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ABSTRACT 
Starch is considered a major source of available energy in the human diet. In potato, starch content varies from 70 to 90% on a dry matter 
basis depending on the botanical variety. The traditional view of starch digestion is that to a large extent starch is rapidly digested. 
However, a variable fraction of ingested starch can escape digestion in the foregut, and ferment later in the hindgut (RS, resistant starch). 
Raw potato starch is largely considered as a high RS ingredient. However, potato is mostly consumed processed, which gelatinizes starch 
at different extents, and this will have an effect on the composition and nutritional values (glycemic index and RS content). In general, 
processed potato has high levels of digestible starch, although the values may decrease with an increased time of storage after cooking. 
RS is becoming more desirable in the human diet because of its relevance to health, on the prevention and control of some digestive and 
metabolic disorders. RS intake, in substitution to digestible starch, seems to decrease postprandial glycemic and insulinemic responses, 
improve whole body insulin sensitivity, increase satiety, lower plasma cholesterol and triglyceride concentrations, and reduce fat storage. 
RS has also been associated with protective effects on chronic colonic diseases, including reduction of colon cancer risk and in the 
treatment of bowel inflammatory conditions. In summary, this review presents the current understanding of potato starch and potential 
health benefits which are likely to be associated with intake of resistant potato starch. 
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INTRODUCTION 
 
Starch is considered a major source of available energy in 
the human diet (Noda et al. 2008). This is not only a con-
sequence of its high abundance in cereals, some legume 
grains and potatoes (Solanum tuberosum L.), but also 
because of its high energy content and digestibility (Hizu-
kuri 1996). In potatoes, the starch content varies from 70 to 
90% based on dry matter, depending on the botanical vari-
ety. 

The traditional view of starch digestion is that starch to 
a large extent is rapidly digested. However, the kinetics and 
extent to which starch is digested depends on its composi-
tion and physicochemical characteristics. Moreover, it is 
known that a variable fraction of ingested starch can escape 
digestion in the foregut, and ferment later in the hindgut. 
Thus, starch has been classified as rapidly digestible starch 
(RDS), slowly digestible starch (SDS), and resistant starch 
(RS) to specify the characteristics of starch and physiolo-
gical relevance (Englyst et al. 1992). The glycemic index is 
related to the amount of RDS, while SDS and RS are 
becoming more desirable in the human diet because of their 
relevance to health and the prevention and control of some 
digestive and metabolic disorders, such as obesity, diabetes, 

coronary heart disease and the colonic cancer (Cummings et 
al. 1996; Kendall et al. 2004). Raw potato starch is largely 
considered as a high RS ingredient. However, potato is 
mostly consumed processed in different ways: boiled, oven 
baked, or fried, alone as well as with other foods. Pro-
cessing will gelatinize starch at different extents, and this 
will have an effect on the composition and nutritional val-
ues (glycemic index and RS content). 

This review presents the current understanding of po-
tato starch, its composition and nutritional characteristics in 
different ways of consumption, which will have an effect on 
the digestive processes and on potential health benefits 
which are likely to be associated. 
 
POTATO STARCH COMPOSITION AND 
DIGESTIBILITY 
 
Pure starch consists of �-glucan chains in the form of amy-
lose and amylopectin. Amylose is essentially a lineal mole-
cule, with a molecular weight between 1 × 105 – 1 × 106 kDa 
(Tester et al. 2004) in which D-glucose monomers (1000 on 
average) are mainly linked (~99%) by �(1-4) glucosidic 
bonds, except a small fraction (~1%) of �(1-6). Amylopec-
tin is a much larger molecule (molecular weight ~1 × 107 – 
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1 × 109) and with a higher ratio of branched bonds (~5%). 
Depending on the botanical origin of starch, differences in 
the amylose/amylopectin composition and levels of struc-
ture may govern the pattern and rate of the starch hydrolysis. 
While most native cereal starches are characterized by their 
slow digestion property (SDS >50%), raw potato starch 
shows a high resistance to �-amylase (Fig. 1, Zhang et al. 
2006). In both cases, the disruption of the native starch 
organization by thermal processes leads to a loss of the slow 
digestion property and produces a huge increase in RDS. 

