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ABSTRACT 
Abiotic and biotic stresses affect the growth and yield adversely in agronomicaly important crop plants. Management through avoidance 
is not possible in plants hence these have developed various kinds of signaling processes that activate/recruit plant growth regulator 
molecules that are capable of protecting against stress. Major growth regulators include phytohormones, simple ions like Ca2+ or various 
non hormonal molecules. These growth regulators initiate/activate a cascade of events either on their own or by evolving a cross-talk 
within them that finally recruits various transcription factors those in turn activate or suppress a variety of genes. Accumulation of these 
gene products or their removal trigger activation of various protectant molecules which may include chaperons, osmolytes, gases, ions or 
other molecules capable of protecting cell constituents. In the present review, we have tried to bring out the recent advances towards the 
mechanisms of hormonal regulators such as ethylene, auxin, gibberellins, jasmonic acid, abscissic acid, brassinosteroids, non hormonal 
regulators like polyamine and salicylic acid and developmental regulators such as heat shock proteins, protein kinases, miRNA, histones 
and various other genes that are involved in plant stress management. With the advent of modern tools of recombinant DNA technology it 
could be possible to manipulate these regulators or its associated molecules in developing transgenic varieties that are resistant to stress. 
This will not only help in reducing losses in agricultural crops but also protect and save elite germplasm when conditions are not 
conducive. 
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INTRODUCTION 
 
Plants being non motile organisms have to encounter 
various kinds of stresses out of their surrounding where 
they grow. These include climatic, mechanical and biotic 

stresses (Tuteja 2007b, 2009a, 2009b). The stress manage-
ment through avoidance is not applicable in case of plants 
hence they have developed various systems within to coun-
ter those stresses. Plants have developed capacities to sense 
changes/stress around them and recruit various signaling 
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molecules to transduce these signals locally or systemically 
to prepare themselves to manage it. Various phytohormones, 
biomolecules and chemicals are assigned different roles to 
manage different kind of stresses. Besides these having a 
direct role it is now well accepted that these entities work 
through a cross talk among themselves and a shift in the 
balance of either concentration or function culminate into a 
final effect against stress. 

Plant development and productivity are negatively 
affected by environmental stresses (Khan and Singh 2008; 
Singh et al. 2008, 2009; Tuteja 2009a, 2009b). Global 
effects on desertification, soil salinization, atmospheric CO2 
enrichment and effects of other pollutants are predicted to 
cause dramatic changes in the climatic conditions of arable 
lands in this century. Every year India loses hundreds of 
millions of rupees from reductions in crop productivity 
caused by abiotic stresses (Mahajan and Tuteja 2005; Khan 
and Singh 2008). Maintaining crop yields under adverse 
environmental stress conditions is probably a major chal-
lenge facing modern agriculture. Further, in their natural 
environment, plants encounter a vast array of pathogenic 
microorganisms such as fungi, bacteria, viruses and nema-
todes. These diverse pathogens deliver effecter molecules 
(also called virulence factors) into the plant cell to promote 
virulence and cause disease. To survive under such condi-
tions, plants have evolved intricate mechanisms to perceive 
external signals, allowing optimal response to environmen-
tal conditions. Phytohormones, such as salicylic acid (SA), 
jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) 
are endogenous, low-molecular-weight molecules that pri-
marily regulate the protective responses of plants against 
both biotic and abiotic stresses via synergistic and antago-
nistic actions, which are referred to as signaling crosstalk 
(Tuteja and Sopory 2008). On the other hand without stress 
effect many perennial plants simply would not survive. 
Trees, shrubs and herbaceous perennials put forth a flush of 
growth in spring when temperature, light and moisture are 
optimal. As summer progresses and rains are more frequent 
the temperature, humidity and light may rise above those 
that are conducive to growth. The plants use their signaling 
mechanisms and enter into dormancy. If it happened dif-
ferently the plants will continue to grow and invite ulti-
mately to death. To understand this complex phenomenon it 
is necessary to understand the contrasting adaptations of 
plants to grow in stressed and unstressed conditions, and the 
compromises and trade-offs between them. 

In this review we have tried to review the knowledge 
that has been gathered over the last couple of decades with 
respect to various factors that participate in stress manage-
ment in plants. The most recent knowledge in this respect 
includes involvement of various protein kinases and trans-
cription factors which participate in signaling and transcrip-
tional regulation of related genes respectively. 
 
HORMONAL GROWTH REGULATORS AND THEIR 
ROLE IN STRESS 
 
As mentioned earlier most of the abiotic stress is responded 
by variation in the levels of abscissic acid whereas, biotic 
stress enhances ethylene and jasmonic acid levels. It is now 
believed that other hormones such as gibberellins (GAs), 
auxin, cytokinin (CYT) and recently brassinosteroids (BRs) 
do also participate in various types of signal transduction 
during stress in plants. Recent reviews by Bari and Jones 
(2009), López et al. (2008) and Spoel and Dong (2008) 
clearly indicate that all phytohormones get activated during 
any kind of stress and either up regulate or down regulate 
several genes to let plant exert its effect. Some of the impor-
tant phytohormones and their relevance in stress are re-
viewed. 
 
Ethylene 
 
The two carbon gaseous plant hormone ET could be con-
sidered as the most important phytohormone for more than 

one reason. Its involvement in almost every phase of the life 
cycle of a plant makes it most studied plant hormone so far. 
From seed germination, to growth and development, pol-
lination to fruit development and ripening and organ abscis-
sion to senescence ET has been shown to involve in one 
way or the other (Ables et al. 1992). In the past couple of 
decades its role in various types of biotic and abiotic stress 
has been well elucidated. Moreover, one of the most studied 
signaling processes in plants is ET signaling (Klee and 
Clark 2004). Several components through which ET signal 
is transduced have been characterized functionally through 
transgenics or loss/gain of function approaches in mutants. 
Recently various other phytohormones are believed to exert 
their effect through cross talk with components of ET 
signaling and related transcription factors. This makes ET 
as a major phytohormone in plant processes. What progress 
has been made towards the understanding of role of ET in 
stress condition in plants is described in following para-
graphs. 

