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ABSTRACT 
Buckwheat is an important crop because of its potential value to humans and livestock. The genus Fagopyrum has 15 known species, two 
of them namely, Fagopyrum esculentum (common buckwheat) and F. tataricum (tartary buckwheat) are cultivated while others occur as 
wild or as escapes in and around cultivated fields in the highlands of Euro-Asia. Germplasm comprising ~10,000 accessions has been 
preserved in genebanks across the world. A wide range of variation occurs in buckwheat germplasm accessions for agronomic and quality 
characters, including rutin content. Tartary buckwheat contains approximately 40 times more rutin than common buckwheat, and is 
therefore more important from an industrial perspective. Rutin biosynthesis involves 9 genes, phenylalanine ammonia lyase, cinnamate 4 
hydroxylase, 4-coumarate CoA ligase, chalcone synthase, chalcone isomerase, flavonol synthase, flavanone-3-hydroxylase, flavanone-3’-
hydroxylase, and glucosyl/rhamnosyl transferase. We are investigating comparative genomics of rutin biosynthesis genes in buckwheat by 
utilizing sequences from well characterized related species. Collecting germplasm from diversity-rich areas, identifying trait-specific 
genes including candidate genes involved in the biosynthesis of rutin and other secondary metabolites of economic importance would be 
useful for enhancing utilization of buckwheat genetic resources. Unfortunately, buckwheat genome resources are very limited, imposing a 
challenge to genetic improvement of the species. Use of genomic information from well characterized related taxa has been advocated for 
genetic improvement of buckwheat. 
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INTRODUCTION 
 
Buckwheat (Fagopyrum sp.) is a multipurpose crop used for 
both grains and greens and known to have several medicinal 
and nutritional properties. The genus Fagopyrum belongs to 
the family Polygonaceae and has 15 known species which 
mainly occur in the highlands of Euro-Asia (Arora and 
Engels 1992; Ohnishi 1995). Tartary buckwheat (Fagopy-
rum tataracum Gaertn.) is cultivated at much higher ele-
vations (~3500 m) than common buckwheat (F. esculentum 
L. Moench.), which grows at an elevation of ~2500 m and 
is considered to be more important in the Himalayan region 
(Rana 2004). Buckwheat genetic resources have been 
collected, evaluated and preserved at various gene banks 
worldwide. Buckwheat has high flavonoid content, espe-
cially rutin and quercetin. In addition to its ability to reduce 
hemorrhage in people with high blood pressure, rutin has 
several other medicinal properties including pharmacolo-
gical, vasconstrictive, spasmolitic and positive inotropic 

effects (Campbell 1997; La Casa et al. 2000; Schramm et al. 
2003; Tomotake et al. 2000; Wang et al. 2009). The seeds 
of tartary buckwheat contain higher amounts of rutin (about 
0.8-1.7% d.w.) than those of common buckwheat (0.01% 
d.w.) (Fabjan et al. 2003). The demand for rutin and other 
flavonoids derived from buckwheat is growing in the food, 
pharmaceutical and cosmetic industries due to their desira-
ble physiological activities, such as anti-oxidation, anti-
inflammation and anti-hypertension (Table 1). 

Taxonomically, buckwheat shares similarities with 
families like Aizoaceae, Amaranthaceae, Plumbaginaceae, 
and Tamaricaceae which have 27191, 26807, 6387, and 
21709 expressed sequence tags (ESTs), respectively. We 
screened these EST sequences available at http:// 
compbio.dfci.harvard.edu/tgi/tgipage.html from related 
families of buckwheat for identification of simple sequence 
repeats (SSRs) and isolated 141 SSRs. Of these, only 13 
were able to amplify the buckwheat genome, indicating low 
cross-genera transferability of SSRs in buckwheat. The dip-
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loid nature (2n = 16), short life cycle (~70 days) and small 
genome size (~450 Mbp) makes it an ideal species for 
genetic investigation of the biosynthesis and accumulation 
of flavonoids. Rutin biosynthesis involves 9 genes, phenyl-
alanine ammonia lyase, cinnamate 4 hydroxylase, 4-cou-
maryl CoA ligase, chalcone synthase, chalcone isomerase, 
flavanone synthase, flavanol-3-hydroxylase, flavanol-3�-
hydroxylase, and glucosyl/rhamnosyl transferase. However, 
there are unidentified regulatory gene(s) controlling the ex-
pression of pathway genes in buckwheat. Towards this end, 
we are using genome information from related plant species 
through a comparative genomics approach to identify and 
characterize the structural and regulatory genes involved in 
rutin biosynthesis. 

Buckwheat genetic diversity the world over has become 
enormously depleted during the past few decades due to 
several factors particularly resulting from changing crop-
ping patterns and food habits. Identification of candidate 
genes for various traits of economic importance, including 
those involved in the biosynthesis of rutin and other sec-
ondary metabolites, would be useful for enhancing medici-
nal and nutritional properties of buckwheat both by conven-
tional and non-conventional plant breeding methods. Unfor-
tunately, the availability of genome resources in buckwheat 
is extremely limited, which impose challenges to the gene-
tic improvement of crop and its industrial use. The paper 
reviews the present status of progress made in the area of 
genetic and genome resources, tissue culture and genetic 
transformation in buckwheat and the future directions 
needed to genetically improve the species in agricultural 
and industrial perspective. 
 
GENETIC RESOURCES 
 
The genus Fagopyrum has around 15 species occurring in 
the temperate areas of Euro-Asia (Ye and Guo 1992). Of 
these, cultivated species F. esculentum and F. tataricum 
have wider distribution, while others such as F. homotro-
picum, F. caudatum, F. sagittatum, F. cymosum, F. megaear-
pum, F. gracilipes, F. urophyllum, F. leptopodum, F. lineare, 
F. callianthum, F. pleioramosum, F. capillatum and F. sta-
tice occur mainly in the highlands of Euro-Asia (Farooq and 
Tahir 1987; Anonymous 1988; Baniya 1994; Ohnishi 1995; 
Rana 2004). Furthermore, F. tataricum ssp. annum occurs in 
the Eastern Himalayas, F. tataricum ssp. potanini in Tibet, 
Kashmir Himalayas and northern Pakistan (Ohnishi 1989, 
1991, 1992), while F. tataricum ssp. himalianum, and F. 
tataricum ssp. emarginatum are distributed in the cold arid 

regions of Western Himalayas of India (Rana 2004). Mun-
shi (1982) described F. kashmirianum as a separate taxon 
but morphologically akin to F. tataricum, hence treated as 
same species. The wild types occupy open forests, waste-
lands, marginal lands, disturbed habitats and the weedy 
types occur more often in and around cultivated buckwheat 
fields (Anonymous 1988). Due to ancient trade links, there 
is the possibility of diffusion of buckwheat species from 
Tibet to Nepal and also en route to Bhutan and India and 
vice versa. 

