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ABSTRACT 
In this study, the role of a fungal endophyte identified as Fusarium spp. UPM31P1 in suppressing Fusarium wilt development in 
susceptible banana plantlets via induced host resistance was established. The endophyte, isolated from roots of wild banana, elicited the 
production of host enzymes related to induced resistance upon reintroduction into the commercial cultivar Pisang Berangan “Intan”. A 
significant increase in all levels of enzymes and biochemical markers assayed (peroxidase, polyphenoloxidase, phenylalanine ammonia 
lyase, phenol content and lignothioglycolic acid) was observed as compared to levels in plantlets from control. In comparison between 
diseased plantlets pre-treated and non-treated with endophyte UPM31P1, enzymatic levels were also significantly higher in plantlets pre-
treated with endophytes. As a result, the endophyte pre-treated plantlets recorded lower percentages of disease incidence and disease 
severity, suggesting the possible role of induced host resistance triggered by the endophytic UPM31P1 as a mechanism for Fusarium wilt 
suppression. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
Endophytes are microorganisms that exist inside a host 
plant, often asymptomatically and can be isolated from the 
crown, stem and leaf tissues (Wilson 1995; Clay and 
Schardl 2002). The potential of endophytes as biocontrol 
agents are mainly attributed to their production of toxic 
alkaloids (Bacon et al. 1977; Bush et al. 1997), inhibitory 
metabolites (Findlay et al. 1997; Strobel et al. 1999), anti-
biotics (Harrison et al. 1991; Brady and Clardy 2000) and 
antioxidants (Strobel et al. 2002); which have been shown 
to confer resistance to pests and pathogens (Kimmons et al. 
1990; Siegel and Latch 1991; Stovall and Clay 1991; 
Gwinn and Gavin 1992; Mahmood et al. 1993). In addition, 
endophytes also usually form beneficial association with the 
host plant, resulting in improved vegetative growth (Clay 
1989; Rice et al. 1990; Ting et al. 2008), and tolerance to 
stress factors (Lewis et al. 1997; Cheplick et al. 2000; Mali-
nowski and Belesky 2000). 

Another beneficial endophyte-host association com-
monly observed is the significant increase in the production 
of induced host defense enzymes such as phytoalexins (van 
Peer et al. 1991) and pathogenesis-related proteins (Zdor 
and Anderson 1992). Increase in levels of peroxidases (PO) 
(Peng and Kuc 1992), polyphenoloxidases (PPO) (Klessig 
and Malamy 1994), phenylalanine ammonia lyase (PAL) 
(Bhattacharyya and Ward 1988; Klessig and Malamy 1994), 
total soluble phenols (Metraux and Raskin, 1993) and lingo-
thioglycolic acid (LTGA) (Vance et al. 1980; Yates et al. 
1997) indicate the expression of induced host resistance as a 
defense mechanism. 

In our study, we aim to establish the beneficial role of 
the fungal endophyte, Fusarium spp. UPM31P1, as a bio-
control agent in suppressing Fusarium wilt incidence in sus-
ceptible banana plantlets. This disease is caused by Fusa-
rium oxysporum f. sp. cubense race 4 (FocR4) and is a seri-
ous disease affecting many commercial banana plantations 
worldwide. This fungal pathogen is prevalent in many coun-
tries, found in Australia, Africa, the Pacific Islands, Central 
and South America and in many Asian countries (Stover 
1962). To date, there are no feasible control methods availa-
ble. Control measures using cultural improvements (Su et al. 
1986), and chemical applications (Beckman 1987; Larkin 
and Fravel 1998) were unable to control Fusarium outbreak 
or in destroying the infective propagules of Fusarium. Our 
attempt to utilise an endophyte as a biological control agent 
is prompted by the fact that the endophyte exist in host tis-
sues, sharing a similar niche with the pathogenic FocR4. 
This strategy hopefully surpasses the limitations from ap-
plications by soil drenching (Quadt-Hallman and Kloepper 
1996), root dipping (Baker et al. 1978) or via artificially 
“induced” suppressive soil (Ting et al. 2003) as these ap-
plications are influenced by the presence of competition 
from resident microbes (Bacon and Hinton 1996) and expo-
sure to unfavorable soil conditions. 