Research has shown that structural features of the raw 
starch granule have a major influence on the susceptibility 
of starch during bacterial or pancreatic �-amylolysis (Zhang 
et al. 2006). The enzymes involved in the solid-solution 
reaction first need to diffuse toward and bind the solid 
structure to cleave the glycosidic linkages. In plants, starch 
is compacted in spherical granules with a smooth surface 
constituted by final starch chains in a protein matrix. Dif-
ferences in the granular structure of starches from different 
plant sources include shape, size and porosity (pores and 
channels within the starch granules). Potato granules are 
oval or spherical in shape and have a diameter of up to 75 
μm, while cereal granules are smaller (5-35 μm) and poly-
hedric, and the legume ones (15-80 μm) are kidney shaped 
(Fig. 2, Robyt 1997). Potato starch granules are very large 

and therefore have low surface areas relative to volume 
compared to cereal starch granules, resulting in a reduced 
area exposed to attacking enzymes. However there are im-
portant differences in starch potato granule size depending 
on cultivars and environmental factors. In general, it is 
accepted that tubers grown in regions with lower tempe-
ratures resulted in starches with larger granule sizes (Singh 
et al. 2008). 

The properties of the starch granules are the result of a 
well organized structure. Starch granules are composed of a 
large number of small, randomly orientated crystalline re-
gions in an amorphous matrix. The first level of organiza-
tion is the arrangement of the side chains of amylopectin 
into clusters (French 1984). These clusters are part of the 
crystalline and amorphous lamellae. In the crystalline 
lamellae the long amylopectin chains form double helices, 
while the branching points and the shortest amylopectin 
chains are located in the amorphous lamellae (Fig. 3, Gal-
lant et al. 1997). Crystalline and amorphous lamellae are 
organized into spherical structures termed blockets, which 
are proposed to be the next level of granule organization 
(Gallant et al. 1997). The blocket structures are in turn or-
ganized into growth rings, which are layers of semi-
crystalline and crystalline shells visible by light microscopy. 
Finally, the starch polymers are arranged radially with their 
molecular axes aligned perpendicular to the growth rings 
and the granule surface (Baker et al. 2001). 

X-ray diffraction analysis provides different types of 
spectral patterns depending on the origin of the starch: most 
cereal starches yield the A-type pattern, potato and part of 
the tuber starches the B-type, whereas most legume starches 
yield an intermediate C-type which is a mixture of A and B 
(Gernat et al. 1990). Starches with B- and C-type patterns 
are more resistant to digestion than A-type ones (Topping 
and Clifton 2001). Spectral patterns reflect the crystalline 
structures, because it is well known that amylopectin is the 
molecule that forms the crystallites in starch granules and 
that the length of their molecules is highly correlated with 
its fine structure. In a debranched profile of starch, different 
fractions can be identified, such as amylose, long chain 
amylopectin (degree of polymerization, dp ~50-60) and 
short chain (dp <25-30) amylopectin (Zhang et al. 2006). 
Large and small amounts of short chain fractions are asso-
ciated with A- and B-type X-ray diffraction (Buléon et al. 
1998). Ratios of ~3 and ~1.5 of short to long chain amylo-
pectin fractions are described for cereal and potato starch, 
respectively. 

The shortest chains with a degree of polymerisation of 
5-10 cannot form stable double helices, and may disrupt the 

Fig. 2 Scanning micrographs of starch granules. (A) Corn, (B) potato, 
(C) pea. Reprinted from Robyt JF (1997) Polysaccharides I: Structure and Func-
tion. Essentials of Carbohydrate Chemistry, p 157-227, with kind permission of 
Springer-Verlag and author, ©1997. 

Fig. 1 Digestion profiles of native and cooked (A) normal maize and 
(B) potato starches. RDS, SDS, and RS, respectively, represent rapidly 
digestible starch, slowly digestible starch, and resistant starch based on the 
Englyst assay. Redrawn from Zhang G, Venkatachalam M, Hamaker BR (2006) 
Structural basis for the slow digestion property of native cereal starches. Biomacro-
molecules 7, 3259-3266, with kind permission of the American Chemical Society 
and authors, ©2006. 
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formation of an ordered crystalline structure. On the other 
hand, long chains which are used to connect adjacent clus-
ters are considered a quantitative indicator of crystalline 
perfection (Gerard et al. 2001). As described above, potato 
starch is characterized by a higher proportion of long chain 
amylopectin with longer chains in comparison with cereals. 
These long chains allow a fine crystalline structure with 
shorter flexible spacers than the A-type starch. Shorter fle-
xible spacers decrease the mobility of starch and lead to 
lower �-amylase accessibility and higher RS content of the 
potato starch granule. 