It has been observed that the most common and pro-
nounced responses of plants to various environmental 
stresses is the enhanced production of ET. ET production of 
plants was shown to be enhanced by various stresses in-
cluding biological stresses such as infection with pathogens 
or infestation with herbivores (Abeles et al. 1992; Arimura 
et al. 2002). ET is synthesized from S-adenosyl L methio-
nine (SAM), a key molecule for several metabolic pathways. 
Two major enzymes which participate in the biosynthesis of 
ET are 1-amino cyclopropane 1-carboxylate synthase 
(ACC) and ACC oxidase which act stepwise to produce ET, 
CO2 and HCN (Yang and Hoffman 1984; Kende 1993). 
There exist two systems for the biosynthesis of ET (McMur-
chie et al. 1972). System I is operative throughout the life 
cycle of plant where a small but variable amount of ET is 
produced depending upon the physiological need of the 
plant. System II is operative when a large amount of ET is 
required such as fruit ripening, senescence and under cer-
tain instances of stress. Switch over from system I to II is 
largely dependent on the type of the plant and the physiolo-
gical situation. Enzymes ACS and ACO are encoded by 
multi-gene families, which are regulated independently and 
in a tissue-specific manner in response to one or a specific 
set of several environmental effectors. In a particular stress, 
plant, tissue or the developmental stage, the generation of 
ACC and/or its conversion into ET is stimulated/suppressed 
while the generation of SAM from methionine is rather 
constitutive (Pech et al. 2004). Later positive and negative 
feedback of ET production was established by several 
workers. We shall review that under various conditions how 
the transcription of ACS/ACO is affected. 

Wounding of mature cucumber (Cucumis sativus) fruits 
by slicing and subsequent cutting induced the accumulation 
of mRNAs of the genes CSACS1, CS-ACS2 and CS-ACO1, 
while maximum expression of both CS-ACS1 and CS-ACO1 
coincided with the peak of ET production (Shiomi et al. 
1998). Mathooko et al. (2001) studied the effect of combi-
nations of wounding and applications of the translational 
inhibitor cycloheximide (CHX), the ET action inhibitor 1-
methylcyclopropane (MCP) as well as ET on the ET bio-
synthetic pathway in peach (Prunus persica) fruits. A trans-
lation-independent expression of genes of ACS and ACO in 
wound-induced ET production was found and a positive 
feedback control of wound-induced expression and activity 
of ACO was monitored. Further, transgenic lines of Arabi-
dopsis expressing the glucuronidase (GUS) and green fluo-
rescence protein (GFP) reporter genes from the promoter of 
each of the Arabidopsis ACS gene family members (Tsuchi-
saka and Theologis 2004) indicated that wounding of hypo-
cotyls inhibited the constitutive transcription of the genes 
ACS1 and ACS5 in the same tissues, whereas expression of 
ACS2, ACS4, ACS6, ACS7, ACS8 and ACS11 was induced. 
Wang et al. (2005) expressed ACS4, ACS5 and ACS7 in the 
same plant species using ACS-GUS transgenic lines. They 
found that wounding of leaves by squeezing with tweezers 
caused an increased reporter gene activity only in the ACS4-
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GUS and the ACS5-GUS transformed plants. As the expres-
sion of ACS4 and ACS7 was stimulated by wounding, the 
authors proposed a coexistence of ET autocatalysis and 
autoinhibition in vegetative tissues. Katz et al. (2005) pro-
vided similar evidence that two types of ET production, an 
autocatalytic and an auto-inhibitory system might operate in 
leaves, both of which could also be induced by wounding 
increased ET production can be found after plants having 
experienced water deficit during fruit development (Gelly et 
al. 2003). 

The transcription of ACS and ACO genes may respond 
to the water deficit in a very tissue-specific but coordinated 
manner as described by Nakano et al. (2002). Such specific 
responses were recently detected when Arabidopsis seed-
lings were exposed to a short-term water deficit for 3h 
(Wang et al. 2005). Activity of GUS-reporter genes revealed 
a substantial decrease in expression of the ACS gene ACS5 
after this treatment, whereas only a slight decrease of ACS7 
was detected and ACS4 was not affected at all. 

Salinity may affect the plant during seed germination 
and role of ET during seed germination is well established. 
When wheat seeds of two cultivars were germinated in petri 
plates, the increasing levels of salinity of either Cl- or SO4