This paper reports our investigations on the biochemical 
changes caused by endophytic infection by Fusarium spp. 
UPM31P1 in healthy and FocR4-infected Pisang Berangan 
“Intan” plantlets. The potential role of this endophyte in 
conferring disease resistance by induced host resistance was 
examined and established in this study. 
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MATERIALS AND METHODS 
 
Isolate preparation 
 
The fungal endophyte was previously isolated from roots of wild 
bananas (Musa acuminata ssp. malaccensis) according to methods 
described in Ting et al. (2008). Pure culture obtained was estab-
lished on Potato Dextrose Agar (PDA, Difco) and the isolate was 
identified by DNA sequencing as Fusarium spp. (S.Radu). The 
fungal pathogen, Fusarium oxysporum f. sp. cubense race 4 
(FocR4) (VCG01213/01216, Bentley et al. 1998), obtained in 
filter-paper culture form, was also cultured on PDA. 
 
Inoculation of banana plantlets 
 
Six-week old Pisang Berangan “Intan” plantlets (14 cm in height, 
three to four leaf stage), were treated with three different treat-
ments; inoculation with endophyte UPM31P1, inoculation with 
FocR4 and application with sterile distilled water (SDW). Inocula-
tion for both fungal isolates was performed by drenching the soil 
with 100 ml (107 cfu ml-1) of inoculums. SDW was also applied at 
100 ml plantlet-1. The inoculated plantlets were placed in indivi-
dual pots using the “double-potting” method. Plantlets were main-
tained in the glasshouse by watering twice daily with SDW. Obser-
vation was conducted for 35 days with sampling performed at a 7-
day interval. During each sampling time, the roots were collected, 
washed and frozen overnight prior to enzymatic assay. 
 
Biochemical assay 
 
Assay for peroxidase (PO), polyphenoloxidase (PPO), phenylala-
nine ammonia lyase (PAL), total soluble phenols and lignothio-
glycolic acid (LTGA) was conducted to determine the influence of 
endophytes in triggering host induced resistance. The assay for PO 
was initiated by grinding 1 g of the frozen root sample in 1 ml of 
pre-chilled 0.05 M sodium acetate buffer (SAB) (pH 5) amended 
with 5 mg of polyvinyl pyrrolidone (PVP40) (Reuveni 1998). The 
slurry produced was centrifuged (14,000 rpm, 20 min, 4°C) and 
the supernatant transferred into new tubes for reaction. Changes in 
PO activity were determined by adding 200 �l of the extract to 3 
ml of reaction substrate (80 ml Sodium Phosphate Buffer (SPB) 
(pH 6), 1 ml of hydrogen peroxide (H2O2) (30% v/v) and 20 ml of 
guaicol) and incubated at room temperature. Sterile distilled water 
was used instead of extracts for preparation of blanks. The absor-
bance value was determined at 470 nm using a spectrophotometer 
(Model Pharmacia LKB Novaspec® II). The total amount of PO 
produced (units g-1 tissue) was calculated using the formula from 
Kokkinakis and Brooks (1979): 
 
 
 

The procedure for PO assay was also adopted for the assay of 
PPO, with the changes in PPO activity determined by mixing 0.1 
ml of the extract with the reaction substrate containing 3 ml of 5 × 
10-4 M chlorogenic acid in 5 × 10-2 M SPB (pH 6) (Robinson and 
Dry 1992). Blanks were also prepared by substituting the extracts 
with SDW. The absorbance was read at 410 nm and expressed as 
total PPO produced (units g-1 tissue) using the previous formula by 
Kokkinakis and Brooks (1979). 

The assay for PAL was performed by grinding 1 g of frozen 
tissue sample in 5 ml of 0.1 M sodium borate buffer (SBB) (pH 
8.8 with 5 mM 2-mercaptoethanol). The slurry produced was cen-
trifuged (15,000 rpm, 10 min) and 1 ml of the resulting superna-
tant was incorporated into a reaction mixture containing 300 �M 
SBB and 30 �M L-phenylalanine prior to incubation for 1 h at 
40°C. The absorbance value was measured at 290 nm against a 
blank substrate made up of 300 �M SBB and 30 �M L-phenylala-
nine with SDW. The total PAL assayed was expressed as nano-
mole cinnamic acid produced min-1 g-1 fresh weight of tissues 
(Podile and Laxmi 1998). 