Another factor that helps explain the low digestibility of 

raw potato starch is its high concentration of covalently 
bound phosphate compared to other starches (Hizukuri et al. 
1970). Amylolytic enzymes are incapable of bypassing the 
phosphorylated glucosyl residue, so phosphoryl-oligosac-
charides are released from the digestion of potato starch 
with amylase (Kamasaka et al. 1995). For all these reasons, 
raw potato starch is classified as RS type 2 (RS granules) 
according to the classification published in 1992 by Englyst. 
 
GELATINIZATION OF STARCH 
 
Potato for human consumption is processed in different 
ways, boiled, oven-baked or fried. The main result of these 
processes is gelatinization of starch and the disruption of 
the starch granules. It is well known that when native star-
ches are heated at low or moderate levels of moisture, the 
crystalline structures within the starch granule lose order. 
This process is referred to as melting and occurs at tempe-
ratures that vary depending on the moisture and origin of 
the starch. In the absence of water, melting temperatures ex-
ceed 150°C but fall to 100-120°C at 20% moisture (An-
nison and Topping 1994). When starch is heated in excess 
water the granules undergo a characteristic structural reor-
ganization, which occurs as a two stage process. The first 
stage involves the swelling of the granule that leads to the 
loss of organized structure (loss of A and B patterns). Ulti-
mately granule structure is completely lost and a thin paste 
or gel is formed. At the molecular level the process is ex-
plained by hydrating double helices as a consequence of 
elevated temperatures. Scanning electron microscopy studies 
of potato starch have revealed a honeycombed-like structure 
that appears in the granules as they gelatinize (Tester et al. 
2004). Above 90°C, a marked loss of granular structure oc-
curs, although the starch granules may remain as fragments 
comprised of amylopectin suspended in a solution of amy-
lose (Liu and Zhao 1990). This process makes the starch 
completely digestible by starch hydrolyzing enzymes (Fig. 
1). The binding step of amylase is of kinetic significance 
when the enzyme is acting on a particular granular or supra-
molecular structure, but when acting on soluble starch 
fragments, the reaction can be described by conventional 
Michaelis-Menten kinetics (i.e. the rate is directly propor-
tional to the enzyme concentration). 

Fig. 4 Percentage of in vitro total starch hydrolysis in cooked potatoes in comparison with white bread as a reference food. Reprinted from García-
Alonso, Goñi I (2000) Effect of processing on potato starch: In vitro availability and glycaemic index. Nahrung 44, 19-22, with kind permission of Wiley-VCH Verlag GmbH 
& Co. KGaA and authors, ©2000. 

Fig. 3 Overview of starch granule organization. Reprinted from Gallant 
DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level 
of granule organization. Carbohydrate Polymers 32, 177-191, with kind permission 
of Elsevier and authors, ©1997. 
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However, different processing techniques may affect the 
level of RS yielded as well as the glycemic index (GI). 
Garcia-Alonso and Goñi (2000) measured changes observed 
in the digestible and indigestible starch fractions and in the 
kinetics of digestion in potatoes processed in different ways 
(Fig. 4). In general, processed potato has high levels of di-
gestible starch (Table 1), although the values may decrease 
with the time of storage. Boiled or mashed potato (instant 
potato) showed the highest rates of digestion similar to those 
of white bread. In general, modern methods of processing 
affect the rate of digestion and subsequent blood glucose 
profile. Thus, instant potato, which is prepared under re-
peated wetting and drying may promote higher GI than con-
ventionally cooked potato, which generally involves less 
physical disruption and only moderate heat (Brand et al. 
1985). On the other hand, potato dumplings, a typical potato 
and wheat food, used as a substitute for pasta has been des-
cribed to promote reduced plasma glucose as compared to 
white bread, hard toasted bread, pizza (Fig. 5, Riccardi et al. 
2003) or boiled potatoes (Parillo et al. 1985). 

Frying potatoes in hot oil decreases the rate of starch 
hydrolysis, with home cooked (French fries) showing lower 

values than crisps (Garcia-Alonso and Goñi 2000) or boiled 
potatoes (Leeman et al. 2008). Goñi et al. (1997) estab-
lished a relationship between thickness and the RS content 
of fried potatoes (RS= 2.24 + 0.54 x (thickness, mm)), the 
levels of RS being higher in thicker French fries. 