- 
type did not accelerate ET evolution though dry matter of 
seedlings was strongly reduced (Datta et al. 1998). How-
ever, germination of lettuce (Lactuca sativa) seeds of nine 
cultivars in 150 mM NaCl compared to distilled water 
increased ET evolution (Zapata et al. 2003). When seeds of 
seven plant species were germinated under similar salinity 
conditions, this induced enhanced ET production only with 
four species including lettuce, whereas, even a decrease in 
ET evolution was found with three other species (Zapata et 
al. 2004). The different responses could be due to plant spe-
cific ACO activity. Exposing rice plants (Oryza sativa) of 
four cultivars to increasing concentrations of NaCl up to 50 
mM in nutrient solution raised ET production of leaves and 
ACC concentration in same organs. The responses were 
highly variable among cultivars, duration of salt stress and 
leaf age (Lutts et al. 1996). In tomato plants, ET evolution 
in petioles, and ACC levels in roots, petioles, leaves as well 
as in premature and mature fruits increased with increasing 
concentration of NaCl in nutrient solution (Botella et al. 
2000; El-Iklil et al. 2002). When rootstocks of Citrus were 
exposed to increasing levels of chloride a dramatic increase 
in ET evolution of leaves was observed only in the chloride-
sensitive genotype, which was associated with an increased 
ACC level in leaves (Bar et al. 1998). This response could 
be strongly suppressed by the addition of nitrate, which 
competes with the chloride uptake. Salt shock to seedlings 
of a Citrus sp. by the application of 200 mM NaCl in-
creased ACC levels in roots, in xylem fluid and in leaves, 
and dramatically raised leaf ET production (Gómez-Cade-
nas et al. 1998). Salinity-induced transcription of various 
ACS isogenes suggests that there exist specific responses of 
the different gene family members, which obviously depend 
on salt concentration, tissue and other environmental factors. 
Thus, when leaves of Arabidopsis thaliana were treated 
with different salt solutions, expression of the ACS genes 
ACS1, ACS3, ACS4 and ACS5 did not respond to either 100 
mM NaCl, 50 mM LiCl, or 500 mM CuCl2, whereas, ACS6 
and ACC level were highly responsive to all salts and ACS2 
was only slightly responsive to NaCl (Arteca and Arteca 
1999). However, when Arabidopsis seedlings were exposed 
to 300 mM NaCl, GUS-reporter gene activity indicated in-
duced expression of the ACS5 and also of the ACS7 gene 
(Wang et al. 2005). 

During the last decade, evidence has been provided that 
flooding stimulates the expression of genes for ACS and 
ACO. Shiu et al. (1998) showed that ET production in leaves 
of waterlogged tomato plants varied and peaked with the 
light periods. The transcription of the ACS gene LE-ACS2 
was induced in roots after flooding and then fluctuated 
during the dark periods. Soil flooding increased the ACO 
activity in petioles of a wild-type tomato within 6 to 12h, 
which was associated with higher rates of ET production, 

whereas both responses were reduced in a transgenic 
tomato line coding an anti-sense construct to the ACO gene 
LE-ACO1 (English et al. 1995). Water logging of potato 
seedlings resulted in a rapid and transient induction of 
ACO1 and ACO2 in roots and ACO1 in leaves, within 2h 
after flooding and continued to increase up to 15h (Nie et al. 
2002). Submergence not only entraps but also stimulates 
production of ET in deepwater rice by increased activities 
of ACS and ACO (Mekhedov and Kende 1996). Submer-
gence induced the expression of OS-ACS1 (Zarembinski 
and Theologis 1997) and of OS-ACS5, the latter of which 
may account for the early accumulation of ACC (Zhou et al. 
2001). 

One major adjustment made by both plant and animal 
cells in response to hypoxia is the switching from aerobic 
respiration to lactic or ethanolic fermentation (Roberts et al. 
1984a, 1984b). The role of ADH has been widely studied 
during hypoxia in plants. In Arabidopsis it was found that 
the hypoxic induction of ADH can be partially inhibited by 
AOA, an inhibitor of ET biosynthesis (Peng et al. 2001). 
This partial inhibition can be reversed by adding ACC. It 
has been now shown by Peng et al. (2005) that the expres-
sion of 4 of the 12 Arabidopsis ACS genes, ACS2, ACS6, 
ACS7, and ACS9 are induced during hypoxia with three dis-
tinct patterns. The hypoxic induction of ACS9 is inhibited 
by aminooxy acetic acid, an inhibitor of ET biosynthesis. In 
addition, the hypoxic induction of ACS9 is also reduced in 
etr1-1 and ein2-1, two ET insensitive mutants in ET-sig-
naling pathways, whereas, the addition of 1-aminocyclo-
propane-1-carboxylic acid, a direct precursor of ET, does 
not induce ACS9 under non toxic conditions. These results 
indicate that ET is needed, but not sufficient, for the induc-
tion of ACS9 during hypoxia. 

Drought, which can induce senescence in older leaves, 
promotes increased ET production in plants by increasing 
ACC synthesis and its conversion to ET (Apelbaum and 
Yang 1981). Foliar chlorophyll content decreases as a func-
tion of the severity of a water stress (Baisak et al. 1994) and 
inhibition of ET synthesis reduces the drought-induced loss 
of chlorophyll and prevents drought-induced senescence 
(Beltrano et al. 1999). ET regulates entry into several types 
of plant developmental cell death and senescence programs 
besides mediating plant responses to biotic and abiotic 
stress. The response of cereals to conditions of drought in-
cludes loss of leaf function and premature onset of senes-
cence in older leaves. The ACC synthase (ACS) mutants, 
affecting the first step in ET biosynthesis, were isolated in 
maize and their effect on leaf function examined. Loss of 
ZmACS6 expression resulted in delayed leaf senescence 
under normal growth conditions and inhibited drought-
induced senescence. ZmACS6 leaves continued to be photo-
synthetically active under both conditions indicating that 
leaf function was maintained. The delayed senescence phe-
notype associated with loss of ZmACS6 expression was 
complemented by exogenous ACC (Young et al. 2004). 