Buckwheat germplasm collection missions have been 
undertaken at national, regional and international levels. 
The current status of buckwheat genetic diversity collected 
and maintained in east and south Asia has been documented 
by the International Plant Genetic Resources Institute (now 
known as Biodiversity International) Regional Office for 
Asia, the Pacific and Oceania (IPGRl-APO 1999). Approxi-
mately 5,000 accessions of buckwheat have been collected 
in east and south Asia, which consist of about 52% of the 
world’s buckwheat collections. Nearly 90% of the world’s 
tartary buckwheat accessions are native to Asia. China has 
the largest collection of buckwheat accessions (2146) fol-
lowed by India (954), Japan (746), DPR Korea (413), Nepal 
(327), North Korea (95) and Mongolia (30) (IPGRl-APO 
1999; Zou and Zhang 1995; Zhang et al. 2004). Unfortu-
nately, the diversity of wild species is not well represented 
in most of these collections. Accessions of nearly 50 wild 
species are maintained by China, Japan and India (Zhang et 
al. 2004). These accessions however, may have duplicates 
because of exchange of germplasm by various organizations 
within and between countries. 

Characterization and evaluation of collected and intro-
duced germplasm increases its utilization for various pur-
poses. The germplasm collections have been characterized 
worldwide for agronomic characters, using descriptors 
developed by Biodiversity International. A wide range of 
variability has been noticed in the germplasm for many 
yield and yield-contributing characters across countries 
(Ujihara and Matano 1977; Ujihara 1983; Choi et al. 1992; 
Baniya et al. 1995; Joshi and Rana 1995; Rana and Sharma 
2000; Rana 2004). The accessions varied with respect to 
days to 50% flowering (30-65), days to maturity (60-140), 
plant height (50-225 cm), number of internodes (9-28 cm), 
petiole length (1.4-8.9 cm), primary branches (1-20), leaf 
length (2.5-13.5 cm), leaf width (2.2-12.95 cm), cyme 
length (1.45-11.55 cm), seed yield per plant (1.75-124.15 g), 
and 1000-seed weight (3-35 g). Some of the promising ac-
cessions identified in the germplasm evaluated in India are 

Table 1 Potential medicinal and nutritional uses of buckwheat. 
Product/compound Effect Reference 
Rutin Strengthens capillaries and so helps in arteriosclerosis or high blood pressure Campbell 1997 
Rutin, quercetin and quercitrin UV-B radiations absorbing compounds Kreft et al. 2002 
Rutin Protection against gastric lesions La Casa et al. 2000 
Leaves Improve sight and hearing Campbell 1997 
Fagopyritol B1 (major soluble carbohydrate) Seed desiccation tolerance Horbowicz et al. 1998
Buckwheat protein product Lowers plasma cholestrol and raises fecal neutral sterol Kayashita et al. 1997
Buckwheat polyphenols Ameliorate spatial memory impairment Pu et al. 2004 
Dietary rutin, quercetin Nutritional value Fabjan et al. 2003 
Antimicrobial peptides Fa-AMP1 and Fa-AMP2 Toxic to plant pathogenic fungi, gram-positive and -negative bacteria Fujimura et al. 2003 
Phenolic antioxidants in buckwheat honey Protects humans from oxidative stress Schramm et al. 2003
Tartary buckwheat flavonoid (TBF) Chemopreventive activity and may have therapeutic role for human leukemias Ren et al. 2001 
Buckwheat flour Diabetes, obesity, hypertension and constipation Li et al. 2001 
Buckwheat protein Suppresses gallstone formation and cholestrol level by enhancing bile acid 

synthesis 
Tomotake et al. 2000

Buckwheat protein extract Retard memory carcinogenesis by lowering serum estradiol Kayashita et al. 1999
Buckwheat protein extract Causes muscle hypertrophy, elevates carcass protein and reduces body fat Kayashita et al. 1999
Roots and leaves Aluminum tolerance in buckwheat roots Ma et al. 1998 
Buckwheat flour Free radical scavenging activity Qian et al. 1999 
Buckwheat concentrate Diabetes Kawa et al. 2003 
Buckwheat protein product Colon carcinogenesis Liu et al. 2001 
Buckwheat extract 
Bran extract 

Ameliorates renal injury 
Reduction of serum trigycerides and total cholesterol level 

Yokozawa et al. 2001
Wang et al. 2009 
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given in Tables 2A and 2B. 
Indian buckwheat germplasm has been subjected to 

genetic divergence (Rana 1998; Rana and Sharma 2000) 
and stability analysis (Joshi and Rana 1995). Germplasm 
has also been evaluated for quality characters such as amino 
acid, vitamins E and P contents (Keli and Dabiao 1992; 
Suzuki et al. 2005; Lin et al. 2008). The variation for pro-
tein content (8.20 to 15.10%), total phenols (1.4-1.70%), 
free phenols (0.27-0.94%) and available lysine (3.89-
5.60%) was also noticed in 60 accessions evaluated under 
All India Coordinated Research Project on Under-Utilized 
Crops (Anonymous 2008). Accessions EC125938 and 
IC108499 (for protein content), IC341674, IC108500 and 
EC018282 (for lysine) and IC266947 and IC547385 (for 
total phenols) were found promising. The average amino 
acid content in F. esculentum germplasm ranged from 7.18-
16.51%, whereas in F. tataricum accessions it varied from 
7.04-15.83% (Zhou 1992). 

We also evaluated rutin contents in mature seeds of 200 
F. tataricum accessions, which showed relatively large vari-
ation, ranging from 0.6 to 2.0% (d.w) compared to only 
0.07% (d.w) in selected accessions of F. esculentum (Fig. 1). 
These results are in complete agreement with previous 
reports on variation in rutin content in cultivated buckwheat 
(Bonafaccia and Fabjan 2003). Park et al. (2004) compared 
the variation in rutin content in different plant parts of 
Fagopyrum spp. (F. tataricum, F. cymosum and F. esculen-
tum); highest content was in flowers, lowest in roots. There 
are reports of variation in rutin content in different Fago-
pyrum sp. coupled with antioxidant activity, which decreased 
in the order: F. tataricum > F. homotropicum > F. esculen-
tum (Jiang et al. 2006). Morishita et al. (2007) reported 3-4 
times higher antioxidant activity in tartary than common 
buckwheat grains. They further showed that rutin contri-
buted 2% of the total antioxidant activity in common buck-
wheat while 11-13% was contributed by epichatechin in 
contrast to tartary buckwheat where rutin appeared to be the 
major antioxidant (85-90%) (Morishita et al. 2007). Re-
search involving accessions with high and low rutin content 
(Tables 3, 4) is in progress in our laboratory. The variation 
in rutin content has been estimated from � 10 μg/mg to � 16 
μg/mg through RP-HPLC. 

