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ABSTRACT 
Bacillus subtilis flavocytochrome CYP102A2 is a high activity fatty acid hydroxylase that has evolved from fusion of a eukaryotic-like 
NADPH-cytochrome P450 reductase (CPR) to a P450 in a single polypeptide chain. In the present work we report the directed evolution 
of CYP102A2 from B. subtilis with a focus on its substrate specificity. The highly active CYP102A2 was subjected to error-prone PCR 
(epPCR) to generate enzyme variants with altered substrate specificity. The library of CYP102A2 mutants was expressed in BL21(DE3) 
Escherichia coli cells and screened for their ability to oxidize several substrates (sodium dodecyl sulphate, lauric acid, 1,4-naphthaquino-
line, 2-hydroxy-1,6-naphthoquinone and �-amino-n-caproic acid) by means of an activity assay. After a single round of epPCR, the variant 
Pro15Ser/Phe160Leu was isolated which exhibited altered substrate specificity towards naphthoquinones. Molecular modeling of 
CYP102A2 monooxygenase domain suggests that Phe160 is located at the end of �-helix-6 and is involved in van der Waals interactions 
with residues positioned at the �-helix-10 which are involved partly in the formation of the substrate binding pocket. Therefore Phe160 
seems to affect substrate binding and catalysis indirectly. 
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INTRODUCTION 
 
Cytochrome P450 monooxygenases (CYPs) play a key role 
in primary and secondary metabolic pathways and in drug 
detoxification (Lentz et al. 2004; Budde et al. 2006; Munro 
et al. 2007). They catalyze the reductive scission of mole-
cular oxygen, with one atom of oxygen being reduced to 
water and the other used to hydroxylate the substrate. Two 
electrons are delivered from NAD(P)H via flavoprotein 
and/or iron-sulfur redox partners (Munro and Lindsay 1996). 
The two protons required for the production of water appear 
to be delivered from bulk solvent via a specific channel in 
the P450 active site (Miles et al. 2000; Wade et al. 2004; 
Warman et al. 2005; Munro et al. 2007). CYPs play a pivo-
tal role in the synthesis and metabolism of secondary meta-
bolites, such as prostaglandins, leucotrienes and thrombo-
xanes, steroid hormones, insect and plant hormones and 
some colours and odours in plants (Lentz et al. 2004; Budde 
et al. 2006; Munro et al. 2007). 

Cytochrome P450 BM-3 (CYP102A1 or CYP102 or 
P450 BM3) from B. megaterium, an enzyme which is the 
most studied prokaryotic P450 monooxygenases, catalyzes 
the subterminal hydroxylation of fatty acids with a chain 
length of C12–C22. It is a catalytically self-sufficient mono-
oxygenase which contains a heme domain and a flavin 
reductase domain on a single polypeptide chain (Gustafsson 
et al. 2004). Self-sufficient bacterial P450 monooxygenases 
facilitate in vitro applications, as they do not require any 
separately added electron transport partners for catalytic 
action (Axarli et al. 2005). It preferentially hydroxylates in 
the �-1–3 positions with high enantioselectivity in the �-1 
and �-2 positions (98% R, 2% S) (Truan et al. 1999; Wade 
et al. 2004; Huang et al. 2007; Branco et al. 2008). 

Among the members of the cytochrome P450 family, 
the monooxygenase from Bacillus subtilis (CYP102A2) ex-
hibits high turnover frequency (Budde et al. 2004; Gustaf-
sson et al. 2004; Axarli et al. 2005). 

Because of their broad substrate specificity, there is an 

increasing interest to use P450s in biotechnology, for exam-
ple for the production of pharmaceuticals or the optimiza-
tion of lead compounds and existing drugs (Guengerich 
2002; Lentz et al. 2004; Urlacher et al. 2004; Budde et al. 
2006; Otey et al. 2006; Urlacher and Eiben 2006; Andrea-
deli et al. 2008; Damsten et al. 2008). However, practical 
applications of P450s are in general not economically via-
ble because of the requirement of the expensive pyridine 
nucleotide cofactors such as NAD(P)H. Due to the high 
cost of cofactors, in situ cofactor regeneration is necessary 
to be coupled with NAD(P)H-dependent oxidation for pre-
parative applications (Kataoka et al. 2003; van der Donk 
and Zhao 2003; Schewe et al. 2007; Kosjek et al. 2008; 
Andreadeli et al. 2009). 