Usually, processed starchy foods undergo a period of 
storage between cooking and consumption. During this pe-
riod, the amylose and amylopectin molecules of gelatinized 
starches can re-associate to form a gel (Miles et al. 1985). 
Gel formation is a dynamic process, because cristallinity 
within the gel increases with time. This cristallinity is ref-
erred to as retrogradation and can be detected by X-ray dif-
fraction as a B-type pattern. Retrogradation may take from 
several hours, in the case of high amylose starches, to seve-
ral days, in the case of high amylopectin starches (Annison 
and Topping 1994). By repeating the heating and cooling 
cycles, retrogradation can be increased extending crystalline 
regions of �-glucan. Enzymatic treatment of retrograded 
starch with �-amylases breaks down non-retrograded starch, 
leaving a fraction that is enzymatically indigestible that has 
been called RS (Russell et al. 1989). The result is a reduc-
tion in the amount of the RDS and an increase in the amount 
of the SDS and the RS (Table 2, Fig. 4). 
 
FERMENTATION OF POTATO RESISTANT 
STARCH 
 
From the above references, it is clear that potato may be 
considered a main source of RS for the human large bowel, 
either by incomplete gelatinization of raw potato starch or 
by retrogradation. In Western countries, it has been estimated 
that the amount of resistant starch, as a potential substrate 
for bacteria, may range between 8-40 g/day, in comparison 
with the amount of non-starch polysaccharides (NSP) (8-18 
g/day) or oligosaccharides (2-8 g/day) (Cummings and 
Englyst 1991). Of the typical starchy foods, the highest RS 
concentration is found in the legume grains (95-111 g/kg 
total starch basis, Liljeberg 2002), green bananas (527 g/kg, 
Langkilde et al. 2002) or commercially processed potato 
products (48-59 g/kg, Liljeberg 2002). Among the cereal 
products, intact rye grain bread, barley flakes or semolina 
porridge are identified as having RS levels in the high range 
(45-60 g/kg, Liljeberg 2002). Slightly lower values are ob-
served in other cereal products (Englyst et al. 2003), such 
as breakfast cereals (33 g/kg), cornflakes (49 g/kg), bakery 
products and crackers (33 g/kg) and biscuits (32 g/kg). It is 

Table 1 Total, resistant (RS) and digestible (DS) starch content in potato samples processed in different ways. Results are mean ± SD (on dry matter) 
of 4 assays. Reprinted and adapted from García-Alonso A, Goñi I (2000) Effect of processing on potato starch: In vitro availability and glycaemic index. Nahrung 44, 
19-22, with kind permission of Wiley-VCH Verlag GmbH & Co. KGaA and authors, ©2000. 
Potato Total starch (%) Resistant starch Digestible starch (%)1 Moisture (%) 
Raw 79.36 ± 5.75 d 69.05 ± 1.76 h 10.31 81.25 
Boiled 79.36 ± 5.75 d 1.18 ± 0.09 a 78.18 81.25 
Boiled and cooled 75.18 ± 2.94 cd 4.63 ± 0.99 e 70.55 79.43 
Raw flakes 71.97 ± 1.10 c 2.80 ± 0.21 cd 68.57 8.59 
Mashed 71.97 ± 1.10 c 2.08 ± 0.18 bc 69.89 86.23 
Oven-baked 65.91 ± 3.23 b 3.70 ± 0.84 d 62.20 79.63 
French-fries 59.34 ± 6.31 a 6.64 ± 0.63 f 52.70 17.69 
Crisps 65.42 ± 1.45 b 3.27 ± 0.79 d 65.15 2.57 
Retrograded 79.36 ± 5.75 d 10.38 ± 0.08 g 68.98 4.32 

1 Digestible starch is the difference between total and resistant starch. 
Different letters in a column denote significant differences (P<0.05). 
 

Table 2 Effect of various processing methods and storage temperatures on starch digestibility in potato (Solanum tuberosum) flour. RDS and SDS, res-
pectively, represent rapidly digestible starch and slowly digestible starch. Reprinted and adapted from Niba LL (2003) Processing effects on susceptibility of starch 
to digestion in some dietary starch sources. International Journal of Food Sciences and Nutrition 54, 97-109, with kind permission of Taylor & Francis and the author, ©2003. 