Buckwheat genetic resources are under a major threat of 
erosion worldwide. The authors, during exploration and 
collection missions during the last 15 years, have witnessed 
an alarming loss of diversity of buckwheat in the Indo-Tibet 
Himalayan region – an important region of buckwheat 

genetic resources. The area under buckwheat cultivation has 
declined substantially (60-92%) in the Western Himalayan 
region of India (Rana et al. 2000; Rao and Pant 2001). 
Similarly, in Japan reduction in area ranging from over 
200,000 ha in 1800 AD to 25,000 ha by 1970 has been 
reported (Ujihara 1983). The reports on buckwheat acreage 
from other countries also depict similar trends in Nepal 
(Baniya et al. 1995), China (Zhou 1992) and Europe 
(Michalová 2001). Several factors are responsible for gene-
tic erosion of genetic diversity in buckwheat and important 
among them are changing cropping patterns, low producti-
vity, changing food habits and life styles, less alternative 
uses and products, and lack of awareness about its food 
value (Rana et al. 2010). 
 
CURRENT STATUS OF GENOME RESEARCH 
 
A significant amount of research has been conducted on the 
functionalities and properties of buckwheat proteins, flavo-
noids, flavones, phytosteroles, thiamin-binding proteins, 

Table 2A Promising accessions identified for different traits from the germplasm evaluated in India. 
Characters Germplasm accessions Accessions 

have value 
> or < 

Days to flowering IC329568, IC381130, IC13412, IC16558, IC42411, IC313301, IC313300, IC106836, IC326998 <35 days
Leaf length IC341081, IC274444, IC310104, IC278957, IC274439, IC018870, EC018864, EC218764, EC323723, EC216630 >11 cm 
Leaf width IC341681, IC311004, IC310046, IC318859, IC310047, IC109458, IC202262, EC323730, EC216635, EC323726 >10 cm 
No. of internodes IC258244, IC258230, IC341680, IC313468, IC381077, IC109726, IC109757, EC125397 >20 
No. of primary branches IC274423, IC318859, IC329194, IC318859, EC216635, EC323723, EC018864, EC188664 >11 
Cyme length IC360826, IC547549, IC547346, IC547396, IC361635, IC341631, IC318859, EC125357, EC58322 >7 cm 
Days to maturity IC310104, IC341671, IC329568, IC381130, IC13412, IC16558, IC42411, IC24301, EC323731, EC323729 <80 days
1000-seed weight IC381077, IC381098, IC381049, IC58322, EC323724, IC360829, IC360846, IC361359, EC216685, EC213682 >25 g 
Seed yield/plant IC18869, IC18889, IC318859, IC329401, IC329404 IC467923, IC447689, IC540858, EC218740 >100 g 

Source: Rana 2004; IC: indigenous accessions; EC: exotic accessions 
 

Table 2B Germplasm accessions marked for desirable traits. 
Trait Accessions/Breeding lines 
Early type VL 7, EC 323724, EC 323729, EC 323731 
Dwarf type VHC 26, EC 323729, EC 323724 
No. of primary branches Sangla local, PRB 9001, IC 18869 
No. of leaves Himpriya, IC 18889, VL 7 
Leaf area IC 18869, EC 323731 
No. of internodes KBB3, EC 323731, EC 323724, EC 323729 
1000-Seed weight EC 323729, EC 323731 

Source: Rana 2004; IC: indigenous accessions; EC: exotic accessions 

 

Table 3 List of 10 Fagopyrum tataricum accessions with high rutin con-
tent. EC- Exotic and IC- Indigenous accessions Source: unpublished data 
of Sunil K Sharma PhD. 
Accession No. 
IC26756 
IC42421 
IC107962 
IC310045 
IC14889 
IC313136 
EC18282 
IC14253 
IC274331 
IC49667 
 

Table 4 List of five Fagopyrum tataricum accessions with low rutin con-
tent. EC and IC accessions Source: unpublished data of Sunil K Sharma
PhD. 
Accession No. 
IC49676 
IC310046 
EC99945 
IC107583 
IC18664 
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and other rare compounds (Li et al. 2001; Tomotake et al. 
2002; Kreft et al. 2006; Zielinski et al. 2009). However, 
little effort has been invested in the development of mole-
cular markers and genome resources. The development and 
use of molecular markers for the detection and exploitation 
of DNA polymorphism is one of the most significant deve-
lopments in the field of molecular genetics (Cullis 2002). A 
genetic marker can be defined in one of the following ways: 
(a) a chromosomal landmark or allele that allows for tracing 
a specific region of DNA; (b) a specific piece of DNA with 
a known position on the genome or (c) a gene whose phe-
notypic expression is easily distinguished, used to identify 
chromosomes, or locus. Since the markers and the genes 
they mark are located closely on the same chromosome, 
they tend to remain together in successive generations of 
propagation, thus allowing the development of genetic lin-
kage maps. These genetic maps are used for detailed analy-
sis of association between genes or quantitative trait loci 
(QTLs) and economically important traits and, thereby, 
aiding introgression of desirable genes or QTLs through 
marker-assisted selection (MAS). Use of several molecular 
markers such as random amplified polymorphic DNA 
(RAPD) (Aii et al. 1998), amplified fragment length poly-
morphism (AFLP), (Nagano et al. 2001; Matsui et al. 2004) 
and simple sequence repeats (SSRs) (Konishi et al. 2006) 
has been reported in buckwheat (details in Table 5). Much 
of the progress in research in molecular genetics and plant 
breeding has been achieved using common buckwheat, and 
only fragmentary research efforts have been made in tartary 
buckwheat. 

DNA markers provide an efficient means of plant 
improvement through genome mapping and MAS. For this 
purpose, PCR-based methodology is more convenient than 
restriction fragment length polymorphism (RFLP) analysis 
because of the relative ease of detection and smaller amount 
of DNA required. Many fingerprinting techniques based on 
PCR, such as SSRs or microsatellites, RAPDs and AFLPs 
have been developed over the past several years. Sequence 
characterized amplified regions (SCARs) and sequence 
tagged sites (STSs) are also types of PCR markers, but they 
differ from the former methods by having single or two 

bands in agarose gels. RAPD provides a simple, inexpen-
sive and efficient method of generating molecular data. 
Sharma and Jana (2002a) studied species relationships in 
Fagopyrum using RAPD markers. RAPD markers have also 
been used to elucidate genetic diversity in Indian and Chi-
nese tartary buckwheat accessions (Sharma and Jana 2002b). 
The details of their findings have been reported in Table 5. 