In the present work we report the heterologous expres-
sion, purification and directed evolution of CYP102A2 
from B. subtilis with a focus on the factors affecting sub-
strate specificity. 
 
MATERIALS 
 
The pCR®T7/CT-TOPO®TA Expression Kits were purchased from 
Invitrogen (UK). �-nicotinamide-adenine dinucleotide phosphate, 
reduced form (NADPH, tetrasodium salt, ca. 95%), crystalline 
bovine serum albumin (BSA) (fraction V), DEAE Sepharose CL-
6B, 2,5-ADP-agarose and other analytical reagents were purchased 
from Sigma-Aldrich (St. Louis, USA). 
 
METHODS 
 
Cloning and expression of the wild-type 
CYP102A2 from E. coli BL21 (DE3) cells 
 
Cloning and expression of the wild-type CYP102A2 from E. coli 
BL21 (DE3) cells was carried out as described in Axarli et al. 
(2005). 
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Purification of the wild-type and mutants of 
CYP102A2 from E. coli BL21 (DE3) cell-free extract 
 
CYP102A2 was purified by a method similar to that described 
elsewhere (Gustafsson et al. 2004). Cell paste (0.22 g) was resus-
pended in potassium phosphate buffer (0.15 M, pH 6.7, 0.66 mL) 
containing 1 mM MeSH), sonicated, and centrifuged at 13,000 × g 
for 5 min. The supernatant was collected and dialysed overnight 
(4°C) against 1000-volumes of 50 mM Tris-HCI buffer containing 
1 mM EDTA, pH 7.4. Dialyzed cell-free extract (0.7 mL, 7.1 
U/mL, 6.5 mg protein) was applied to a column of DEAE Sepha-
rose CL-6B (1 mL) previously equilibrated with 50 mM Tris-HCI 
buffer containing 1 mM EDTA, pH 7.4. Non-adsorbed protein was 
washed off with 10 mL equilibration buffer. Bound CYP102A2 
was eluted with a step-wish gradient of 50-300 mM KCI in the 
equilibration buffer (total volume of 36 mL). Collected fractions 
were assayed for CYP102A2 activity and protein (Bradford 1976). 
Fractions with high enzyme activity (eluted with equilibration buf-
fer containing 250 mM KCl), were pulled and dialysed overnight 
(4°C) against 1000-volumes of 50 mM Tris-HCI buffer pH 7.4, 
containing 1 mM EDTA. The dialysate was loaded onto a 2,5-
ADP-agarose column (0.5 mL) previously equilibrated with 50 
mM Tris-HCI buffer pH 7.4, containing 1 mM EDTA. Non-
adsorbed protein was washed off with 4 mL equilibration buffer. 
Bound CYP102A2 was eluted with equilibration buffer containing 
5 mM NADP+ (2 mL). Collected fractions were assayed for 
CYP102A2 activity and protein (Bradford 1976). Protein purity 
was judged by SDS-PAGE. Purification of mutants were carried 
out as described for the wild-type enzyme. 
 
Kinetic analysis 
 
Enzyme assays were performed at 37°C at a Hitachi U-2000 dou-
ble beam UV-Vis spectrophotometer carrying a thermostated cell 
holder (10 mm pathlength). Activities were measured by deter-
mining the rate of NADPH conversion to NADP+ and following 
the decrease of absorbance at 340 nm. One unit of enzyme activity 
was defined as the amount of enzyme that catalyses the conversion 
of 1 �mol NADPH to NADP+ per minute at 37°C. 

Steady-state kinetic measurements were performed at 37°C in 
0.15 M potassium phosphate buffer, pH 6.7 by varying the con-
centration of the substrates (NADPH, SDS). Initial velocities were 
determined in the presence of 0.139 mM SDS, while the NADPH 
concentration range was 6.6-100 �M. When NADPH was used at 
a fixed concentration (0.1 mM), the SDS was varied in the range 
of 0.013-0.12 mM. In this case the data are best fitted to the Hill 
function since the curves are nonhyperbolic (sigmoidal curves). 
The kinetic parameter Km was calculated by non-linear regression 
analysis of experimental steady-state data using the computer 
program GraFit (Erithacus Software Ltd.). 
 
Determination of protein concentration 
 
Protein concentration was determined by the method of Bradford 
(1976) using bovine serum albumin (fraction V) as standard. 
 
