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ABSTRACT 
The steroidal glycoalkaloids are naturally occurring specialty metabolites of questionable desirability in the vegetable crop, potato. 
Although glycoalkaloids undoubtedly originated under selection as feeding deterrents against herbivorous pests, they no longer function 
as the primary feeding deterrent. Moreover, due to their potential toxicity, guidelines persist as to the maximal allowable concentrations 
for newly developed cultivars. The origins of the glycoalkaloids lie in the ancient relatives of the modern potato, which continue to be 
used in breeding programs because of the wealth of genetic diversity for performance, nutrition and disease resistance. In recent years, the 
genes encoding the enzymatic steps responsible for glycoalkaloid synthesis have begun to be elucidated. This in turn has presented the 
possibility of manipulating these genes to control glycoalkaloid accumulation and increase the availability of diverse biological resources 
for the development of new and improved cultivars with enhanced agronomic, processing and nutritional characteristics. This article will 
discuss the origin and diversity of glycoalkaloids in the potato, why they are a concern and what is being done about them, and how the 
advancement of biological information and technologies will impact potato glycoalkaloids in the future. 
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INTRODUCTION 
 
Potatoes (Solanum tuberosum) are the number one vege-
table crop in the world and after the three major cereals, the 
world’s fourth largest food crop (excluding sugar cane) 
(FAO Statistical yearbook 2005-2006, Production of Selec-
ted Agricultural Commodities (2004) http://www.fao.org/ 
statistics/yearbook/vol_1_1/site_en.asp?page=production). 

Potatoes are members of the Solanaceae family that 
also includes regionally important vegetable crops S. lyco-
persicon (tomatoes), Capsicum spp. (bell peppers, chilies), 
Physalis spp. (tomatillos, strawberry tomato), and S. melon-
gena (eggplant). A common thread within the Solanaceae is 
the production of a vast array of alkaloids that have been 
long exploited for their medicinal and pharmacological ef-

fects such as the tropane alkaloids atropine, scopolamine 
(Muller 1998) and nicotine in tobacco (Charlton 2004). The 
cultivated potato accumulates alkaloids, although to a lesser 
extent than the wild potato relatives. These wild relatives 
are an important source of biodiversity for pest and disease 
resistance as well as other desirable agronomic and nutri-
tional traits. In this review the diversity of potato glycoalka-
loids will be examined and their possible biological roles 
and potential impact on human health. Why glycoalkaloids 
remain a concern and what is being done by traditional and 
molecular methods will be discussed. Finally, how new in-
formation and new information systems will impact the 
nature and content of glycoalkaloids in future potato varie-
ties. 
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THE PAST 
 
The steroidal alkaloids of S. tuberosum and its 
wild relatives 
 
The major alkaloids to accumulate in the cultivated potato 
are solanidanes (Fig. 1). The tri-glycosylated derivatives of 
solanidine; �-chaconine and �-solanine, containing �-sola-
triose and �-chacotriose glycosyl moieties (Fig. 2), respec-
tively (Maga 1980), are the two most abundant alkaloids to 
accumulate in the potato. Another important group of alka-
loids not originally found in S. tuberosum, but that have 
been introduced through crosses with S. chacoense (Sag-
redo et al. 2006), are the leptines. Both leptines of S. cha-
coense accumulate as triglycosylated derivatives with �-
solatriose and �-chacotriose moieties and are believed to 

contribute to resistance against the Colorado potato beetle 
(CPB) defoliation (Lawson et al. 1997). The dihydro deri-
vative of solanidine has also been observed in potato after 
crosses with S. brevidens (Laurila et al. 1996). 