Total soluble phenols from root tissues were extracted by grin-
ding the frozen root tissues (1 g) in two changes of 4 ml of metha-
nol. The slurry was centrifuged (5000 rpm, 5 min), and the super-
natant (1 ml) was added into 0.5 ml of Folin-Ciocalteau Reagent 
(diluted in SDW at 1:1 ratio). The mixture was thoroughly mixed, 

incubated at room temperature for 3 min, and added with 0.5 ml of 
1 M sodium bicarbonate (Na2CO3). The mixture was further incu-
bated at room temperature for 1 h and the absorbance value sub-
sequently determined at 725 nm. The total phenol content was es-
timated from a standard curve generated separately using various 
concentrations of chlorogenic acid, and the amount of phenol 
assayed is expressed as mg of phenol g-1 fresh weight of tissues 
(Swain and Hillis 1959). 

The assay for LTGA was performed by firstly immersing the 
tissue samples into 5 ml of absolute methanol for 48 h with four 
changes of methanol to softened the tissues. The tissues were then 
transferred into fresh test tubes containing a mixture of 0.5 ml 
thioglycolic acid and 0.5 ml 2 N hydrochloric acid (HCl). The 
capped tubes were heated (95°C, 4 h) and subsequently cooled and 
centrifuged at 12,000 rpm for  5 min. Five ml of the resulting 
supernatant was transferred and resuspended in 5 ml of SDW, and 
centrifuged again (12,000 rpm, 5 min). The resulting supernatant 
(5 ml) was transferred to a new tube containing 5 ml of 0.5 N 
sodium hydroxide (NaOH) for an overnight incubation. After incu-
bation, 2 ml of SDW was added and the mixture centrifuged. Ten 
ml of the resulting supernatant was then transferred into a new 
tube containing 1 ml of concentrated HCl. This mixture was incu-
bated for 4 h at 4°C to allow precipitation of LTGA. After preci-
pitation, the mixture was centrifuged at 5000 rpm for 15 min and 
the pellet collected, washed twice with 2 ml 0.1 N HCl, and finally 
dissolved in 0.5 N NaOH to a final volume of 2.5 ml. The absor-
bance value of the sample was then read at 280 nm, calculated and 
expressed as LTGA g-1 tissues (Dean and Kuc 1987). 

This experiment was conducted in a Randomized Complete 
Block Design. Each treatment has eight replicates. All data recor-
ded from the assays were analyzed using ANOVA, with means 
compared using Tukey’s Studentized Range Test (HSD(0.05)). 
 
Biocontrol assessment 
 
Four treatments were applied for this asessment, TA: UPM31P1, 
TB: SDW, TC: UPM31P1+FocR4 and TD: FocR4. Inoculation 
was performed by applying (soil-drenching) 100 ml of inoculum 
(107 cfu ml-1) suspension (or SDW) plantlet-1. Seven days after 
endophyte inoculation, plantlets assigned for FocR4-challenged 
inoculation (TC and TD) were inoculated with FocR4 (107 cfu ml-1, 
100 ml plantlet-1). The banana plantlets were maintained in the 
glasshouse in individual pots containing 1 kg of sterilized soil 
mixture (3: 2: 1 w/w ratio of topsoil: peat: sand) using the “dou-
ble-potting” technique, and watered twice daily with SDW. 

The efficacy of the various treatments of endophytes in sup-
pressing Fusarium wilt incidence was determined based on the 
percentages of disease incidence (DI) and disease severity (DS) 
(Vanderplank 1984). Disease incidence (DI) reflects the number of 
plantlets visibly diseased in relation to the total number of plant-
lets assessed, and is a suitable parameter for wilt disease whereby 
one lesion unit plantlet-1 is considered fatal (Campbell and Mad-
den 1990; Cubeta et al. 2004). Disease severity (DS) refers to the 
volume of plantlet tissue that is diseased relative to the total vol-
ume of the plantlet. It is expressed as the percentage of plantlet 
with symptoms of disease at a particular recording time, and is 
dependent on the extent of yellowing on leaves. In this study, the 
scale used is as follows: 0-healthy plantlet, 1-lowest leaf with yel-
lowish streaks, 2-less than 50% of the total number of leaves with 
yellowish streaks, 3-more than 50% of the total number of leaves 
with yellowish streaks, 4-100% of total number of leaves with yel-
lowish streaks, 5-collapsed or dead plants. 