Aii et al. (1998) developed SCAR markers that were 
closely associated with the Sh gene (homomorphic self-
compatible having the middle-styled morph), and these 
proved useful in identification of heterozygosity (Aii et al. 
1999). Using AFLP markers, Nagano et al. (2001) exploited 
the F2 progeny of F. esculentum and F. homotropicum for 
fine mapping of the Sh allele (homostylar locus). Five AFLP 
markers linked to the sht1 locus (genes linked to brittle 
pedicel in buckwheat) were identified (Matsui et al. 2004) 
and two of them were converted into STS markers, which 
were useful for MAS of non-brittle pedicel plants. 

An interspecific linkage map using F. esculentum and F. 
homotropicum was developed (Yasui et al. 2004). The F. 
esculentum map has 8 linkage groups with 223 markers 
covering a total of 508.3 cM, whereas the F. homotropicum 
map consists of 211 markers covering 548.9 cM. One-to-
one correspondence of the F. esculentum and F. homotropi-
cum linkage groups exists. Morphological markers, disty-
lous self-incompatibility and shattering habit were tightly 
linked to each other (1.3 cM) and located near the center of 
linkage group 1. Another marker, winged seed, was located 
on linkage group 4. 

Microsatellite markers showed a higher level of poly-
morphism and higher expected heterozygosity than two 
other dominant (AFLP and RAPD) or codominant (RFLP) 
markers (Powell et al. 1996). In common buckwheat, only 5 
microsatellite markers have been developed by sequencing 
2785 clones from the libraries. 1483 clones contained 
microsatellites, which were enriched for (CT)n and (GT)n 
repeats. Primer pairs were designed for 237 of the micro-
satellite loci, of which 180 primer pairs were amplified. Of 
these, 54 primer pairs were highly variable. These primers 
were evaluated for their ability to detect variations in com-
mon buckwheat populations and utilized in 7 related Fago- 

Fig. 1 Variation in rutin content among different accessions of F. tataricum. Source: unpublished data of Sunil K Sharma PhD. 
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pyrum species, including F. tataricum (Konishi et al. 2006). 
Efforts have also been made to develop microsatellite mar-
kers in tartary buckwheat (Li et al. 2007), which includes 
the construction of a genomic library enriched with (gT)n 
repeats by using 5�-anchored PCR for the development of 
microsatellite markers. Ma et al. (2009) reported 136 new 
SSR markers in F. esculentum and showed their application 
for diversity analysis in related species of the genus Fago-
pyrum. However, of the 136 SSRs, only 10 were polymor-
phic on 41 accessions of diverse species origin. 

ESTs are a partial sequence of a gene and are mapped 
on the respective gene position on the genome either by 
PCR-based markers or RFLP probes. Because EST markers 
are derived from the gene-coding regions, they are more 
likely to be conserved across populations and species than 

markers derived from random regions of DNA. The applica-
bility of 17 EST primers developed from common buck-
wheat was tested in other wild and cultivated Fagopyrum 
spp. (Joshi et al. 2006). The amplification products differed 
in band intensity. The results indicated that the transfera-
bility of common buckwheat EST markers decreased with 
an increase in genetic distance between species. 

Recently, genome analysis has taken a basic position in 
genetics and plant breeding and several genome libraries 
have been constructed for major crops (Nakamura et al. 
1997; http://www.hsls.pitt.edu/guides/genetics/obrc/plant/ 
general, http://www.tigr.org/db.shtml). The presence of a 
genome library is useful for achieving advances in geno-
mics and breeding of buckwheat through MAS. For exam-
ple, several interesting and economically important genes 

Table 5 Molecular markers reported in buckwheat. 
Molecular 
marker 

Studies done by authors Results and findings Reference

RAPD Attempts were made to determine molecular markers 
linked with homostylar (Ho) gene to determine basis 
of self compatibility. 

F2 population was generated from an insterspecific hybrid between 
Fagopyrum esculentum and F. homotropicum. Three RAPD 
markers OPB141250, OPP81000 and OPQ7800 were identified to be 
linked with the Ho gene. 

Aii et al. 
1998 

 RAPD markers were used to study the species 
relationship between 28 different accessions which 
belong to 14 different species. 

They revealed that F. tataricum is closer to its wild ancestor F. 
tataricum ssp. potanini Batalin, closely followed by F. giganteum. 
Cultivated common buckwheat (F. esculentum) showed affinity 
with its putative wild ancestor F. esculentum ssp. ancestrale and 
the other closely related diploid species F. homotropicum. The 
results showed that RAPD can be utilized for analysis of species 
relationship in F. and construction of genetic maps. 

Sharma 
and Jana 
2002a 

 The objectives of the study were to (i) determine the 
feasibility of using RAPD for diversity analysis in F. 
tataricum, (ii) group F. tataricum accessions collected 
from different ecoregions on the basis of their genetic 
diversity, and (iii) study the relatedness of wild 
ancestor F. tataricum ssp. potanini with cultivated 
tartary buckwheat germplasm. 

The similarity between cultivated tartary buckwheat accessions 
ranged from 0.61 to 1.00. Four distinct clusters were formed which 
corresponded well with the geographic distribution of the tartary 
buckwheat. Nepalese accessions showed maximum diversity 
followed by Chinese accessions. The wild buckwheat accession 
did not group with any of the three cultivated tartary buckwheat 
groups, and formed its own single-entry group. The study 
demonstrated the usefulness of the RAPD technique for the 
characterization of plant genetic resources and assessment of 
diversity between species. 

Sharma 
and Jana 
2002b 

AFLP The objective was to find tightly linked markers in 
buckwheat homostylar locus, concerned with self-
compatibility. Approximately 500 polymorphic loci 
were screened on the bulked segregant pools from F2 
progeny of the cross between F. esculentum (pin) and 
F. homotropicum. 

Of the nine markers, two were confirmed to have been derived 
from a single region. Nucleotide sequence information from each 
flanking region of the two single locus markers was used to design 
region-specific primers for PCR amplification. These markers can 
be utilized for fine mapping of the Sh allele in buckwheat and for 
positional cloning of the gene. 

Nagano et 
al. 2001 

 Shattering habit in buckwheat is due to brittle pedicel 
produced by two complementary, dominant genes, 
Sht1 and Sht2. To detect molecular makers linked to 
the sht1 locus, AFLP analysis was used in combination 
with bulked segregant analysis of segregating progeny 
of a cross between non-brittle common buckwheat and 
a brittle self-compatible buckwheat line. 

312 primer combinations were screened and linkage map was 
constructed around the sht1 locus by using 102 F2 plants. Five 
AFLP markers linked to the sht1 locus (genes linked to brittle 
pedicle in buckwheat) were identified. 