The closely related spirosolane enantiomers (Fig. 3) 
25R-(solasodine) introduced into cultivated potatoes through 
introgression of S. berthaultii (Yencho et al. 1998), or 25S- 
(tomatidinol) naturally and introduced in cultivated potatoes 
through introgression of S. demissum (Sinden and Sanford 
1981), are also produced in some cultivars, notably in the 
leaves of cv. ‘Kennebec’ (Shih and Kuc 1974). Both spiro-
solane aglycones are typically found as both triose deriva-
tives when present (Gregory 1984). In the wild relatives of 
the cultivated potato, these and additional alkaloids occur, 
including the corresponding dihydro derivatives of solani-
dine, solasodine and tomatidinol; demissidine, soladulcidine 
and tomatidine, respectively. These dihydro derivatives are 
most commonly glycosylated by the tetraose moieties �-
lycotetraose and commertetraose (Deahl et al. 1993). Al-
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though uncommon, minor amounts of the delta-5 unsatu-
rated aglycones have been reported linked to tetraose moi-
eties (Carputo et al. 2003). Table 1 lists the common agly-
cones and the known glycosylated products along with 
select references. 
 
Feeding deterrents, pest resistance and disease 
resistance 
 
It is presumed that the glycoalkaloids of the potato can trace 
their evolutionary origin to pest resistance. Using artificial 
diets, feeding studies using high levels of steroidal glycoal-
kaloids (SGAs) demonstrated feeding deterrent effects on 
the potato aphids (Güntner et al. 1997). Lines of potato that 
are resistant to leaf hoppers have higher SGA levels than 
lines that are sensitive (Sanford et al. 1992). SGAs are 
feeding deterrents to snails (Smith et al. 2001) and exhibit 
the ability to inhibit trypanosome growth (Chataing et al. 
1998). 

However, SGAs have little effect on the CPB (Kowalski 
et al. 1999). This may in part be due to the reduced sensi-
tivity of the CPB acetylcholinesterase to SGAs inhibition 
(Wierenga and Hollingworth 1992). Leptines rather than 
total glycoalkaloid (TGA) levels appear to be responsible 
for CPB resistance (Ronning et al. 1999; Rangarajan et al. 
2000; Lorenzen et al. 2001). A combination of breeding for 
reduced SGAs in cultivated potatoes and a long history of 
association of CPB and potatoes may have led to a loss of 
sensitivity of the CPB to these compounds. Tuber glycoal-
kaloid content does not appear to be involved in late blight 
resistance (Sarquís et al. 2000). Investigations of the rela-
tionship of SGAs to disease indicate little affect of SGA 
content on susceptibility of potatoes to the late blight fun-
gus, Phytophthora infestans, despite possessing antifungal 
activity in vitro (Fewell and Roddick 1993). 
 
 
 

Glycoalkaloids and human health 
 
The potential for adverse human health effects of potato 
SGAs has been clearly documented (Mensinga et al. 2005). 
The physiological affects of SGAs include membrane dis-
ruption (Roddick et al. 2001), cholinesterase inhibition 
(McGehee et al. 2000) and liposome disruption (Roddick 
and Rijenberg 1987). Glycoalkaloids have been shown to be 
teratogenic (Crawford and Myhr 1995; Gaffield and Keeler 
1996) and to have potential anticancer activities (Lavie et al. 
2001; Lee et al. 2004). However, the typical effective con-
centrations of SGAs in many of the physiological and bio-
chemical studies are higher than the SGA levels found in 
normal potatoes. The potential pharmaceutical activity of 
SGAs as anticancer compounds and extensive toxicological 
tests of SGAs are reviewed in Friedman (2006). 
 
THE PRESENT 
 
Current guidelines for potato glycoalkaloids 
 
The levels of SGAs or the TGA content for existing culti-
vars of potatoes is currently set at 20 mg/100 g fresh weight 
of the potato. This level is taken as a threshold above which 
the TGA content should not exceed (Valkonen et al. 1996). 
Potato lines that conform to this standard are achieved by 
carefully monitoring TGA levels by spectrophotometric or 
chromatographic methods during the breeding process and 
removing selections that exceed the desired limits. 