Stored at ambient temperature (10 days) Stored frozen (10 days) Digestibility 
(g/100 g) 

Raw Autoclaved Microwaved Parboiled 
Autoclaved Microwaved Parboiled Autoclaved Microwaved Parboiled

RDS 3.04 a 13.6 cd 8.44 abc 16.0 cd 10.7 bc 5.64 ab 7.96 abc 17.5 d 4.60 ab 15.9 cd 
SDS 15.9 ab 14.6 a 14.2 a 23.4 bc 25.3 cd 12.2 a 13.6 a 33.8 e 17.0 ab 32.6 de 
Total starch 43.1 abc 44.7 abc 39.0 abc 54.2 c 36.1 ab 32.3 a 47.0 abc 36.7 ab 31.3 a 51.9 bc 

Means within a row with different letters are significantly different (P<0.05). 
 

 

Fig. 5 Blood glucose rise above baseline after white bread O�O; hard 
toasted bread ���; pizza ���; and potato dumplings � ; *P 
<0.05, **P <0.01 potato dumplings versus white bread. Reprinted from 
Riccardi G, Clemente G, Giacco R (2003) Glycemic index of local foods and diets: 
the Mediterranean experience. Nutrition Reviews 61, S56-S60, with kind permission 
of International Life Sciences Institute and authors, ©2003. 

 

4



Potential health benefits of potato starch. Nofrarías et al. 

 

generally accepted that as more starch is eaten, more enters 
the colon (Chapman et al. 1985), and it is thought that 
~10% of dietary starch may escape digestion in the human 
small intestine (Topping and Clifton 2001). 

Different studies have shown that RS is largely digested 
in the colon in most individuals. In a study by Cummings et 
al. (1996), RS was extensively digested in 27 of 34 diet 
periods of 15-days, but five subjects were unable to break 
down one or two of the RS sources. Fermentation of RS 
was associated with a significant increase of the stool wet 
weight by 1.6 g/d per g RS fed for potato, but this was sig-
nificantly less than bran at 4.9 g/d per g NSP. RS con-
sumption was also associated with a significant increase in 
the fecal excretion of N, short-chain fatty acids (SCFA) and 
NSP. The fermentation of RS in the colon may allow an in-
creased microbial biomass throughout the colon, conco-
mitantly with a higher excretion of N in feces and a lower 
excretion of urinary N. It is well known that bacteria in-
habiting the colon of single-stomached animals obtain their 
energy mainly from dietary carbohydrates escaping foregut 
digestion. As fermentable carbohydrates decline in concen-
tration along the length of the colon, bacteria switch to the 
degradation of proteinaceous material and bacteria autolysis 
(Gibson and Roberfroid 1995; Martínez-Puig et al. 2003). 

SCFA (mainly acetic, propionic and butyric acids) are 
formed during microbial fermentation of carbohydrates in 
the colon. Starches have been shown to produce high pro-
portions of butyric acid by in vitro fermentation with human 
faecal inocula (Casterline et al. 1997). Different in vivo tri-
als have also shown an increased faecal excretion of buty-
rate in normal human subjects (Noakes et al. 1996) and ani-
mals (Henningson et al. 2003). It is accepted that RS from 
different sources and bran from wheat or oat, stimulate the 
formation of butyrate (Bach Knudsen et al. 1993), while 
xylans and pectin rich fractions (sugar-beet pulp) are all 
associated with a relatively low level of butyrate (Anguita 
et al. 2007). Among different sources of RS, only raw po-
tato starch gave an increased faecal proportion of butyric 
acid (Cummings et al. 1996), which reflects that production 
of butyric acid and utilization of butyrate by the colonic 
mucosa may vary between sources of RS (Martin et al. 
2000). Henningson et al. (2003) have also shown an in-
crease in the proportion of butyric acid in the hindgut of rats 
with longer adaptation periods (42 vs. 13 days). 
 
