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ABSTRACT 
The effects of triadimefon (TDM), a triazole compound, on NaCl-stressed blackgram (Vigna mungo (L.) Hepper) plants were studied to 
understand the ameliorative effect of this triazole derivative. Seeds were sown in plastic pots and irrigated with groundwater up to 35 days 
after sowing (DAS) to field capacity. Later plants were irrigated with groundwater as control and others were treated with 100 mM NaCl, 
100 mM NaCl + 20 mg l-1 TDM and 20 mg l-1 TDM. The samples were collected randomly at 40 and 80 DAS. Salinity treatment 
decreased the protein content and increased the amino acid, proline, glycine betaine (GB), ascorbate peroxidase (APX) and catalase 
(CAT) activities in blackgram compared with the control. The addition of NaCl with TDM showed an increase in protein, APX and CAT 
activities and decreased proline, GB content when compared with NaCl-stressed plants. TDM treatment increased all parameters 
compared with the control. However, TDM-mediated salinity tolerance could be attributed to the increased activities of APX and CAT 
when compared to NaCl-stressed plants. 
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INTRODUCTION 
 
Soil salinity represents an increasing threat to agricultural 
production. High sodium (Na+) concentrations in soil are 
toxic to higher plants (Demiral and Turkan 2005). Osmotic 
stress due to drought and salinity is the most serious prob-
lem that limits plant growth and crop productivity in agri-
culture (Zhu et al. 2004). In arid and semi-arid regions, soil 
salinity is a common occurrence. The use of poor irrigation 
water and saltwater encroachment is also increasingly 
threatening agriculture in humid regions (Salekdeh et al. 
2002). 

Blackgram (Vigna mungo L. Hepper) is an important 
grain legume crop grown in the tropical and subtropical 
regions of the Indian subcontinent. It is grown for its 
protein-rich edible dry seeds that, when supplemented with 
cereals, provide a balanced diet. The crop is subjected to a 
variety of abiotic and biotic stresses which are responsible 
for its poor productivity; among the abiotic stresses the crop 
is notably susceptible to salinity and drought (Bhomkar et 
al. 2008). 

Salt stress can lead to stomatal closure, which reduces 
CO2 availability in the leaves and inhibits carbon fixation, 
exposing chloroplasts to excessive excitation energy, which 
in turn could increase the generation of reactive oxygen 
species (ROS) and induce oxidative stress (Parida and Das 
2005; Parvaiz and Satyawati 2008). ROS, including super-
oxide radical (O2-), hydroxyl radical (OH-), singlet oxygen 
(1O2) and hydrogen peroxide (H2O2), are also generated 
naturally via a number of cell metabolic pathways (Kana-
zawa 2000). Thus, ROS cause constant problems to aerobic 
organisms. ROS react with cellular components causing 
significant damage to membranes and other essential 
macromolecules such as photosynthetic pigments, protein, 
nucleic acids and lipids (Lin and Kao 2000). Hence the 
importance of controlling the level of ROS in cells. 

For effective detoxification of ROS, plants possess vari-
ous protective antioxidant mechanisms, including antioxi-
dant molecules like ascorbic acid, �-tocopherol, reduced 
glutathione and antioxidant enzymes like ascorbate peroxi-
dase (APX), superoxide dismutase (SOD) and CAT (Pro-
chazkova et al. 2001). SOD catalyses the dismutation of 
superoxide to H2O2 and O2, H2O2 is further detoxified by 
catalase (CAT) to water and oxygen (Zhu et al. 2004). Sali-
nity causes an excessive generation of ROS in plants (Foyer 
et al. 1994). The ascorbate-glutathione cycle has been shown 
to be of great importance in multiple stress reactions (Draz-
kiewicz et al. 2003). Therefore, the interactions between 
production and scavenging of ROS should be balanced to 
maintain the plants in a relatively stable state (Lin and Kao 
2000). 

The triazole derivatives are fungitoxic and with plant 
growth regulating properties and are reported to change the 
balance of important plant growth regulators, including gib-
berellins, abscisic acid and cytokinins (Fletcher et al. 2000). 
Apart from these plant growth regulating properties, tria-
zoles protect plants from various types of environmental 
stresses (Fletcher and Hofstra 1990) like drought, low and 
high temperatures, UV-B radiation, air pollutants and fun-
gal pathogens, thus making it a plant multi protectant (Voe-
senek et al. 2003). In the present study we determined whe-
ther TDM could protect blackgram plants subjected to sali-
nity stress. 