Although standard varieties are released to producers 
with acceptable levels of SGAs, occasionally environmental, 
physical and storage conditions can cause unexpected in-
creases in SGAs levels that result in potential food safety 
affects (Friedman 2006). Environmental factors known to 
cause an increase in alkaloid content include exposure of 
tubers to light (Dale et al. 1993; Percival 1999), tempera-
ture during growth (Dimenstein et al. 1997), storage (Fitz-
patrick et al. 1977; Griffiths et al. 1998), length of storage 

Table 1 The common steroidal alkaloid aglycones of Solanum sp.: associated glycosyl moieties and the names of the described glycosylated products. 
Aglycone Saccharide Compound Reference 

Commertetraose dehydrocommersonine Carputo et al. 2003 
Chacotriose �-solanine Deahl et al. 1993 
Solatriose �-chaconine Deahl et al. 1993 

Solanidine 

Lycotetraose dehydrodemisine Carputo et al. 2003 
Commertetraose commersonine Deahl et al. 1993 
Chacotriose   
Solatriose   

Demissidine 

Lycotetraose demissine Deahl et al. 1993 
Commertetraose   
Chacotriose �-solasonine Yencho et al. 1998 
Solatriose �-solamargine Yencho et al. 1998 

Solasodine 

Lycotetraose   
Commertetraose   
Chacotriose soladulcine A Lee et al. 1994 
Solatriose �- soladulcine Schreiber 1958 

Soladulcidine 

Lycotetraose soladulcine B Lee et al. 1994 
Commertetraose   
Chacotriose �-solamarine Deahl et al. 1993 
Solatriose �-solamarine Deahl et al. 1993 

Tomatidinol 

Lycotetraose dehydrotomatine Carputo et al. 2003 
Commertetraose sisunine Osman et al. 1986 
Chacotriose   
Solatriose   

Tomatidine 

Lycotetraose tomatine Deahl et al. 1993 
Commertetraose   
Chacotriose leptinine I Lawson et al. 1997 
Solatriose leptinine II Lawson et al. 1997 

Leptinidine 

Lycotetraose   
Commertetraose   
Chacotriose leptinidine I Lawson et al. 1997 
Solatriose leptinidine II Lawson et al. 1997 

Acetylleptinidine 

Lycotetraose   
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in the dark (Love et al. 1994), and mechanical injury either 
during harvest or storage (Sinden 1972; Olsson 1986; 
Mondy et al. 1987). Other environmental conditions such as 
water-logging and drought can also have cultivar specific 
impacts on SGA accumulation (Papathanasiou et al. 1999). 

The increase in glycoalkaloids, in response to abiotic 
and biotic stress, is a combination of the genotype of each 
variety (Sarquís et al. 2000) and unknown factors that con-
tribute to rapid and unwanted accumulation. These varietal 
differences can in part be attributed to levels of gene ex-
pression in the isoprenoid and SGA biosynthetic pathways 
(Krits et al. 2007). Wound-induced accumulation of SGAs 
in tubers is correlated with dramatic increases in the steady 
state levels of the glycosyltransferase mRNA transcripts for 
the enzymes involved in the conversion of solanidine to �-
chaconine and �-solanine (McCue et al. 2007a). 
 
Manipulation of glycoalkaloids 
 
Since its introduction from South America to the world, far-
mers have been manipulating potato glycoalkaloids along 
with the many other traits resulting in the potato varieties 
we grow today. The bitter potato SGAs have potential for 
combating pests and diseases. A thorough and more com-
plete understanding of the diversity of SGAs and their bio-
logical activities is necessary to determine the optimal SGA 
content. Understanding the biosynthesis and underlying 
genetics will provide the tools for traditional and molecular 
breeding strategies to exploit the full potential of these com-
pounds. 
 
Standard breeding 
 
The crossing of cultivated varieties of potatoes with wild 

potato species can have the unwanted affect of increasing 
the TGA level as well as affecting which alkaloid species 
are produced. In crosses between the cultivated potato S. 
tuberosum and the wild species S. commersonii, it was 
found that the TGA content was the trait that showed the 
greatest variation among the progeny (Esposito et al. 2002). 
 