POTENTIAL HEALTH BENEFITS OF POTATO 
STARCH 
 
There are well established beneficial effects of the dietary 
fiber, i.e. NSP and RS, on some major digestive and meta-
bolic diseases in humans (Cummings et al. 1996). Different 
reports have described the influence of RS consumption on 
the prevention of digestive pathogens or diarrhea (Williams 
et al. 2001). For example, there is recent evidence that 
giving RS orally to human patients with cholera increases 
fecal SCFA concentration and shortens the duration of diar-
rhea (Ramakrishna et al. 2000). RS has also been associated 
with protective effects on chronic colonic diseases, inclu-
ding reduction of colon cancer risk and in the treatment of 
ulcerative colitis (Cassidy et al. 1994; Hylla et al. 1998; 
Topping and Clifton 2001; Champ 2004). The main mecha-
nisms cited are the ability of RS to increase fecal bulk 
(Cummings et al. 1996), increase the molar ratio of butyrate 
in relation to other SCFA and dilute fecal bile acids (Van 
Munster and Nagengast 1993). Accordingly, raw potato 
starch may reduce indices associated with damage to epi-
thelial cells, such as crypt cell proliferation and magnesium 
excretion, whereas it may increase mucin sulfatation, which 
promotes epithelial protection (Nofrarías et al. 2007). 

Increases in stool weight have a diluting effect on pot-
ential carcinogens and irritant compounds, and epidemio-
logic studies have shown a reduced risk of colon cancer 
under these circumstances (Cummings et al. 1992). How-
ever, due to its high fermentability, the contribution of RS 
to the bulk of digesta is low (Le Leu et al. 2002). It has 

been reported that RS has mildly laxative properties, equi-
valent to the less effective forms of NSP, oligosaccharides 
or inulin (Gibson et al. 1995; Mortensen and Nielsen 1995). 
In contrast to NSP, the mode of action of RS in the colon is 
fermentation, bacterial growth and SCFA production; while 
NSP affect colonic function by fermentation and/or the 
water-holding capacity of unfermented polysaccharides 
structures (Adiotomre et al. 1990) and/or mechanical fac-
tors (Bardon and Fioramonti 1983). 

A reduction in digesta cytotoxicity could also be ex-
plained by the reduction of secondary bile acids formation 
(Van Munster et al. 1994; Hylla et al. 1998) or protein fer-
mentation which is known to produce toxic end-products 
(Lin and Visek 1991; Goovers et al. 1999). Raw potato 
starch provides a large amount of RS available for colon 
fermentation, which is known to reduce protein fermenta-
tion (Martínez-Puig et al. 2003). However, there is no con-
sensus on the ability of RS to reduce the luminal concentra-
tion of compounds that are damaging to the colonic mucosa, 
including fecal ammonia, phenols, and N-nitroso com-
pounds (Kendall et al. 2004). 

As described above, it is well known that the fermen-
tation of RS produces large amounts of butyrate in the colon 
of humans and other single-stomach animals (Scheppach et 
al. 1988; van Munster et al. 1994; Noakes et al. 1998; Le 
Blay et al. 1999; Martínez-Puig et al. 2007). Butyrate, as 
the preferential colonocyte energy source (Roediger 1995), 
contributes to the maturation of colonic epithelium (Cher-
buy et al. 1995) and to mucosal regeneration in the event of 
atrophy (Tappenden et al. 1997). By modulating prolifera-
tion, differentiation and apoptosis (Kruh et al. 1995; Luci-
ano et al. 1996; Hass et al. 1997; Mentschel and Claus 
2003; Nofrarías et al. 2007), butyrate assists in the main-
tenance of a normal cell phenotype and also in preventing 
the development of abnormal or neoplasic cell populations 
(Roediger and Millard 1995; Wachtershauser and Stein 
2000; Topping and Clifton 2001). Apparently, the condi-
tions in the colonic lumen, and particularly butyrate concen-
tration, may have a major influence on colonic oncogenesis 
(Hill 1995). Epidemiological studies performed across 12 
countries worldwide have shown an apparent relationship (r 
= -0.70, P<0.001) between increased starch consumption 
and the diminished risk of colorectal cancer (Cassidy et al. 
1994). However, the experimental evidence of a benefit of 
starch on colorectal cancer is not so strong. Data obtained 
from cancer patients in humans are inconclusive due to the 
absence of information of SCFA concentrations in the di-
gestive tract. The evidence from animal experiments of RS 
feeding on colorectal carcinogenesis is limited and conflic-
ting (Le Leu et al. 2003), because very diverse experimental 
protocols have been used. In rats exposed to carcinogens, 
Cassand et al. (1997), but not Young et al. (1996), observed 
a reduction in the number of aberrant crypt foci in animals 
fed a diet containing potato starch. Criticisms of these ex-
periments have referred to the feebleness of the animal 
models used, such as that derived from the coprophagic 
behavior of rats (Topping and Clifton 2001). Moreover, it 
may be important to consider the time required for intestinal 
microbiota to adapt to a chronic load of a fermentable sub-
strate. 