Construction of error prone PCR library 
 
Error-prone PCR was performed as following: the PCR mixture 
(total volume 50 μL) contained 0.1 �M forward (5�-ATGAAGGAA 
ACAAGCCCGATTCCTCAGCCG-3�) and reverse (5�-TTTAGA 
TCTCTATATCCCTGCCCAGACATC-3�) primer, 7 mM MgCl2, 5 
ng of template DNA (mutant Pro15Ser), 200 μM dATP and dGTP 
and 600 μM dTTP and dCTP and 2.5 U of Taq DNA polymerase 
(Promega, U.K.). The reaction was carried out, in a Gene Amp 

9700 PE Applied Biosystems thermcycler. The PCR procedure 
comprised 35 cycles of 96°C for 2 min, 55°C for 2 min and 72°C 
for 6 min followed by 20 min at 72°C. The resulting PCR ampli-
con was TOPO ligated into a T7 expression vector (pCR�T7/CT-
TOPO�). The resulting library was used to transform competent 
BL21 (DE3) E. coli cells. Recombinant E. coli cells were grown at 
37°C in 100 mL LB medium containing 100 �g/mL ampicillin. 
The synthesis of mutated forms of CYP102A2 was induced by the 
addition of 1 mM IPTG when the absorbance at 600 nm was 0.6-
0.8. Four hours after induction, cells were harvested and analyzed. 
 
Bioinformatics analysis and molecular modelling 
 
A molecular model of the heme domain of CYP102A2 was cons-
tructed using SWISS-MODEL (http://www.expasy.org/swissmod/) 
(Guex and Peitsch 1997), as described by Axarli et al. (2005). The 
determined X-ray crystal structures of the heme domain of P450 
BM3 [PDB codes 1JPZ, 2HPD, 1FAG, 1BU7, with which the 
CYP102A2 enzyme shares 63% sequence identity, was used as a 
template. The program iMolTalk was used to analyze interactions 
in the modeled structure (Diemand and Scheib 2004). Sequences 
homologous to CYP102A2 were sought in the NCBI using 
BLASTP (htt://www.ncbi.nlm.nih.gov/BLAST/) (Altschul et al. 
1990). The resulting sequence set was aligned with Clustal W 
(Thompson et al. 1994). ESPript (http://espript.ibcp.fr/ESPript/ 
ESPript/) (Gouet et al. 1999) was used for alignment visualization. 
 
Electrophoresis 
 
SDS polyacrylamide gel electrophoresis was performed according 
to the method of Laemmli (1970) on a slab gel containing 12.5% 
(w/v) polyacrylamide (running gel) and 2.5% (w/v) stacking gel. 
The protein bands were stained with Coomassie Brilliant Blue R-
250. 
 
RESULTS AND DISCUSSION 
 
Bioinformatic analysis and purification of Bacillus 
subtilis CYP102A2 monooxygenase 
 
Two P450 monooxygenases [CYP102A2 (accession num-
ber O08394) and CYP102A3 (accession number O08336)] 
within the Bacillus subtilis genome, with high similarity to 
the well-known cytochrome P450 BM-3 (CYP102A1) of 
Bacillus megaterium have been recently identified (Budde 
et al. 2004; Gustafsson et al. 2004; Axarli et al. 2005). The 
CYP102A2 is a natural fusion enzyme consisting of a heme 
domain and a reductase domain. Fig. 1 shows the amino 
acid sequence alignments resulting from the BLAST search 
of CYP102A2. The heme domain of P450 BM3 (BMP 
domain) of CYP102A2 showed 63% sequence identity with 
the CYP102A1 from Bacillus megaterium, whereas signifi-
cantly higher identity was observed with the homologues 
enzymes from Bacillus cereus (Chowdhary et al. 2007) and 
Bacillus anthracis (~80%). 

Bacillus subtilis CYP102A2 monooxygenase gene was 
cloned and expressed using the T7 expression system which 
appeared very useful for expressing prokaryotic CYPs 
(Gustafsson et al. 2004; Axarli et al. 2005, 2010). The re-
combinant enzyme was purified by a 2-step procedure com-
prising anion-exchange chromatography and affinity chro-
matography on 2,5-ADP-agarose Sepharose column. Anion 
exchange chromatography on DEAE-Sepharose proven to 
be a convenient technique for the preliminary purification 
of CYP102A2. The enzyme was adsorbed at pH 7.4 and 