In plants, two classes of stress activated protein kinases, 
mitogen activated protein kinases (MAPKs) and calcium 
dependent protein kinases (CDPKs) have been reported to 
integrate multiple environmental stresses and undergo rapid 
biochemical activation upon exposure to biotic and abiotic 
stress (Mishra et al. 2006; Tuteja and Mahajan 2007; Maha-
jan et al. 2008; Tuteja 2009a). N-terminal CDPK2 signaling 
triggered enhanced levels of JA and ET but not SA. Ele-
vated CDPK signaling compromised stress induced MAPK 
activation and this inhibition required ET synthesis and per-
ception. (Ludwig et al. 2005). Recent studies have demons-
trated that the activity of ACS can be regulated at the post-
translational level by protein phosphorylation and dephos-
phorylation, which potentially could alter the turnover rate 
of ACS protein (Spanu et al. 1994; Wang et al. 2002). 
Protein phosphorylation and dephosphorylation were impli-
cated in the regulation of ET induction by stresses based on 
studies using protein kinase and phosphatase inhibitors. 
However, the kinase(s) involved remains to be determined. 
Using a conditional gain-of-function transgenic system, it 
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was demonstrated that the activation of SIPK, a tobacco 
MAPK, by NtMEK2, an active mutant of the upstream 
kinase of SIPK, resulted in a dramatic increase in ET pro-
duction. The increase in ET after the activation of SIPK 
coincided with a dramatic increase in ACC synthase (ACS) 
activity, which was followed by the activation of a sub-
group of ACS and ACO genes, suggesting that either the 
activation of unidentified ACS(s) or post-transcriptional 
regulation is involved. Infection with Tobacco mosaic virus 
(TMV), which is known to activate the SIPK cascade and 
induce ET biosynthesis, also induced the same ACSs and 
ACOs (Kim CY et al. 2003). 

The biochemical properties of A. thaliana type II recap-
tors were also studied and it was found that these receptors 
can bind ET and possessed serine kinase activity (Mous-
satche and Klee 2004; O’Malley et al. 2005). Similarly, a 
type II ET receptor, NTHK1, from tobacco was well charac-
terized. This protein shows about 50% identity with ETR2 
or EIN4 and possesses serine/threonine kinase activity (Xie 
et al. 2003). NTHK1 was found to be localized in the 
plasma membrane of plant cells (Xie et al. 2003). Another 
tobacco ET receptor, NTHK2, was found to possess acti-
vities of serine/threonine and histidine kinases in the pre-
sence of Mn2+ and Ca2+, respectively (Zhang et al. 2004). 
The difference in kinase activities and localization may 
reflect the divergence of the roles played by these ET re-
ceptors. ET receptor genes from other plants were also 
isolated and characterized (Cao Y et al. 2003; Klee 2004; 
Yau et al. 2004). ET has been regarded as a stress hormone 
involved in many stress responses. However, ET receptors 
have not been studied for the roles they played under salt 
stress condition. Previously, an ET receptor gene NTHK1 
from tobacco was characterized and found that NTHK1 is 
salt-inducible. Further investigation towards the function of 
NTHK1 in response to salt stress by using a transgenic ap-
proach was carried out. It was found that NTHK1 promotes 
leaf growth in the transgenic tobacco seedlings but affects 
salt sensitivity in these transgenic seedlings under salt stress 
condition (Zhou et al. 2006). Differential Na+/K+ ratio was 
observed in the control Xanthi and NTHK1-transgenic 
plants after salt stress treatment. It was concluded that the 
NTHK1 transgene is also salt-inducible in the transgenic 
plants, and the higher NTHK1 expression results in early 
inductions of the ACC oxidase gene NtACO3 and ET res-
ponsive factor (ERF) genes NtERF1 and NtERF4 under salt 
stress. However, NTHK1 suppresses the salt-inducible ex-
pression of the ACC synthase gene NtACS1. These results 
indicate that NTHK1 regulates salt stress responses by 
affecting ion accumulation and related gene expressions, 
and hence have significance in elucidation of ET receptor 
functions during stress signal transduction. 

The nuclear protein ETHYLENE INSENSITIVE2 
(EIN2) is a central component of the ET signal transduction 
pathway in plants, and plays an important role in mediating 
cross-links between several hormone response pathways. It 
was shown that EIN2 gene regulates plant response to os-
motic and salt stress through an ABA-dependent pathway in 
Arabidopsis. The expression of the EIN2 gene is down-
regulated by salt and osmotic stress. An Arabidopsis EIN2 
null mutant was supersensitive to both salt and osmotic 
stress conditions. Disruption of EIN2 specifically altered 
the expression pattern of stress marker gene RD29B in res-
ponse to the stresses (Wang et al. 2007). EIN2 encodes an 
Nramp family protein and is considered a central compo-
nent in ET signaling pathway because it is the only gene 
whose null loss-of function mutations result in complete ET 
insensitivity in Arabidopsis (Alonso et al. 1999; Shibuya et 
al. 2004). Analyses of loss-of-function mutations indicated 
that EIN2 may act as a node mediating cross-talk of multi-
ple hormone signaling pathways and responses to pathogens 
and pests (Lorenzo et al. 2003; Tang et al. 2005). Recently, 
Cao WH et al. (2006) proposed that only partial ET sig-
naling pathway may involve in plant response to salt stress 
and it branched off at EIN2. Recent studies revealed a very 
close connection between a novel tomato ethylene response 

factor 1 (TERF1) integrates ET and osmotic stress pathway. 
It binds to GCC box and to dehydration response element. 
Its expression was induced by ET and NaCl. Over expres-
sion of TERF1 activated GCC box containing pathogen 
related genes and also caused a typical triple response. 
Transgenic TERF1 tomato exhibited salt tolerance. It might 
work as linker between ET and osmotic stress pathway 
(Huang et al. 2004). 

The tomato ERF protein TSRF1, is transcriptionally up-
regulated by ET, SA, or Ralstonia solanacearum strain 
BJ1057 infection. Biochemical analysis indicates that 
TSRF1 specifically interacts in vitro with the GCC box, an 
element present in the promoters of many pathogenesis-
related (PR) genes. Further investigation indicated that 
TSRF1 activates in vivo the expression of reporter �-glucu-
ronidase gene controlled by GCC box. More importantly, 
over expressing TSRF1 in tobacco and tomato constitutively 
activates the expression of PR genes, and subsequently 
enhancing transgenic plant resistance to the bacterial wilt 
caused by Ralstonia solanacearum strain BJ1057 (Zhang et 
al. 2004). 