 
MATERIALS AND METHODS 
 
Plant material 
 
The seeds of blackgram (Vigna mungo (L.) Hepper) were obtained 
from the Pulses Research Division, Rice Research Institute, Tamil 
Nadu, India. Seeds were surface sterilized with 0.2% HgCl2. Ten 
seeds were sown in each pot 30 cm in diameter and 30 cm high 
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containing 3 kg of soil mixture composed of red soil, sand and 
farmyard manure (FYM) at a 1:1:1 ratio. All the pots were watered 
to field capacity with ground water up to 35 DAS. The plants were 
thinned to 2 plants pot-1 on 35 DAS. Plants were irrigated with 
groundwater marked as control and other treated with 100 mM 
NaCl, 100 mM NaCl + 20 mg l-1 TDM and 20 mg l-1 TDM alone, 
respectively on 35 and 75 DAS. The plants were uprooted ran-
domly on 40 and 80 days after sowing (DAS) and separated into 
root, stem and leaves and used for determining biochemical para-
meters and antioxidant enzyme activities. 
 
Protein and total free amino acid 
 
The protein content was determined by the method of Bradford 
(1976). Total free amino acid was extracted and estimated by fol-
lowing the method of Moore and Stein (1948). 
 
Glycine betaine content 
 
The amount of glycine betaine (GB) was estimated according to 
the method of Grieve and Grattan (1983). The plant tissues (roots, 
stem and leaves) were finely ground, mechanically shaken with 20 
ml deionised water for 24 h at 25�C. The samples were then fil-
tered and filtrates were diluted 1:1 with 2 N H2SO4. Aliquots were 
kept in centrifuge tubes and cooled in ice water for 1 h. Cold KI-I2 
reagent was added and the reactants were gently stirred with a vor-
tex mixture. The tubes were stored at 4�C for 16 h and then centri-
fuged at 10,000 rpm for 15 min at 0�C. The supernatant was care-
fully aspirated with a fine glass tube. Periodide crystals were dis-
solved in 9 ml of 1,2-dichloroethane. After 2 h, the absorbance 
was measured at 365 nm using GB (Himedia, Mumbai, India) as 
standard and expressed in mg g-1 DW. 
 
Proline content 
 
The proline content was estimated by the method of Bates et al. 
(1973). The plant material was homogenized in 3% aqueous sulfo-
salicylic acid and the homogenate was centrifuged at 10,000 rpm. 
Supernatant was used for estimation of proline content. The reac-
tion mixture consisted of 2 ml acid ninhydrin and 2 ml of glacial 
acetic acid, which was boiled at 100�C for 1 h. After termination 
of reaction in ice bath, the reaction mixture was extracted with 4 
ml of toluene and absorbance was read at 520 nm. 
 
Ascorbate peroxidase 
 
Ascorbate peroxidase (EC 1.11.1.1) activity was determined ac-
cording to Asada and Takahashi (1987). The reaction mixture (1 
ml) contained 50 mM potassium phosphate buffer (pH 7.0), 0.5 
mM ascorbic acid, 0.1 mM H2O2 and 200 μl of enzyme extract. 
The absorbance was read as decrease at 290 nm against the blank, 

correction was done for the low, non-enzymatic oxidation of 
ascorbic acid by H2O2 (extinction coefficient 2.9 mM-1 cm-1). The 
enzyme activity was expressed in U mg-1 protein (U = change in 
0.1 absorbance min-1 mg-1 protein). 
 
Catalase 
 
Catalase (EC 1.11.1.6) was measured according to Chandlee and 
Scandalios (1984) with modifications. The assay mixture contained 
2.6 ml of 50 mM potassium phosphate buffer (pH 7.0), 0.4 ml of 
15 mM H2O2 and 0.04 ml of enzyme extract. The decomposition 
of H2O2 was followed by the decline in absorbance at 240 nm. The 
enzyme activity was expressed in U mg-1 protein (U = 1 mM of 
H2O2 reduction min-1 mg-1 protein). 
 
Statistical analyses 
 
The data were subjected to analysis of variance (ANOVA) using 
the GLM module of Costat (CoHort Software, Monterey, CA, 
USA). Duncan’s multiple range test was used to separate treatment 
means in case of a significant F-test at P � 0.05. 
 
RESULTS AND DISCUSSION 
 
Sodium chloride treatment decreased protein content in 
roots, stems and leaves of blackgram plants on 40 and 80 
DAS when compared with the control (Table 1). A decrease 
in protein content has been reported in a number of plants 
like Atriplex halimus (Bajji et al. 1998), radish (Muthu-
kumarasamy et al. 2000) and sorghum (Azooz et al. 2004). 
The combination of NaCl with TDM increased protein con-
tent in all parts of the plant except in roots on 40 DAS when 
compared with NaCl-stressed plants. Similar results were 
observed in NaCl-stressed and TDM-treated Vigna unguicu-
lata plants (Gopi et al. 1998). Unstressed plants treated with 
TDM had higher protein content when compared with con-
trol. 