Matsui et 
al. 2004 

 Linkage analysis of F. esculentum and its wild self-
pollinated relative F. homotropicum has been studied.

An interspecific linkage map using F. esculentum and F. 
homotropicum was developed. 

Yasui et al.
2004 

Microsatellites The purpose was to develop a larger number of 
microsatellite markers in common buckwheat. By 
sequencing 2785 clones from the libraries, 1483 clones 
contained microsatellites, of which 352 had unique 
sequences. Primer pairs were designed for 237 of the 
microsatellite loci, of which 180 primer pairs each 
amplified PCR products. Fifty-four primer pairs that 
each amplified a clear PCR product of the expected 
size were evaluated for their ability to detect variations 
in common buckwheat populations and to be utilized 
in seven related Fagopyrum spp. 

Forty-eight (88.9%) out of the 54 microsatellite markers tested 
were found to be highly variable (the average number of alleles 
was 12.2 and the average polymorphism information content (PIC) 
was 0.79) in a population of cultivated buckwheat. A high rate of 
successful amplification of common buckwheat microsatellite 
markers was observed in closely related species The developed 
microsatellite markers will be useful in molecular breeding of 
common buckwheat. 

Konishi et 
al. 2006 

 136 new SSR markers developed in F. esculentum ssp. 
esculentum and their application to related species in 
the genus Fagopyrum has been investigated. 

Forty-one of the 136 SSRs amplified sequences in other 
Fagopyrum spp., including cymosum and urophyllum groups. 
However, of the 136 SSRs, only 10 were polymorphic on 41 
accessions of diverse species origin. The phylogenetic 
relationships revealed that the use of SSRs showed consistent 
results as compared to using other marker systems 

Ma et al. 
2009 

AFLP: amplified fragment length polymorphism; RAPD: random amplified polymorphic DNA 
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can be isolated by positional cloning, such as the hetero-
stylous self compatibility gene (Aii et al. 1998) or various 
stress resistance genes. A BAC library has been constructed 
from wild buckwheat, F. homotropicum (Nagano et al. 
2001). This library contains 24,096 clones. A random 
sample of 250 BACs from this library indicated an average 
insert size of 97 Kb. Based on the genome size of 1,080 
Mbp, the library coverage is 1.9 haploid genome equiva-
lents. The library provides useful resource for isolation of 
genes, e.g., the S-locus of buckwheat. Another BAC library 
for F. esculentum has been constructed, which includes 
142,005 clones with an average insert size of ~76 kb (Yasui 
et al. 2008). 

Chloroplasts often show uniparental inheritance over 
generations, which provide valuable information on inter-
species relationships. The complete chloroplast genome se-
quence of the wild ancestor of cultivated buckwheat, F. 
esculentum ssp. ancestrale has been made available by 
Logacheva et al. (2008). The gene content and chloroplast 
genome order in buckwheat are similar to that of Spinacia 
oleracea. However, it has some unique structural features 
distinct from previously reported complete chloroplast 
genome sequences. Phylogenetic analysis of the dataset, 
including the new sequence from non-core Caryophyllales, 
supports the sister relationship between Caryophyllales and 
asterids. 
 
 
 

TISSUE CULTURE AND GENETIC 
TRANSFORMATION 
 
Plant tissue culture is used widely in plant science; it also 
has a number of commercial applications. For buckwheat, 
which has immense nutraceutical importance, tissue culture 
assumes greater significance for in vitro production of 
important plant metabolites. Large-scale growth of plant 
cells in liquid culture inside bioreactors as a source of 
secondary products, like recombinant proteins can be used 
as biopharmaceuticals. At present, information about tissue 
culture in buckwheat is limited and is mainly restricted to 
micropropagation. Fagopyrum spp. are diploid, 2n =16; but 
tetraploid varieties either occur spontaneously or can be 
induced. Buckwheat has for centuries remained a crop with 
low seed set due to certain characteristics which prevent the 
application of conventional breeding methods (Kreft 1983). 
The main obstacles in buckwheat breeding include its very 
strong self/cross-incompatibility and its indeterminate type 
of growth and flowering. Modern biotechnology may pro-
vide means to address these problems in a novel way 
(Neškovi� et al. 1995). In vitro regeneration of buckwheat 
has been reported from various explants (Table 6) such as 
cotyledons and hypocotyls of seedling of buckwheat by 
addition of 2, 4-dichlorophenoxyacetic acid (2,4-D) with 
concentration of 5-10 mg/l to White’s basal media (Yamane 
1974). Another report shows regeneration of calli from 
protoplasts in F. tataricum which is one of the prerequisites 
for the successful use of somatic hybridization. As it has 

Table 6 An account of tissue culture studies in buckwheat. 
Tissue culture studies Medium used Plant growth regulators (conc.) Light, temperature conditions References
Induction of diploid 
restored plants from callus 
of buckwheat 

White’s basal medium 
pH-5.6 

2,4-D (10 mg/l) Dark ( transferred to fresh 
media after every 14-21 days), 
230 C 

Yamne 1974

Plant regeneration from 
Immature Inflorescence 

B5 media 
pH-5.8 

NAA (0.2 mg/l), BA (0-2 mg/l), 
IBA (1 mg/l) 

16-h photoperiod, 25°C Takahata 
1988 

Plant regeneration from 
protoplast of Common 
Buckwheat 

MS medium Gibberellic acid (0.1 mg/l) 16-h photoperiod, 25°C Adachi et al.
1989 

Callus regeneration from 
hypococtyl protoplast of 
Tartay Buckwheat 

MS medium 
Sucrose 3%, Mannitol 0.5M, 5mM 
CaCl2 
pH-5.8 

BA (1 mg/l), NAA (2 mg/l) Dark for 4 weeks followed by 
16-h photoperiod, 25°C 

Lachmann 
and Adachi 
1990 

Anther culture and 
androgenetic plant 
regeneration 

Gellan-gum solidified MS medium, 90 
g/l maltose 

BA (2.5 mg/l), IAA (0.5 mg/l) 16-h photoperiod, 25°C Bohanec et 
al. 1993 

Regeneration of plants 
from cotyledon tissue of 
Common Buckwheat 

MS medium 
Sucrose 3% 
pH-5.7 

2,4-D (1-3 mg/l), Kinetin (0.2 
mg/l), NAA (0.1-0.5 mg/l) 
Optimum medium (0.2 mg/l KIN, 
2.0 mg/l BAP, 3% sucrose) 

16-h photoperiod, 25°C Woo et al. 
2000 

Somatic embryogenesis in 
common buckwheat by use 
of explants from 
hypocotyls of young 
seedlings. 