The AtNAC2 expression was induced by salt stress and 
this induction was reduced in magnitude in the transgenic 
Arabidopsis plants overexpressing tobacco ET receptor 
gene NTHK1. AtNAC2 is localized in the nucleus and has 
transcriptional activation activity. It can form a homodimer 
in yeast. AtNAC2 was highly expressed in roots and flowers, 
but less expressed in other organs examined. In addition to 
the salt induction, the AtNAC2 can also be induced by ABA 
ACC and NAA. The salt induction was enhanced in the ET 
overproducer mutant etol-1, but suppressed in the ET-insen-
sitive mutants etr1-1 and ein2-1, and in the auxin-insensi-
tive mutant tir1-1 when compared with that in wild-type 
plants (He XJ et al. 2005). 

Four rice genes, OsBIERF1 to OsBIERF4 (Oryza sativa 
benzothiadiazole (BTH)- that induced ET responsive trans-
criptional factors (ERF)) were identified and analyzed their 
expressions in rice disease resistance response and under 
various abiotic stress conditions. The OsBIERF1-4 proteins 
contain conserved ERF domains, but are categorized into 
different classes of the previously characterized ERF pro-
teins based on their structural organizations. OsBIERF3 and 
OsBIERF2 belong to Classes I and II, respectively; while 
OsBIRERF1 and OsBIERF4 are members of Class IV. 
OsBIERF3 could bind specifically to the GCC box se-
quence and was targeted to nucleus when transiently ex-
pressed in onion epidermis cells. Expression of OsBIERF1, 
OsBIERF3 and OsBIERF4 was induced by treatments with 
BTH and SA, chemical inducers capable of inducing dis-
ease resistance response in rice. In the BTH-treated rice 
seedlings, expression of OsBIERF1, OsBIERF3 and 
OsBIERF4 was further induced by infection with Magna-
porthe grisea, the rice blast fungus, as compared with those 
in water-treated seedlings. OsBIERF1 and OsBIERF3 were 
activated in an incompatible interaction but not in compa-
tible interaction between rice and M. grisea. Moreover, 
OsBIERF1, OsBIERF3 and OsBIERF4 were also upregu-
lated by salt, cold, drought and wounding. These results 
suggest that OsBIERF proteins may participate in different 
signaling pathways that mediate disease resistance response 
and stress responses to abiotic factors (Cao Y et al. 2006). 
Hahb-4 is a member of transcription factor belonging to 
subfamily I of HD-zip protein that is transcriptionally regu-
lated by water availability and ABA. Manarella et al. (2006) 
have shown that this is a new component of ET signaling 
pathway that induces marked delay in senescence. Hahb-4 
over expressing lines show strong tolerance to water stress. 
These lines are less sensitive to ET. This has a major rep-
ressive effect on ACS and SAM and on ERF2 and ERF5. 
Qin et al. (2006) have shown that GbERF belonging to ERF 
family that regulates GCC box containing PR genes when 
over expressed did not change endogenous levels of ET. 
However, expression profile of several PR genes, osmotin, 
CHN50, ACS and ACO were altered. 
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Jasmonic acid 
 
JA is a key signaling phytohormones in numerous plant res-
ponses to stresses (Kunkel and Brooks 2002). It is one of 
the final products of the octadecanoid pathway. This mole-
cule functions as a signal, together with other intermediates 
in this pathway and with biologically active derivatives 
(referred collectively as jasmonates), in response to biotic 
or abiotic stress. JA are fundamental to the mediation of res-
ponses to stress, such as wounding and elicitor molecules 
(Doares et al. 1995; Parchmann et al. 1997; León et al. 
2001), ultraviolet light and ozone exposure (Overmyer et al. 
2000; Rao et al. 2000), drought (Sugano et al. 2003), defen-
ces against insects (McConn et al. 1997), pathogens (Kloek 
et al. 2001) as well as in plant growth and development. 
Recent studies suggest that, JA plays an important role in 
defense mechanisms in rice (Rakwal and Komatsu 2000; 
Kim JA et al. 2003). Also, in symbiotic interactions such as 
arbuscular mycorrhiza, plant defense responses are trig-
gered during early stages (Liu et al. 2003). In barley, colo-
nization by an arbuscular fungus leads to elevated levels of 
JA (Hause et al. 2002). Plant responses to the activation of 
JA signaling eventually involve the induction of genes, such 
as those encoding the vegetative storage proteins (VSPs) 
(Benedetti et al. 1995), thionin (Thi2.1) (Epple et al. 1995; 
Vignutelli et al. 1998) and a plant defensin (PDF1.2) 
(Penninckx et al. 1998). JAs also enhance the transcription 
of genes involved in JA synthesis, such as DAD1, LOX2, 
AOS, OPR3 and JMT (Heitz et al. 1997; Laudert and Weiler 
1998; Mussig et al. 2000; Ishiguro et al. 2001; Seo et al. 
2001). Microarray analyses have confirmed the methyl jas-
monate (MeJA) inducibility and organspecific expression of 
genes required for JA biosynthesis, corroborating the exis-
tence of a positive feedback regulatory system for JA bio-
synthesis (Sasaki et al. 2001). Wasternack (2007) reported 
that JA alters gene expression positively or negatively in a 
regulatory network with synergistic and antagonistic effects 
in relation to other plant hormones such as salicylate, auxin, 
ET and ABA. It is reported in tobacco that, wounding 
causes rapid activation of two MAPKs, wound-induced pro-
tein kinase (WIPK) and SA-induced protein kinase (SIPK), 
and the subsequent accumulation of JA. It is found that acti-
vation of WIPK is required for the production of wound-
induced JA. Seo et al. (2007) suggested that WIPK and 
SIPK play an important role in JA production in response to 
wounding, and that they function cooperatively to control 
SA biosynthesis. In Arabidopsis the systemic immunity 
uses conserved defense signaling pathways, which is found 
to mediate by jasmonates (Truman et al. 2007). These 
authors suggested that JA signaling mediate long-distance 
information transmission. Moreover, the systemic transcrip-
tional response shares extraordinary overlap with local 
herbivory and wounding responses, indicating that JA may 
be pivotal to an evolutionarily conserved signaling network 
that decodes multiple abiotic and biotic stress signals. Re-
cently, Walia et al. (2007) reported the JA mediated adap-
tation of barley to salinity stress. The JA-pre-treated salt-
stressed plants accumulated low levels of Na+ in the shoot 
tissue compared with untreated salt-stressed barley plants 
after several days of exposure to stress. Their study sug-
gested that three JA-regulated genes, arginine decarboxy-
lase, ribulose 1,5-bisphosphate carboxylase/ oxygenase 
(Rubisco) activase and apoplastic invertase are possibly in-
volved in salinity tolerance mediated by JA. 
 