Salinity treatment increased the amino acids, proline 
and GB content of all parts of the plants to a larger extent 
(Tables 2-4). Similar observations were made in NaCl-trea-
ted soybean (Panneerselvam et al. 1998), sorghum (Azooz 
et al. 2004) and Arachis hypogaea plants (Girija et al. 
2002). Treatment with TDM on NaCl-stressed plants mar-
kedly reduced the accumulation of amino acids, proline and 
GB content when compared with NaCl-stressed plants. 
However, NaCl-stressed plants had a higher content of 
amino acids, proline and GB than the control. These results 
confirm the findings of Saha and Gupta (1993) who found 
an increase in the content of amino acids in salt-stressed 
Vigna unguiculata seedlings treated with TDM. However, 
TDM treatment increased amino acid, proline and GB con-

Table 1 Effect of salt stress with or without TDM on protein content of different parts of Vigna mungo plants on different sampling days. 
Plant parts Sampling days Control 100 mM NaCl 100 mM NaCl + 20 mg/L TDM 20 mg/L TDM 

40 82.36 ± 2.51 a 78.52 ± 1.32 b 83.29 ± 2.55 a 83.47 ± 2.50 a Root 
80 77.23 ± 1.89 a 74.25 ± 1.25 b 80.21 ± 2.51 c 78.01 ± 1.88 a 
40 63.14 ± 1.45 a 59.51 ± 1.12 b 66.55 ± 1.41 c 63.35 ± 1.44 a Stem 
80 58.36 ± 1.03 a 54.31 ± 1.14 b 62.31 ± 1.40 c 59.13 ± 1.05 a 
40 74.16 ± 1.78 a 88.32 ± 2.63 b 79.30 ± 1.66 c 77.38 ± 1.43 d Leaf 
80 72.64 ± 1.23 a 76.51 ± 1.33 b 77.51 ± 1.71 b 74.62 ± 1.77 c 

Values are expressed in mg g-1 dry weight. Values are given as mean ± SD of six samples in each group. Values that do not share a common letter differ significantly at P � 
0.05 (DMRT). 
 

Table 2 Effect of salt stress with or without TDM on amino acids content of different parts of Vigna mungo plants on different sampling days. Values are 
expressed in mg g-1 dry weight. 
Plant parts Sampling days Control 100 mM NaCl 100 mM NaCl + 20 mg/L TDM 20 mg/L TDM 

40 176.6 ± 6.08 a 189.2 ± 6.51 b 182.3 ± 6.22 c 182.5 ± 6.23 c Root 
80 169.2 ± 5.51 a 182.6 ± 6.20 b 174.2 ± 6.52 c 175.1 ± 6.54 c 
40 165.1 ± 5.41 a 178.9 ± 6.14 b 171.4 ± 6.48 c 171.5 ± 5.90 c Stem 
80 158.4 ± 4.34 a 171.3 ± 5.95 b 163.8 ± 5.22 c 164.6 ± 5.40 c 
40 191.4 ± 6.52 a 204.5 ± 8.36 b 197.2 ± 6.87 c 197.2 ± 6.88 c Leaf 
80 184.3 ± 6.31 a 197.9 ± 6.88 b 189.9 ± 6.56 c 190.8 ± 6.53 d 

Values are expressed in mg g-1 dry weight. Values are given as mean ± SD of six samples in each group. Values that do not share a common letter differ 
significantly at P � 0.05 (DMRT). 
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tent more than the control. Similar effects of TDM have 
already been reported in radish (Muthukumarasamy et al. 
2000), cucumber seedlings (Feng et al. 2003) and wheat 
seedlings (Berova et al. 2002). 

Salt stress increased APX activity in blackgram plants 
compared with the control (Table 5). The higher level of 
endogenous APX activity is essential to maintain the anti-
oxidant system that protects plants from oxidative damage 
due to biotic and abiotic stresses (Shigeoka et al. 2002). 
Application of TDM increased APX activity in salt-stressed 
plants when compared with NaCl-stressed plants. Moreover, 
TDM treatment alone also increased APX activity when 
compared with the control and other treatments. In experi-
ments with another triazole compound, paclobutrazol, there 
was increased level of APX activity in wheat cultivars 
(Kraus et al. 1995; Berova et al. 2002). 

Salinity increased CAT activity in all parts of blackgram 
plants compared with the control (Table 6). Panda (2001) 
reported that salt stress decreased CAT activity in green-
gram. Application of TDM to NaCl-stressed plants resulted 
in increased CAT activity compared with NaCl-stressed 
plants. However, TDM treatment alone also increased CAT 
activity when compared with the control. Similar results 
were observed in TDM-treated Catharanthus roseus plants 
(Jaleel et al. 2006). The H2O2 scavenging systems represen-
ted by APX and CAT activities were more important in 
imparting tolerance in wheat varieties (Sairam et al. 1998). 

It can be concluded that TDM treatment induced an in-
crease in protein content in NaCl-stressed plants and might 

be the reason for decreased amino acid, proline and GB 
content when compared with NaCl-stressed plants. How-
ever, TDM-mediated salinity tolerance could be attributed 
to the increased activities of APX and CAT when compared 
to NaCl-stressed plants. 
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