Some studies have indicated that the nature of fiber in 
the diet can also affect the composition, metabolism and 
function of the immune cells (Lim et al. 1997; Cavaglieri et 
al. 2000). These effects of fiber may be due to changes in 
the SCFA produced. Butyrate has also been shown to down-
regulate the stimulatory function of blood-derived antigen-
presenting cells (Bohmig et al. 1997), upregulate Kuppfer 
cell PGE2 production (Pérez et al. 1998) and inhibit B-
lymphocyte function (Eftidiami et al. 1995) and Th1-type 
responses (Cavaglieri et al. 2003). These findings may ex-
plain the therapeutic effect of butyrate on inflammatory 
bowel disease, a pathological condition characterized by a 
chronic inflammation of the gut mucosa (Cavaglieri et al. 
2003). Thus, recent studies in the pig model have found that 
feeding large quantities of raw potato starch reduces colonic 
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immune reactivity and also levels of blood leukocytes, in-
cluding T lymphocytes and neutrophils which are increased 
as a result of inflammation or disease (Nofrarías et al. 2007). 

The consumption of different types of starch has been 
shown to be beneficial in a variety of metabolic diseases, 
such as insulin resistance and diabetes (Higgins et al. 1996), 
plasma cholesterol and triglyceride concentrations (de 
Deckere et al. 1993), and chronic renal or hepatic disease 
(Younes et al. 1997). The amount and kind of ingested car-
bohydrate can modify ensuing plasma glucose and insulin 
responses, and raise the possibility that such dietary mani-
pulation may have some therapeutic utility in patients with 
abnormal carbohydrate and lipid metabolism (Reaven 1979). 
In particular, RS intake, in substitution to digestible starch, 
seems to decrease postprandial glycemic and insulinemic 
responses, improve whole body insulin sensitivity, lower 
plasma cholesterol and triglyceride concentrations, increase 
satiety, and reduce fat storage (Higgins 2004). The potato, 
as a main source of RS in humans, could confer some of the 
above mentioned health benefits. However, the GI of pota-
toes is influenced by the variety (i.e. Russet brown potatoes 
have only a moderately high GI) and the method of cooking 
(Fernandes et al. 2005). 

In general terms, processed potato (boiled and mashed –
instant-potatoes or French fries) contains higher levels of 
digestible starch and subsequently induce higher blood glu-
cose profiles than traditional cooked potatoes or potato 
dumplings, and are comparable to white bread, pasta or 
pizza (Brand et al. 1985; Parillo et al. 1985; Garcia and 
Goñi 2000; Riccardi et al. 2003; Leeman et al. 2008). In 
diabetic subjects, the postprandial blood glucose response 
after raw potato was considerably slower and weaker com-
pared to cooked potato (Vaaler et al. 1984). Individuals who 
wish to minimize dietary GI can be advised to precook 
potatoes and consume them cold or reheated (Fernandes et 
al. 2005). 

Changes on glycemia and insulinemia promote changes 
on lipid metabolism. Diets with high GI increase lipogene-
sis in the adipose tissue in normal and to a lesser extent in 
diabetic rats (Kabir et al. 1998). Contrarily, diets rich in RS 
have reduced fatty acid synthase activity (Morand et al. 
1994; Takase et al. 1994) and fat accretion on epididymal 
fat pads (de Deckere et al. 1993) in a rat model, and lipo-
genesis in adipose but not in muscular tissues (Martínez-
Puig et al. 2006) in a pig model. Besides its effect on lipo-
genesis potato starch has a role on satiety. Some studies 
have demonstrated that potatoes in general (Kaplan and 
Greenwood 2002), and boiled or mashed potatoes but 
French fries in particular (Leeman et al. 2008), were more 
satiating than other carbohydrate sources. Moreover, the 
replacement of pregelatinized digestible starch with RS 
from raw potato starch resulted in the subjective sensations 
of satiety; differences in taste, visual appeal and texture 
may influence satiety (Raben et al. 1994). These properties 
make RS an attractive dietary target for the prevention of 
diseases associated with dyslipidemia and insulin resistance 
as well as the development of weight loss diets and dietary 
therapies for the treatment of Type 2 diabetes and coronary 
heart disease. 
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