Abscisic acid 
 
ABA, a class of metabolites known as isoprenoids, in any 
particular tissue in a plant is determined by the rate of bio-
synthesis and catabolism of the hormone. Although it con-
tains 15 carbon atoms, in plants it is not synthesised directly 
from the C15 sesquiterpene precursor, farnesyl diphosphate, 
but is rather formed by cleavage of C40 carotenoids origi-
nating from the mevalonate pathway (Nambara and Marion-
Poll 2005). ABA regulates plant growth and development 

such as germination, lateral root development, seedling 
growth, seed development, seed dormancy, transition from 
vegetative to reproductive phase and abiotic stress tolerance 
(Wasilewskaa et al. 2008). Interestingly, ABA also plays a 
recently discovered role in hydroid regeneration, stress-
adaptation in sponges, pathogenesis of Toxoplasma gondii 
and in human immune responses, thus indicating a conser-
vation of ABA signaling across kingdoms (Bruzzone et al. 
2007; Nagamune et al. 2008). Although ABA signaling 
pathways in plants are not thoroughly understood, it is 
established that most of the ABA responses are regulated by 
ABA-mediated transcriptional regulation, which have been 
reviewed extensively (Nambara and Marion-Poll 2005; 
Yamaguchi-Shinozaki and Shinozaki 2006; Wasilewska et 
al. 2008). Genome-wide transcriptome analyses have iden-
tified more than a thousand genes that are differentially 
regulated by ABA, and these ABA-mediated changes in 
gene expression translate to major changes in proteome ex-
pression. It has been proposed that Phospholipids, hetero-
trimeric G proteins, modulation of intracellular calcium 
levels and the action of protein kinases and phosphatases 
are involved in ABA signaling (Hirayama and Shinozaki 
2007). Knockout lines and RNA-interference technology, 
together with protein interaction analyses, have been used 
to identify many of the cellular components that regulate or 
modulate ABA responses (Tuteja 2007a; Tuteja and Sopory 
2008). Recent discoveries reveal that besides genetic regu-
ation, epigenetic regulation plays a key role in ABA-medi-
ated plant processes (Chinnusamy et al. 2008). In addition 
to this, characterization of ABA-sensitivity mutations in 
RNA-binding proteins has led to the establishing of a func-
tional link between post-transcriptional mRNA processing 
and the ABA signal transduction machinery. By influencing 
transcript abundance, these RNA-binding proteins may 
modulate ABA signaling through the alteration of mRNA 
processing events such as splicing, 3� processing, nuclear 
export, transcript stability and RNA degradation (Kuhn et al. 
2008). Diverse roles of ABA in plants growth as well as in 
biotic and abiotic stress response suggest the existence of 
multiple receptors and signal transduction pathways. Tol 
date, only three possible ABA-receptors, namely, FCA 
(�owering time control protein A) (Razem et al. 2006), 
ABAR (ABA receptor) (Shen et al. 2006) and G protein-
coupled receptor (GCR2) (Liu et al. 2007) have been identi-
fied. 

In plants, ABA accumulates in response to different 
environmental stresses such as high salt, cold and drought. 
As an integral part of stress signal transduction, ABA regu-
lates important cellular reactions such as stomatal closure in 
guard cells, mediating by solute efflux, and regulates the 
expression of many genes that may function in tolerance to 
stresses (Himmelbach et al. 2003). These ABA-regulated 
genes contain a conserved, ABA-responsive, cis-acting ele-
ment named ABRE (ABA-responsive element; PyACGT 
GGC) in their promoter regions. This ABRE functions as a 
cis-acting element involved in ABA-regulated gene expres-
sion but a single copy of ABRE is not suf�cient for ABA 
response. ABRE and coupling elements having similarity 
with ABREs constitute an ABA-responsive complex in the 
regulation of many genes (Shen et al. 1996). Arabidopsis 
cDNAs encoding the bZIP transcription factors referred to 
as ABRE-binding (AREB) proteins or ABRE-binding factors 
(ABFs) interacting with ABRE were isolated using the yeast 
one-hybrid screening method (Uno et al. 2000; Choi et al. 
2000). Among these AREB/ABF proteins, expression of 
AREB1/ABF2, AREB2/ABF4, and ABF3 was upregulated by 
ABA, dehydration, and high-salinity stresses. Their activi-
ties were reduced in the ABA-de�cient aba2 mutant and in 
the ABA-insensitive abi1 mutant, but were enhanced in the 
ABA-hypersensitive era1 mutant (Koornneef et al. 1984; 
Uno et al. 2000). Most of the AREB subfamily proteins in 
Arabidopsis are involved in ABA-responsive signal trans-
duction pathways in vegetative tissues or seeds. Though 
ABA has been suggested to play important role in stress 
tolerance but based on the observation that only a subset of 
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stress inducible genes responds to ABA, ABA-dependent 
and independent regulatory pathways have been suggested 
to mediate stress response (Yamaguchi-Shinozaki and Shi-
nozaki 2006). The Arabidipsis RD29A/COR78/LTI78 gene 
is induced by drought, cold, and ABA. However, this gene 
is induced in aba or abi mutants by both drought and cold 
stresses, which suggests that it is governed by both ABA-
dependent and ABA-independent regulation under drought 
and cold conditions (Zhou et al. 2004). 