Distilled water solidified by agar (0.8%)
Sub cultured on liquid and solid (with 
3% phytogel) media, based on the 
mineral salts B5, supplemented with 
myo-inositol (100 mg/l), thiamin-HCl (1 
mg/l), pyridoxine-HCI (1 mg/l), 
nicotinic acid (1 mg/l), casein 
hydrolysate (2 g/l), sucrose (30 or 100 
g/l); pH 5.5-5.6. 

2,4-D (1.0-15.0 mg/1) 
Regeneration medium contains 
IAA (0.175 mg/l) and 6-BAP 
(2.23 mg/1) 

16-h photoperiod, 25°C Gumerova et 
al. 2001 

Shoot organogenesis from 
leaf callus for common 
buckwheat. 

MS medium 
Sucrose 3% 
pH-5.7 

2, 4-D (2 mg/l), Kinetin (0.2 
mg/l), NAA (0.1-0.5 mg/l). 
For sub culturing (0.2 mg/l KIN, 
2.0 mg/l BAP, 3% sucrose) 

16-h photoperiod, 25°C Woo et al. 
2004 

High frequency plant 
regeneration of common 
buckwheat. 

MS medium 
pH-5.7 
For sub culturing (1/2 MS medium 
containing 1.0 mg/l IBA,0.5 mg/l NAA, 
3% sucrose) 

2, 4-D (2 mg/l), 6-BA (1.0-2.0 
mg/l) 

16-h photoperiod, 25°C Chen and 
Xu 2006 

Shoot organogenesis and 
plant regeneration for 
lateral cotyledonary 
meristems of buckwheat. 

MS medium 
pH-5.8 

BAP (4.0 mg/l), AgNO3 (7 mg/l) 16-h photoperiod, 25°C Lee et al. 
2009 

2,4-D: 2,4-dichlorophenoxyacetic acid, BA: benzyl adenine, BAP: benzlaminopurine, IBA: indole-3-butyric acid, KIN: kinetin NAA: 1-napthalene acetic acid 

38



Genetic and genome resources in buckwheat. Chauhan et al. 

 

been found that without a nurse callus, protoplasts start 
dividing 7-10 days after isolation independent of the culture 
conditions but, the development stops in two celled stage, 
hence cultures collapse. Therefore, in vitro planting effici-
ency can be raised to 25% by means of nurse cell culture 
technique (Lachmann and Adachi 1990). Callus and shoot 
regeneration has also been reported through cotyledons 
(Srejovi� and Neškovi� 1981; Mijuš-�juki� et al. 1992; 
Chen and Xu 2006; details in Table 6). However, these ex-
plants could not be used for clonal propagation, therefore, a 
procedure for plant regeneration from the immature inflo-
rescence culture (Table 6) was developed (Takahata 1988). 
Plant regeneration through cultured anthers of common 
buckwheat has been reported (Adachi et al. 1989; Bohanec 
et al. 1993). Somatic embryogenesis has been reported 
(Table 6) in cultures of immature embryos of common 
buckwheat (Rumyantseva et al. 1989) and of tartary buck-
wheat (Rumyantseva et al. 1989; Lachmann and Adachi 
1990; Woo et al. 2000). This regeneration system has been 
suggested to be valuable for genetic transformation and cell 
line selection in common buckwheat. 

There is an increasing interest in common buckwheat as 
a possible experimental material in plant molecular biology 
research. Transgenic techniques have the potential of 
modifying, decreasing or even removing allergenic substan-
ces in buckwheat. Attempts have been made to develop 
transgenic hypoallergic buckwheat genotypes. In 1987, a 
semi-dwarf buckwheat line was developed at the Agricul-
ture Canada Research Station (Campbell 1987). Reduction 
in height is due to decrease in length of first six internodes 
of the plant. Kojima et al. (2000) demonstrated successful 
Agrobacterium-mediated transformation in F. esculentum. 
The transformation method includes inoculation of Agro-
bacterium tumefaciens cells on to the apical meristem of 
seedlings with height of 7-8 cm after 4-5 days of culturing. 
The transformation efficiency of plants was estimated by 
detection of �-glucuronidase (GUS) gene and southern blot 
analysis. There is a need to develop a transformation system 
that does not require sterile conditions and allow rapid 
analysis of gene functions. To this end, two different in 
planta transformation methods, vacuum infiltration and 
infiltration by syringe, have been optimized (Brati� et al. 
2007). The transformation efficiency was measured by 
monitoring A. tumefaciens culture cell density, as well as 
pressure conditions and time elapsing between transforma-
tion event and GUS activity measurement. The vacuum 
infiltration method was found to be much more efficient as 
GUS activity was 57.3% (median value) higher than that 

obtained with infiltration with a syringe. The Arabidopsis 
thaliana tonoplast Na+/H+ antiporter gene, AtNHX1, was 
transferred into common buckwheat by Agrobacterium 
(Cheng et al. 2007). The transformants confirmed by PCR, 
Southern blotting, RT-PCR and Northern blotting analysis 
exhibited higher levels of salt tolerance to wild type plants. 
Moreover, the rutin content of the roots, stems and leaves of 
transgenic buckwheat also increased than those of the con-
trol plants. Transgenic common buckwheat plants over-ex-
pressing AtNHX1, a vacuolar Na (+)/H (+) antiporter gene 
from A. thaliana, were regenerated after transformation 
with A. tumefaciens (Chen et al. 2008). These plants were 
able to grow, flower and accumulate more rutin in the pre-
sence of 200 mmol/l NaCl. Moreover, the content of im-
portant nutrients in buckwheat was not affected by the high 
salinity of the soil. These results demonstrated the potential 
value of these transgenic plants for agricultural use in saline 
soil. Khadeeva et al. (2009) have demonstrated the possibi-
lity to use Agrobacterium-mediated transformation of leaf 
discs to produce resistance to bacterial infections in tobacco 
and potato plants by introduction of a single gene encoding 
the serine proteinase inhibitor BWI-1a (ISP) from buck-
wheat seeds. 
 
DEVELOPMENT OF MOLECULAR MARKERS IN F. 
TATARICUM 
 
The absence of a well developed linkage map and availa-
bility of only a limited number of molecular markers in 
buckwheat prompted us to look for in silico alternatives for 
rapid identification of additional molecular markers. We uti-
lized ESTs available in other plant species belonging to a 
taxonomically common order of Fagopyrum spp. Buck-
wheat belongs to the family Polygonaceae, order Caryo-
phyllales, therefore, we chose those plant species that fall 
under the same order for identification of molecular mar-
kers such as SSRs. All ESTs available in a particular plant 
species (Table 7) were downloaded from the TIGR data-
base (http://compbio.dfci.harvard.edu/tgi/tgipage.html). The 
SSRs were identified in ESTs using PGG Bioinformatics at 
www.hornbill.cspp.latrobe.edu.au and primers were de-
signed. Primer pairs were synthesized for 141 SSRs based 
on repeat length, out of which only 13 SSRs were success-
fully amplified on F. tataricum genotypes, indicating poor 
transferability of SSRs (Table 8). Fifty four SSRs, which 
were identified by Konishi et al. (2006) in F. esculentum, 
were also tested on selected accessions of F. tataricum, but 
no polymorphism was found. 