Table 1 Purification of CYP102A2 using a two-step procedure employing anion-exchange chromatography on DEAE-Sepharose CL 6B and affinity 
chromatography on 2,5-ADP-Sepharose CL 6B column. The procedure was carried out at 4°C. 
Step Volume (mL) Units Protein (mg) SA a Purification (fold) Yield (%)
Crude extract 0.7 4.958 6.500 0.763 1 100 
Anion-exchange chromatography on DEAE-Sepharose 1 2.930 0.975 3.005 3.938 59.1 
Affinity chromatography on immobilized 2,5-ADP-
Sepharose CL 6B column 

1 1.610 0.125 12.880 16.880 32.5 

a: Specific activity , Units/mg 
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subsequently eluted using KCl step-gradient. Affinity chro-
matography was the next and final step for CYP102A2 
purification. The enzyme was adsorbed at pH 7.4 (50 mM 
Tris-HCI buffer, containing 1 mM EDTA). Elution was car-
ried out biospecifically with NADP+ (5 mM). The results 
from a typical purification run are shown in Fig. 2 and sum-

marized in Table 1. 
P450 monooxygenases catalyze a broad range of reac-

tions, with different members of the family exhibiting quite 
varied substrate specificity (Gustafsson et al. 2004; Lentz et 
al. 2004; Axarli et al. 2005). CYP102A2 is more active in 
oxidation of SDS than any other characterized P450 mono-

Fig. 1 Amino acid sequence alignments. Sequence alignments of heme domain of CYP102A1 (residues 1-472) of B. megaterium flavocytochrome P450 
BM3 (A34286) with the respective domain of CYP102A2 from B. subtilis (O08394), B. cereus (NP979541), B. anthracis str. Sterne (YP_029250). NCBI 
accession number for the P450 enzymes are in brackets. The alignments were produced using Clustal W (Thompson et al. 1994) and visualised using 
ESPript (Gouet et al. 1999). The secondary structure of CYP102A1 (pdb code 1FAG) and numbering are shown above the alignment. Alpha helices and 
beta strands are represented as helices and arrows, respectively, and beta turns are marked with TT. Conserved areas are shown shaded. A column is 
framed, if more than 70% of its residues are similar according to physico-chemical properties. 
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oxygenase and catalyses its conversion to �-3, �-2 and �-1 
hydroxylated products (Fig. 3). Even and odd-chain as well 
as unsaturated fatty acids (e.g. myristic, pentadecanoic, 
oleic acids) were all exclusively hydroxylated at positions 
�-3, �-2 and �-1 (Gustafsson et al. 2004). 
 
Error prone PCR of wild type CYP102A2 
 
We used the polymerase chain reaction (PCR) to perform an 
error-prone mutagenesis based on the mutant Pro15Ser gene. 
The Pro15Ser mutant enzyme was recently characterised 
(Axarli et al. 2005) and showed approximately 6- to 10-fold 
increased activity to SDS, lauric acid and 1,4-naphthoqui-
none and enhanced activity for other substrates such as 
ethacrynic acid and �-amino-n-caproic acid. In order to 

identify enzyme forms with altered specificity, mutated 
clones from the error-prone library were screened using the 
NADPH-based assay and employing the several different 
substrates (sodium dodecyl sulphate, lauric acid, 1,4-naph-
thaquinoline, 2-hydroxy-1,6-naphthoquinone and �-amino-
n-caproic acid). After activity screening one enzyme variant, 
designated CYPvar8 was isolated and analysed. Sequencing 
of the CYPvar8 gene showed that the mutant contained two 
base substitutions (C�T, at codon No 16 and T�C, at 
codon No 160) leading to the amino acid exchanges 
Pro15Ser/Phe160Leu. The mutant was expressed in Esche-
richia coli, purified and its kinetic properties were analyzed. 
The steady-state turnover kinetic parameters were deter-
mined by monitoring the SDS dependent oxidation of 
NADPH. The effect of SDS and NADP+ concentration on 
the enzyme activity was studied at 37°C and pH 6.7 and the 
results are shown in Table 2. The results showed that the 
mutations do not change appreciably the affinity of the en-
zyme for NADP+ whereas contribute significantly to the af-
finity for SDS. In particular, the double mutant Pro15Ser/ 
Phe160Leu showed a 9.7-fold increase in Km values for 
SDS, compared to the wild type enzyme and 52.3-fold high-
er Km compared to the mutant Pro15Ser. These findings 
suggest that Phe160 is involved in important interactions 
which contribute to substrate binding and catalysis. Table 3 
shows the relative specific activity the Pro15Ser/Phe160Leu 
enzyme variant exhibited for SDS, lauric acid, 1,4-naphtha- 

A     B      C      D     E      F             G

Fig. 2 SDS-polyacrylamide gel electrophoresis of CYP102A2 prepara-
tions. Protein bands were stained with Coomassie Brilliant Blue R-250. 
Lane A, molecular weight markers; Lane B E. coli crude extract after 
induction with 1 mM IPTG; Lane C, D, E, F, eluted fraction from DEAE 
Sepharose CL-6B chromatography; Lane G, CYP102A2 eluted from the 
2,5-ADP-Sepharose CL 6B column. 

