martin et al. 
(2005). Those works should contribute advances in the 
understanding of variation in the composition of onion 
bulbs and in A. fistulosum leaves. 
 
SMALL SUMMARY 
 
To understand the biochemical basis of Frc, QTL related to 
the onion bulb fructan concentrations, we conducted bio-
chemical and genetic analyses of Allium fistulosum (FF) - 
shallot alien monosomic addition lines (AALs; FF+1A-
FF+8A), onion mapping populations and shallot - A. fistu-
losum addition lines. High sucrose and fructan accumula-
tions were detected in FF+8A leaf blades correlated with 
high SPS activity. SPS markers obtained by cloning a major 
SPS expressed in onion leaf were assigned to chromosome 
8 using AALs and onion linkage mapping. Moreover, the 
bulbs of shallot - A. fistulosum AAL (AA+8F) also showed 
the high fructan accumulation. The concordance between 
chromosome 8 localization of SPS and elevated leaf sucrose 
levels conditioned by high fructan alleles at the Frc locus in 
bulb onion or AALs of chromosome 8 in A. fistulosum and 
in A. cepa suggest that the Frc locus may condition varia-
tion in SPS activity. On the other hand, allotriploid between 
shallot and A. fistulosum (AAF) and shallot - A. fistulosum 
single-alien deletion lines showed high fructan and low 
ACSO levels in the bulbs. This indicated that chromosomes 
derived from A. fistulosum in the diploid background of 
shallot should carry several factors to promote the fructan 
biosynthesis and inhibit the synthesis of ACSOs in the bulbs 

of shallot. 
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