Table 7 Status of ESTs in plant species related to Fagopyrum. Source: unpublished data of Nidhi Gupta PhD. 
Family Plant species Number of ESTs 
Aizoaceae (ice plant family) Mesembryanthemum crystallinum 27,191 

Beta vulgaris 25,834 Amaranthaceae (goosefoot family) 
Suaeda salsa 973 
Limonium bicolor 4,686 Plumbaginaceae (leadwort family) 
Plumbago zeylanica 1,701 
Tamarix androssowii 4,627 Tamaricaceae (tamarix family) 
Tamarix hispida 17,082 

 
Table 8 SSR primers derived from ESTs and tested on Fagopyrum tataricum. Source: unpublished data of Nidhi Gupta PhD. 
Forward primer sequence (5�-3�) Reverse primer sequence (5�-3�) SSR motif Product size Plant 
GAACCAACAACATCAGTTTCAGC GTTTCGAGGTTAGTAGCTGGGAT (cag)17 300-400 bp 
AATTTCTGGATGGAGTAGTGCCT ATGGACAATGATGGAGTGTAACC (ga)28 300-400 bp 
CCTCTTCTCTCTTCCCTTGCTAC GTGAAACAAAGAGACTGAGCCAT (ca)4(ac)3a(ac)17 100-200 bp 
GCTCTTAGGCAGTTGGGTCC TCTCTCTCTCCCTTTCTCCTCTC (tc)20 200 bp 
CAGCTCCAATTCCTTTCTTCTTC GCTTCATATCTCTCTCCTCCCTC (ct)17 500 bp 

Beta vulgaris 
(Goosefoot family)

CCTTCCTTACTCACCCTTTGTCT CAATAAGTGAGAGTTGCGTCTCC (tac)14 400 bp 
CCTAGTCTAGACGATCGCGG AGGAAATGAGGAGAGTGGTTAGG (ga)55 200 bp 
CTACCACCACTCCACCACTCTC GACCTCGGAGAAGAAGACGTAG (cca)15 200 bp 
AACCCTCTCAGTATCAGCAGTTG AACTTCTGCAGTTGCTACCAAAG (tc)21 300 bp 
CATATCCTCCGTGTCCATAGTGT AGTATGTCAAGCAACCCAATCAC (ag)38 200 bp 

Mesembryanthemum
crystallinum 
(Ice plant family) 

CAAATTGAGAAAGACGGAGAGG GAAGATCCGACTCAACTTCTTCA (gaa)7 500 bp 
TCTGACGAAGAAAGAGAGATGCT AAGTCTTAGCCAACTAGATCCCG (gaaag)7 400 bp 
ACTCAGGATGTAACAGGGTTGAG GATGTTAGGTGATCTTGTGGGAA (caa)5 200 bp 

Plumbago zeylanica
(Leadwort family) 
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RUTIN BIOSYNTHETIC PATHWAY 
 
The rutin biosynthetic pathway has been elucidated in vari-
ous plant species. Nine genes are known to be involved in 
the pathway: phenylalanine ammonia-lyase (PAL), cin-
namate-4-hydroxylase (C4H), 4-coumarate CoA ligase, 
Chalcone synthase (CHS), Chalcone isomerase (CHI), Fla-
vonol synthase (FLS), Flavanone-3-hydroxylase (F3H), 
Flavanone-3’-hydroxylase (F3’H) and glucosyl/rhamnosyl 
transferase (Fig. 2). 

PAL, EC 4.3.1.5 catalyzes the first step in the phenylpro-
panoid pathway and is considered an important regulation 
point between primary and secondary metabolism. 

CHS, a key enzyme in flavonoid biosynthesis, catalyses 
sequential decarboxylative condensations of p-coumaroyl-
CoA with three malonyl-CoA molecules. CHS biosynthesis 
is specific to the formation of flavonoid pigments and iso-
flavonoids. Chalcone synthase gene has been found to be 
critical in rutin biosynthesis because down regulation of 
CHS in tomato fruit by RNA interference (RNAi) resulted 
in suppression of CHS, and subsequently reduced accumu-
lation of flavonoids (Schijlen et al. 2007) 

CHI, an enzyme in the isoflavonoid pathway in plants, 
catalyzes the cyclization of chalcone into (2S)-naringenin. 
CHI gene activity appears to be critical as in tomato peel 
tissue, the expression of a sequence encoding the P. hybrida 
chalcone isomerase leads to a large increase in the level of 
quercetin-glycoside accumulation (Verhoeyen et al. 2002). 
CHI-suppression by RNA interference (RNAi) showed 
reduced pigmentation and change of flavonoid components 
in flower petals of transgenic Nicotiana tabacum (Nishihara 
et al. 2005). The plants also accumulated high levels of 
chalcone in pollen, showing a yellow coloration. 

F3H catalyses the hydroxylation of flavanones at the 3 
position of C ring leads to the formation of dihydroflava-
nols. The full-length cDNA (1071 bp) and genomic DNA 
sequences of F3H gene were isolated from Ginkgo biloba 
for the first time (Shen et al. 2006). The full-length cDNA 
encoding a 357-amino-acid protein with a calculated mole-
cular weight of about 40 kDa and isoelectric point (pI) of 
5.57. In addition, F3H gene expression appears to be vital in 
the regulation of the flavonoid pathway as it is coordinately 

regulated with CHS and CHI in petunia (Pelletier et al. 
1997). The strong correlation between the concentrations of 
catechins in Camellia sinensis F3H expression indicates its 
critical role in catechin biosynthesis (Singh et al. 2008). 

FLS catalyse the formation of kempferol and quercitin 
from dihydrokempferol and dihydroquercitin respectively. 
Knock-out alleles of genes involved in flavonoid biosynthe-
sis were generated in Arabidopsis. One mutant line con-
taining an En-1(maize transposable element) insertion in the 
FLS showed drastic reduced levels of kaempferol. Allelism 
tests with other lines containing En-1 insertions in the F3H 
demonstrated that transparent testa 6 (tt6) encodes F3H 
(Wisman et al. 1998). 