The untransformed percentages of disease incidence (DI) and 
disease severity (DS) were calculated as follows (Cubeta et al. 
2004): 

 
 
 
 
 
 
 
This experiment was performed in a Split-Plot Design to sepa-

rate FocR4-infected plantlets from non-infected plantlets. Each 
treatment has eight replicates for each sampling time at 0, 7, 14, 
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21, 28, 35, and 49 days after FocR4-challenged inoculation. For 
every sampling time, percentages of DI and DS were observed and 
the enzymatic assay performed as described previously. Data col-
lected were analyzed using ANOVA, with means compared using 
Tukey’s Studentized Range Test (HSD(0.05)). 
 
RESULTS AND DISCUSSION 
 
Influence of endophyte UPM31P1 in inducing host 
defense enzymes 
 
Endophytic infection by the fungal endophyte UPM31P1 
triggered the production of inducible compounds in the root 
tissues. The levels for all compounds assayed (PO, PPO, 
PAL, phenol and LTGA) were significantly higher in these 
plantlets compared to plantlets in control (SDW) (Fig. 1). 
The asymptomatic infection by UPM31P1 induced the 
highest PO, PPO, PAL, phenol and LTGA levels in root 
tissues, with 95.02 units g-1 tissues, 95.13 units g-1 tissues, 
0.40 nanomole cinnamic acid min-1 g-1 tissues, 1.03 mg phe-
nol g-1 tissues and 0.14 LTGA g-1 tissues, respectively (Fig. 
1). The inducible compounds produced are related to the 
biosynthesis and oxidation of phenols to produce lignin, 
which is a common response to early establishment of host 
induced resistance (Hammerschmidt et al. 1984; Podile and 
Laxmi 1998). This provides an alternative for disease con-
trol as the primary infection by endophytes can pre-condi-
tion the host plant to respond rapidly to secondary infection 
by the pathogen, thus is a good mechanism to suppress wilt 
incidence (Goodman et al. 1986). This suggested the role of 
UPM31P1 as a biological elicitor to enhance production of 
inducible compounds related to induce host resistance as a 
defense mechanism. 

The level of enzymes assayed in control plantets (SDW) 
were the lowest (Fig. 1), indicating that without the pre-
sence of endophyte (UPM31P1) or pathogen (FocR4), plant-
lets produced these enzymes at low levels and it is only 
upon infection, endophytic or pathogenic, that results in the 
increase of the enzymatic levels. This further confirms the 
role of endophyte UPM31P1 as a biological elicitor respon-
sible for induced host resistance. Contrary, plantlets infec-
ted with FocR4 produced significantly lower levels of indu-
cible compounds compared to UPM31P1-infected plantlets 
for all enzymes assayed (Fig. 1). However, they remained 
higher than enzyme levels assayed from plantlets in control 
(SDW) as FocR4 can also induce host resistance due to the 
fusaric acid produced. Nevertheless, banana plantlets 
seemed to respond better to infection by endophytes as 
higher levels of inducible compounds were assayed. 
 
Biocontrol efficacy-glasshouse trial 
 
Results revealed that pre-treatment of plantlets with 
UPM31P1 was able to suppress wilt incidence in sus-
ceptible Berangan “Intan” plantlets. Pre-treatment with 
UPM31P1 (TC) resulted in only 53% DI and 20% DS com-
pared to 100% DI and 74% DS observed in plantlets with 
FocR4 only (TD) (Fig. 2). The lower percentages of DI% 
and DS% recorded for plantlets pre-treated with UPM31P1 
(TC) compared to plantlets with FocR4 only (TD) sug-
gested that the presence of endophyte in the host plant prior 
to FocR4 introduction, render some form of protective ef-
fect towards the plantlets. As a result, the disease develop-
ment especially the development of symptoms were delayed 
and appeared slower compared to plantlets without endo-
phyte pre-treatment (TD: FocR4). 