Genetic engineering 
 
Effects of genetic engineering on the levels of TGAs in po-
tatoes have been reported both directly from manipulations 
of the SGA biosynthetic pathway and indirectly from the 
alteration of biochemically related and unrelated pathways. 
TGA levels have been included in metabolomic analyses to 
establish substantial equivalence for genetically modified 
crops to assess indirect consequences of genetic manipula-
tion. Potatoes transformed with a gene encoding an endo-
chitinase gene from a mycoparasitic fungus were shown to 
have TGA levels unchanged from the control transgenic 
plants (Esposito et al. 2002). Potatoes transformed with the 
CryIIIa gene to confer resistance to the CPB had minimal 
changes in TGA content (Perlak et al. 1993). Manipulation 
of flavonoid biosynthesis to increase antioxidant capacity of 
potatoes resulted in a 2-fold variation in TGA content com-
pared to non-transformed controls (Stobiecki et al. 2003). 
Manipulation of the cholesterol biosynthetic pathway by 
over expression of the soybean derived sterol methyl trans-
ferase I gene product in potato reduced the levels of glycol-
alkaloids (Arnqvist et al. 2003). An early report (McCue et 
al. 2003) of reduction of TGAs due to expression of an anti-
sense construct for the Sgt1 of the SGA biosynthetic path-
way was later revealed to be attributable to somaclonal vari-
ation (McCue et al. 2005). 

Only recently have there been reports on the effect of 
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directly manipulating the enzymes involved in the direct 
biosynthesis of the potato SGAs. Manipulation of the SGA 
biosynthetic pathway have been performed in B5141-6 the 
cultivar formerly known as Lenape (Akeley et al. 1968). 
Lenape is a round white potato excellent for chipping. 
However, one of the parents of this cultivar is Solanum cha-
coense, and S. chacoense accumulates excessive levels of 
the steroidal glycoalkaloids solanine and chaconine (Sinden 
et al. 1984). This makes Lenape an excellent test system for 
the suppression of SGA levels via genetic manipulation. 
The biosynthesis of �-solanine and �-chaconine and the se-
quential formation of the �-chacotriose and �-solatriose gly-
cosyl sidechains are shown in Fig. 4. The sequential glyco-
sylation of solanidine is carried out by a family of related 
steroidal alkaloid glycosyl transferase (Sgt) genes. Manipu-
lation of enzymes responsible for the glycosylation of sola-
nidine and glycosylated intermediates in the biosynthesis of 
�-solanine and �-chaconine had dramatic effects on the 
ratios of the two end products, but had limited effect on 
lowering TGAs. In transgenic Lenape tubers expressing an 
antisense Sgt1 gene, the solanidine galactosyltransferase, a 
reduction in the accumulation of �-solanine was observed 
that was compensated for by an increase in the accumula-
tion of �-chaconine. In transgenic Désirée tubers trans-
formed with the antisense Sgt1 gene the compensation was 
less significant resulting in slightly lower TGA levels 
(McCue et al. 2005). Antisense inhibition of Sgt2, the sola-
nidine glucosyltransferase, in transgenic tubers of both 
Lenape and Désirée resulted in significant reductions in �-
solanine accumulation. Again this reduction was compen-
sated for by increased levels of �-chaconine (McCue et al. 
2006) and the TGA level remained high. Blockage of the 2-
O-rhamnoyslation of the di-glycosides by antisense inhibi-
tion of Sgt3, the �-solanine/�-chaconine rhamnosyltrans-
ferase, in transgenic tubers resulted in the accumulation of 
the di-glycoside intermediates (McCue et al. 2007b). Fig. 5 
shows the relative accumulation of �-solanine, �-chaconine 
and biosynthetic intermediates in the tubers of representa-
tive transgenic Lenape plants for each of the three antisense 
constructs as compared to the wild type control tuber. 

There are many factors that affect the TGA levels in 
potatoes, beginning with the genetics of the variety, its an-
cestors and the gene dosage or expression. Not enough is 
known about how many alleles are active in any particular 
cultivar. There is also no information on whether there are 
particular alleles associated with high or low TGA content. 
Additional studies are needed on SGA biosynthetic gene 
expression in both tubers and other parts of the plant and on 
other genes that may be involved in the control of SGA ac-
cumulation in response to biotic and abiotic stimuli. 
 
 
 

THE FUTURE 
 
Modification of SGAs in potato 
 
Breeders continue to manipulate potato glycoalkaloids 
along with the many other metabolites that have potential 
for combating pests and diseases. With a basic understan-
ding of the diversity of SGAs and their biological activities 
it is time to further explore their biosynthetic pathways. The 
development of new tools to further elucidate the biochemi-
cal pathways and underlying genetics will provide the 
means for more efficient traditional and molecular breeding 
options to optimize and exploit the diversity of these com-
pounds. 
 