Several groups have reported that ABA plays important 
roles in plant defence responses (Mauch-Mani and Mauch 
2005; Adie et al. 2007; de Torres-Zabala et al. 2007). How-
ever, the role of ABA in plant defence appears to be more 
complex, and vary among different types of plant-pathogen 
interactions. In general, ABA is shown to be involved in the 
negative regulation of plant defence against various biotro-
phic and necrotrophic pathogens. ABA-de�cient (sitiens) 
mutant of tomato showed more resistance to B. cinerea 
(Audenaert et al. 2002), Pst (Thaler and Bostock 2004), 
Oidium neolycopersici (Achuo et al. 2006) and Erwinia 
chrysanthemi (Asselbergh et al. 2008) in comparison to 
wild type plants. Similarly, the ABA-de�cient aba2-1 
mutant of Arabidopsis showed more resistance to Fusarium 
oxysporum (Anderson et al. 2004) and the aba1-1 mutant 
showed less susceptibility to Hyaloperonospora arabidop-
sidis (Mohr and Cahill 2003) compared to wild type plants. 
Similarly, Arabidopsis mutants impaired in ABA biosyn-
thesis or sensitivity show more resistance to Pst DC3000 
(de Torres-Zabala et al. 2007) and B. cinerea (Adie et al. 
2007). Taken together, these results suggest that ABA acts 
as a negative regulator of defence responses in various plant 
pathosystems. This negative effect have been shown to be 
due to the interference of ABA with biotic stress signaling 
that is regulated by SA, JA and ET, and to an additional 
effect of ABA on shared components of stress signaling. 
However, the role of ABA as a positive regulator of defence 
has also been reported (Mauch-Mani and Mauch 2005). 
ABA activates stomatal closure that acts as a barrier against 
bacterial infection (Melotto et al. 2006). As a result, ABA 
de�cient mutants show more susceptibility to Pst. In ad-
dition, treatment with ABA protects plants against A. bras-
sicicola and P. cucumerina indicating that ABA acts as a 
positive signal for defence (Ton and Mauch-Mani 2004). 
Accumulating evidence suggests that ABA regulates defence 
responses through its effects on callose deposition, produc-
tion of reactive oxygen intermediates and regulation of 
defence gene expression (Bari and Jones 2009). However, 
the exact molecular mechanism of ABA action on plant 
defence responses against diverse pathogens remains un-
clear. Since ABA is involved in both biotic and abiotic 
stress signaling, the cross-talk between these signaling path-
ways and the molecular mechanisms involved remain 
obscure. 
 
Gibberellins 
 
GAs are diterpene plant hormones that are biosynthesized 
from geranylgeranyl diphosphate (GGDP), a common C20 
precursor for diterpenoids and control diverse aspects of 
growth and development including seed germination, stem 
elongation, �owering, fruit development and the regulation 
of gene expression in the cereal aleurone layer. These GAs 
are produced not only by higher plants, but also by fungi 
and bacteria (MacMillan 2001). It is supposed that GAs in 
fungi and bacteria are secondary metabolites that act as 
signaling factors to establish the interaction with host plants. 
Genes encoding enzymes of GA biosynthesis have been 
identi�ed through conventional enzyme puri�cation from 
rich sources of GA enzymes, functional screening of a 
cDNA expression library, or molecular genetic approaches 
using dwarf mutants defective in GA biosynthesis (Yama-
guchi 2008). Among more than hundred GAs, the major 
bioactive GAs, including GA1, GA3, GA4, and GA7, com-
monly have a hydroxyl group on C-3�, a carboxyl group on 
C-6, and a lactone between C-4 and C-10. GA1 has been 

identi�ed frequently in a variety of plant species (MacMil-
lan 2002), implying that it acts as a widespread bioactive 
hormone. However, GA4 also exists in most species, and is 
thought to be the major bioactive GA in Arabidopsis tha-
liana and some Cucurbitaceae members. Recent studies 
have highlighted the occurrence of previously unrecognized 
deactivation mechanisms. It is now clear that both GA 
biosynthesis and deactivation pathways are tightly regulated 
by developmental, hormonal, and environmental signals, 
consistent with the role of GAs as key growth regulators. In 
contrast to the GA-biosynthesis cascade, the mechanisms of 
GA signal transduction are still poorly understood. GAs 
promote plant growth by stimulating degradation of nega-
tive regulators of growth called DELLA proteins, which are 
considered to be a ‘molecular switch’ for GA signaling. The 
rice soluble GA receptor gibberellin insensitive dwarf1 
(GID1) interacts with the rice DELLA protein slender rice1 
(SLR1) in a GA-dependent manner. The GID1 gene encodes 
a member of the serine hydrolase family, which includes 
esterases, lipases, and proteases (Ueguchi-Tanaka et al. 
2005). Although the enzymatic function of GID1 has not 
yet been identi�ed, analysis of a gid1 and slr1 double 
mutant has revealed that SLR1 is epistatic to GID1. The bin-
ding of GID1 to DELLA results in ubiquitination and degra-
dation of DELLA via a ubiquitin E3 ligase SCF complex 
and the 26S proteasome (Ueguchi-Tanaka et al. 2005; Grif-
�ths et al. 2006). To elucidate the function of gid1, proteins 
regulated downstream of gid1 were analysed using a prote-
omic approach. The results suggest that the expression of 
PBZ1 (probenazole inducible protein) is regulated by GA 
signaling and stress stimuli, and that gid1 is involved in 
tolerance to cold stress and resistance to blast fungus 
(Tanaka et al. 2006). 