Glucosyl/rhamnosyl transferases catalyse the glycosyla-
tion of quercetin following the rhamnosylation of isoquer-
citrin. Among these enzymes, uridine-diphosphoglucose 
(UDPGlc), flavonoid 3-O-glucosyltransferases (3GT) have 
been studied in different plants. In the present 3GT in 
buckwheat cotyledons has been purified and characterized 
(Suzuki et al. 2005). It has been studied that, the expression 
pattern of a UGT gene, UGT89C1, was found to be highly 
interrelated with known flavonoid biosynthetic genes which 
is identified as flavonol 7-O-rhamnosyltransferase. This was 
done by using transcriptome co-expression analysis acces-
sible on the ATTED-II public database (Yonekura-Sakaki-
bara et al. 2007). 
 
COMPARATIVE GENOMICS OF GENES INVOLVED 
IN RUTIN BIOSYNTHESIS 
 
Of the 9 genes involved in rutin biosynthesis, two genes 
CHS and glucosyl transferase have been identified in F. 
esculentum and F. tataricum, respectively (Hrazdina et al. 
1986; Suzuki et al. 2005). We used comparative genomics 
to identify and clone the remaining rutin biosynthesis genes 
in tartary buckwheat. As most of the genes are present in 
multiple copies in the genomes of plants, we used the Ara-
bidopsis genome information to identify the most signifi-
cant copy of each gene (Tables 9, 10). The nucleotide and 
protein sequences of genes involved in rutin biosynthesis 
were retrieved from different plant species and the multiple 
sequence alignments (MSA) were done in order to find out 

Fig. 2 Rutin biosynthetic pathway. Created by using information from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Comino et al. (2007). 
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the extent of sequence similarity (Table 11). Primer pairs 
were designed from conserved regions of gene sequences 
retrieved from dicot plants and amplified in Fagopyrum spp. 
(common, tartary and rice-tartary buckwheat). We observed 
single band amplification in CHS, 4CL and glucosyl/rham-
nosyl transferases, whereas for F3H and C4H, multiple 
copies of genes were amplified (Fig. 3). 
 
CONCLUSION AND FUTURE RESEARCH NEEDS 
 
Cultivated buckwheat, despite its consumption and use in 
many parts of the world lacks breeding research, primarily 
due to its distribution in resource-poor countries. Future 
collections are required to be made from the areas where 
genetic erosion is taking place, largely due to changed crop-
ping patterns and the replacement of buckwheat with more 
remunerative crop species. There is pressing need for a 
regional as well as global database on the status of buck-
wheat ex situ collections with basic passport data and a 
minimum of characterization data. Systematic and concer-

ted germplasm characterization efforts are required to iden-
tify the trait specific germplasm such as ultra early maturing 
types, synchronous maturity, high rutin content, resistance 
to shattering, easy-to de-hull, especially in tartary buckwheat, 
tolerance to lodging and frost, increased groat percentage, 
etc. Wild species diversity needs further taxonomic and bio-
systematic approach to classify and authenticate variations 
at species and subspecies level. More focus is required on 
the utilization of material for crop improvement, particu-
larly wild gene pool for incorporating tolerance to biotic 
and abiotic factors. Genomic resources in buckwheat are 
limited. Efforts need to be directed towards developing 
genomic libraries, identification and validation of molecular 
markers and generating linkage maps with deeper coverage 
that can assist breeders in QTL dissection and marker-
assisted breeding. Optimization of in vitro protocols for 
large-scale production of secondary metabolites of indus-
trial importance like rutin can be very useful. Research on 
development of transgenics for various biotic and abiotic 
stresses is another area that needs attention. 

Table 9 Copy number of rutin biosynthesis genes in different plant species. 
Gene Plant species/Gene copy number References 

Citrus/2(CHS 2 in embryogenesis) Moriguchi et al. 1999 
Poplar (6) Tsai et al. 2006 
Arabidopsis (1) 
Soyabean (7) 

Feinbaum and Ausubel 1988 

Walnut/2 (98% identity) Claudot et al. 1999 
C. sinensis/2 (CHS 2 plays key role) Moriguchi et al. 1999 
V. vinifera (4) Harker et al. 1990 

CHS (Chalcone synthase) 

Petunia/8 complete and 4 partial Koes et al. 1987 
V. vinifera/13 (1, 2, 3 are major ones) Saparvoli et al. 1994 
Poplar (5) Subramaniam et al. 1993 

PAL (Phenylalanine ammonia-lyase) 

Arabidopsis/4 (1 and 2 are major) Olsen et al. 2007 
C. sinensis/2 (C4H 2 plays major role) Betz et al. 2001 
Arabidopsis (1) Mizutani et al. 1997 
V. vinifera (1) Saparvoli et al. 1994 
Poplar (2) Tsai et al. 2006 

 C4H (Cinnamate 4 hydroxylase) 

Ipomea purpurea/6 Durbin et al. 1995 
Arabidopsis/14 genes, 4 are major (At4cl1, At4cl2, At4cl3, and At4cl5).
At4CL3 plays role 

Hamberger and Hahlbrock 2004 

Raspberry (4) Kumar and Ellis 2004 
V. vinifera (1) Sparvoli et al. 1994 

4CL (4Coumarate CoA ligase) 

Poplar (5) Ehlting et al. 2002 
Camellia sinensis (1) Lucheta et al. 2007 
Petunia hybrida (2) and Glycine max (5) Van Tunen et al. 1988; Ralston et al. 

2005 
Arabidopsis (1) Shirley et al. 1992 
Poplar (1) Lucheta et al. 2007 

CHI (Chalcone isomerase) 

V. vinifera (1) Lucheta et al. 2007 
Poplar (3) Tsai et al. 2006 
Arabidopsis (1) Pelletier and Shirley 1996 

F3H (Flavanone 3-hydroxylase) 

V. vinifera (1) Saparvoli et al. 1994 
Poplar (4) Tsai et al. 2006 
Arabidopsis/6 (AtFLS 1 is major) Owens et al. 2008 

FLS (Flavonol synthase) 

V. vinifera (1) Saparvoli et al. 1994 
Poplar (1) Lucheta et al. 2007 GTR (Glucosyl/Rhamnosyl transferase)
Arabidopsis (1) Shirley et al. 1996 

 
A B C D E

 
Fig. 3 Amplification of rutin biosynthetic pathway genes. (A) Flavanone-3 Hydroxylase, (B) Cinnamate-4 Hydroxylase, (C) Chalcone synthase, (D) 4-
Coumarate CoA Ligase, (E) Glucosyl/ Rhamnosyl Transferase in Fagopyrum species. 1 = F. tataricum (tartary buckwheat), 2 = F. tataricum (rice-taratary 
buckwheat), 3 = F. esculentum (common buckwheat). Source: unpublished data of Nidhi Gupta PhD. 
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