Results for enzymatic assay for plantets in TA, TB, TC 
and TD revealed that plantlets pre-treated with UPM31P1 
prior to FocR4-challenged inoculation (TC) and without 
FocR4 (TA), have relatively higher levels of PO, PPO, and 
PAL (Fig. 3). Here again, the beneficial role of UPM31P1 
in triggering host induced enzymes were established. The 
primary stimulation benefited the plantlets when challenged 
with FocR4 as the host defense mechanism was produced 
more rapidly to increase tolerance of plantlets to FocR4 
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Fig. 1 Production of inducible compounds assayed from banana plant-
lets treated with endophyte UPM31P1 compared to plantlets infected 
with FocR4 and applied with SDW (control). (A) Production of PO and 
PPO (B) PAL (C) total soluble phenols and (D) LTGA content in the root 
tissues. Values are cumulative means throughout the experimental period. 
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infection. As a result, enzyme levels are generally higher in 
FocR4-infected plantlets (TC) compared to plantlets with 
just endophytes (TA). The enhanced production of PO, PPO, 
PAL are often reflective of the extent of defense mecha-
nisms in the plantlets. PO is essential in generating antimic-
robial toxins (Peng and Kuc 1992) and has roles in lignifi-
cation of cell walls (Sato et al. 1993). Similarly, PPO and 
PAL are also associated with lignification (Goodman et al. 
1986; Metraux and Raskin 1993). Thus, it can be concluded 
that the endophytic UPM31P1 enhance tolerance of plant-
lets towards FocR4 via lignification as its defense mecha-
nism. In our study, plantlets in TC with relatively high 
levels of inducible compounds have been shown to have the 
least percentages of DI and DS compared to plantlets in TD 
(FocR4 only). As expected, the plantlets in TD clearly did 
not acquire host resistance prior to FocR4-challenged ino-
culation. The levels of inducible compounds were the low-
est among all diseased plantlets (Fig. 3) and the absence of 
induced resistance resulted in 100% DI and 74% DS. 

Hence, we linked the disease suppression achieved in 
plantlets with UPM31P1 pre-treatments (TC) was most 
likely attributed to the beneficial association between the 
endophyte and the host, that is via stimulation of host in-
duced resistance. Results from the bioefficacy assessment 
confirmed the benefits of endophyte-host association and 
demonstrated their ability to confer tolerance to Fusarium 
wilt with the lower percentages in DS and DI achieved. The 
host resistance triggered by the endophytes via lignification 
was however not sustainable as the plantlets still suc-
cumbed to Fusarium wilt. Initial delay in symptom develop-
ment and disease progression was not able to confer com-
plete control over the FocR4 as DI and DS increased over 
time. This may explain as well the diminishing number of 
surviving plants in the field, even with the pre-treatment of 
endophytes at glasshouse and planting stage (Ting et al. 
2009). This indicated that lignification alone is not effective 
(Goodman et al. 1986) or that it may occur too late to ap-
pear effective (Vance et al. 1980). Therefore, there is a need 
to correlate the defined time interval between induction and 
challenged-inoculation. 
 
CONCLUSION 
 
Our study showed that the fungal endophyte Fusarium spp. 
UPM31P1 has potential to confer resistance to Fusarium 
wilt via induced host resistance in the susceptible banana 

plantlets. This defense mechanism can be further studied 
and manipulated as an effective disease suppression mecha-
nism stemming from the use of endophytes as biological 
control agents. 
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Fig. 3 Production of inducible compounds assayed from banana plant-
lets infected (TC, TD) and non-infected with FocR4 (TA, TB). Com-
parisons were also made between the treatments and control (SDW). (A) 
Production of PO and PPO (B) PAL (C) total soluble phenols and (D) 
LTGA content in the root tissues. Values are cumulative means throughout 
the experimental period. Means with the same letters and captions are not 
significantly different as determined by Tukey’s Studentized Range Test 
(HSD(0.05)). Vertical bars indicate standard errors of mean. 
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