Fig. 3 Reaction scheme of fatty acid oxidation by CYP102A2. CYP102A2 hydroxylates SDS at the �-1, �-2 and �-3 positions. 

Table 2 Kinetic parameters of the wild-type and mutants Pro15Ser and 
Pro15Ser/Phe160Leu. Steady-state kinetic measurements were performed 
at 37°C in 0.15 M potassium phosphate buffer, pH 6.7. All initial velo-
cities were determined in triplicate. The kinetic parameters kcat and Km for 
NADPH were calculated by non-linear regression analysis of experi-
mental steady-state data using the GraFit (Erithacus Software Ltd.) prog-
ram (Leatherbarrow 1998). The S0.5 values for SDS were determined by 
fitting the plotted v versus substrate concentration to the Hill equation
using the GraFit (Erithacus Software Ltd) program (Leatherbarrow 1998).
Enzyme Km

a S0.5
b 

Wild-type 7.81 � 0.52 0.0330 ± 0.003 
Pro15Ser 7.44 � 0.45 0.0065 ± 0.0004 
Pro15Ser/Phe160Leu 6.12 � 0.63 0.3400 ± 0.111 

a: �M NADPH 
 b: m� SDS 

 

Table 3 Specific activities of the B. subtilis CYP102A2 wild-type enzyme and its mutant Pro15Ser/Phe160Ile, against selected substrates. Data for the 
wild-type enzyme and Pro15Ser were taken from Axarli et al. 2005 and included for comparison. As 100% was taken the specific activity of the wild type 
enzyme against SDS. 
Substrate Wild-type enzyme (%) Pro15Ser (%) Pro15Ser/Phe160Ile (%) 
SDS 100 571. 8.4 
Lauric acid 27 234.2 7.4 
Ethacrynic acid 2.9 6.4 NDa 
1,4-naphthoquinone 
2-hydroxy-1,6-naphthoquinone 
�-amino-n-caproic 

92 
15.7 
0.3 

821.9 
25.3 
1.8 

142 
38.8 
1.6 

a: No detectable activity 
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quinoline, 2-hydroxy-1,6-naphthoquinone and �-amino-n-
caproic acid. With SDS as substrates this variant showed 
about 12-fold lower specific activity, whilst with 1,4-naph-
thaquinoline, 2-hydroxy-1,6-naphthoquinone and �-amino-
n-caproic acid showed higher specific activity, compared to 
the wild-type enzyme (Table 3). 

A molecular model of CYP102A2 was constructed to 
put the activity data in a structural context (Fig. 4). The 
model was constructed based on the known crystal struc-
tures of CYP102A1 from B. megaterium. The possible role 
of Pro15 was recently analysed (Axarli et al. 2005). Briefly, 
Pro15 is located on the surface of the protein onto the short 
helical segment formed by residues 14 to 16, and is in-
volved in interactions with Pro46 which is located in a �-
turn that connects the �1 and �2 sheets (Fig. 1). Part of the 
�2 sheet forms the entrance of the substrate access channel 
and is responsible for the tight binding and subsequent 
orientation of the substrate in the active site (Maves et al. 
1997). Therefore, the Pro15Ser mutation may affect sub-
strate binding, which may affect the Km of the enzyme for 
SDS. 

The other mutated residue (Phe160Leu) found in the 
double mutant is a conserved residue (Fig. 1). Phe160 is 
located at the end of �-helix-6 (Fig. 4), and is involved in 
van der Waals interactions with Ile261, Phe264 and Leu265 
which are located at �-helix-10 (Fig. 1). Residues at �-
helix-10 (Ile266 and Ala267) are involved in the formation 
of the substrate binding pocket (Fig. 4B, 4C). One way in 
which the Phe160Leu mutation could affect substrate bin-
ding is through the perturbation of the structure of the �-
helix-10. This would lead to altered conformations for the 
important residues Ile266 and Ala267 that form part of the 
substrate binding site. 
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