Transcriptome 
 
The following is a summary of the information available 
from the Harvard University Computational Biology and 
Functional Genomics Laboratory on Gene Index Projects. 
The gene transcript information, or transcriptome, for po-
tato includes 231,299 expressed sequence tags (ESTs) and 
2819 expressed transcripts (ETs) for a total of 61,372 unique 
sequences (including tentative consensus sequences and 
singletons). This compares to a total of 619,908 ESTs and 
79,223 ETs for a total of 81,826 unique sequences for the 
genetically minimal model plant Arabidopsis; and 7,223,257 
ESTs and 234,976 ETs resulting in 1,083,935 unique se-
quences in the human database. 

The low coverage of transcription data for potato pre-
vents comprehensive analysis of gene expression. Analysis 
of expressed sequences for the Sgt gene family in The Ins-
titute for Genomic Research (TIGR) database reveals repre-
sentation of these genes from only three cultivars (‘Bintje’, 
‘Kennebec’ and ‘Shepody’) in addition to the cultivar from 
which they were originally described (‘Lemhi Russet’) in 
the Tentative Assembly (TA) sequences. The TA sequences 
of each family member contain multiple ESTs and represent 
each of the three described genes (Sgt1, Sgt2 and Sgt3), in-
cluding the allelic variation at Sgt2 (including both Sgt2.1 
and Sgt2.2). The TA for Sgt3 contains the most individual 
ESTs. Conserved single nucleotide polymorphisms (SNPs) 
in the ESTs suggest at least two active alleles of Sgt3 in 
each of the three cultivars. The representation of the Sgt fa-
mily members, the associated TAs and cultivar representa-
tion is shown in Table 2. For each Sgt gene sequence a 
BLAST search of the TIGR database identified a unique TA 
as the primary match as well as the other family member 
TAs with lower scores (and higher smallest sum probabili-
ties). Secondary matches included additional unique ESTs, 
and for the case of Sgt2, two additional TAs of 2 and 3 
ESTs. These additional TAs and ESTs may represent ad-
ditional alleles or read errors in the sequencing runs. Re-
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gardless of the source of singleton ESTs and under-popu-
lated TAs, additional EST sequencing for the cultivars rep-
resented in the database as well as additional cultivars 
would greatly increase the value of the transcriptome data-
base. 
 
Genome 
 
Genome sequencing efforts are currently underway for po-
tato and several related species. The database of potato ge-
nomic sequence information currently accounts for approxi-
mately 10% of the genome. Genomic sequence for potato 
will be compared to its close relative the tomato that cur-
rently has 20% of its genome sequenced. By way of compa-
rison there are complete genome sequences for a growing 
number of eukaryotic organisms including Arabidopsis and 
humans. New technologies and platforms for generating se-
quence information are becoming available. These will 
allow the genes and expression profiles of cultivars to be 
compared and assist in the identification of the genetic basis 
underlying key traits. 
 
Metabolome 
 
New advances in analytical techniques allow for the rapid 
analysis of a large array of plant constituents. This type of 
analysis is known as metabolomics. These advances allow 
the rapid and precise identification of plants with SGA 
profiles altered as desired, while allowing facile screening 
for those plants that possess undesirable modifications. The 
future for potato glycoalkaloids will rely on the rapid meta-
bolomic screening of new and improved potato cultivars 
with refined glycoalkaloid profiles. 
 
CONCLUSION 
 
The modifications of SGA content either by traditional 
breeding and/or molecular breeding hold great promise for 
potato improvement. Regulation of SGA biosynthesis to 
prevent unwanted accumulation in response to environmen-
tal and mechanical stimuli will help to ensure food safety. 
Altered SGA profiles produced by introducing new SGAs 
from other Solanum species may eventually play a role in 
human nutrition. Manipulation of SGA levels in specific 
parts of the potato plant should also be used to increase pest 
resistance. Engineering the biosynthesis of specific glyco-
alkaloids in the foliage to optimize pest resistance while 
regulating their accumulation in the edible tubers to ensure 
consumer food safety should eventually be combined to 
produce new and improved potatoes. 
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