GA regulates positively many genes leading to GA-
associated phenotype. GA-regulated MYB transcription fac-
tor (GAMYB) that was �rst identi�ed as an activator of 
alpha-amylase expression in barley aleurone cells have also 
been demonstrated to be involved in anther development in 
barley (Murray et al. 2002). Furthermore, GAMYB interacts 
with KGM (KINASE-ASSOCIATED WITH GAMYB), 
which is a member of an emerging subgroup of protein 
kinases and it represses GAMYB function in barley aleurone 
(Woodger et al. 2003). Although the phosphorylation of 
GAMYB by KGM has not been demonstrated the characteri-
sation of KGM function will provide new insights into GA 
signaling pathways. Transgenic tobacco plants expressing a 
dominant-negative form of repressor of shoot growth (RSG) 
had a dwarf phenotype and a reduced concentration of the 
active GA1. RSG, which contains a basic leucine-zipper 
(bZIP) domain, transactivated the expression of the ent-
kaurene oxidase gene through interaction with its promoter 
sequence (Fukazawa et al. 2002). Recently, it has been 
demonstrated that 14-3-3 proteins bind RSG and control its 
subcellular localisation, thus regulating its ef�ciency as a 
transcriptional effector of GA-synthesis genes in the nuc-
leus (Igarashi et al. 2001). 

Arabidopsis DELLA proteins, which act as negative 
regulators of GA signaling, control plant immune responses 
by modulating SA and JA dependent defence responses. 
Studies suggest that DELLA proteins promote resistance to 
necrotrophs by activating JA/ET-dependent defence respon-
ses but susceptibility to biotrophs by repressing SA-depen-
dent defence responses in Arabidopsis. Thus, DELLA pro-
teins appear to integrate plant defence response pathways 
involving SA and JA/ET (Navarro et al. 2008). It seems that 
DELLA proteins regulate plant defence responses against 
various biotrophic and necrotrophic pathogens at least in 
part through the modulation of ROS levels in plants. How 
DELLA proteins regulate the expression of ROS detoxi�ca-
tion enzymes and how DELLA-mediated modulation of 
ROS levels act as biological signals to regulate plant growth 
and stress responses remains unclear (Achard et al. 2008). 
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Brassinosteroids 
 
BRs are a family of poly-hydroxylated steroid hormones 
that are involved in many aspects of plant growth and deve-
lopment (Rao et al. 2002; Sasse 2003). BRs are localized in 
all parts of plants and their presence unveiled in 27 families 
of higher plants and three families of lower plants including 
roots and have the capability of long distance transport, 
especially from root to shoot (Bajguz and Tretyn 2003; 
Sasse 2003). The biosynthesis of biologically active BRs in-
volves a series of cytochrome P450 and steroid 5a-reduc-
tase enzymes. BRs bind to the extracellular domain of the 
leucine-rich-repeat receptor-like kinase (LRR-RLK) BRI1 
(Brassinosteroid Insensitive 1) (Kinoshita et al. 2005) and 
activate its kinase function. BRI1 and its coreceptor BAK1 - 
another LRR-RLK (Nam and Li 2002) - transduces the BR 
signal through an unknown mechanism to soluble down-
stream components. Two of these components -BIN2 (BR-
Insensitive 2) (Li and Nam 2002) and BSU1 (bri1 Sup-
pressor 1) (Mora-Garcia et al. 2004), a GSK3 kinase and a 
Ser-Thr phosphatase, respectively, control the phosphory-
lation states of a family of nuclear transcription factors that 
include BZR1 (Brassinazole Resistant 1) (Wang et al. 2002; 
He JX et al. 2005) and BES1 (bri1 EMS Suppressor 1), also 
known as BZR2 (Yin et al. 2005). BZR1 and BZR2/BES1 
were identified as dominant gain-of-function mutants that 
are resistant to brassinazole (BRZ) (a BR biosynthesis in-
hibitor) and suppress the dwarf phenotype of bri1 mutants. 
Phosphorylation of BZR1 and BZR2/BES1 inhibits their 
activity through multiple mechanisms, including protea-
some degradation, cytoplasmic retention, and abolishment 
of DNA binding (Gampala et al. 2007; Gendron and Wang 
2007). BR-induced dephosphorylation activates BZR1 and 
BZR2/BES1 proteins, which directly regulate the transcrip-
tion of BR-responsive genes. 

BRs play a significant role in the amelioration various 
abiotic stresses (Hasan et al. 2008). Moreover, BRs are also 
recognized as regulators of transcription and translation 
(Bajguz 2000) thereby improving the level of total proteins 
(Bajguz 2000), enzymes (Hayat and Ahmad 2003a; Hayat et 
al. 2003; Fariduddin et al. 2004), the rate of nitrogen fixa-
tion (Vardhini and Rao 1999) and finally the seed yield, at 
harvest (Hayat and Ahmad 2003b; Hayat et al. 2003; Fari-
duddin et al. 2004, 2005). BRs elicit various physiological 
responses in plants, including stem elongation, pollen tube 
growth, leaf bending and epinasty, root growth inhibition, 
induced synthesis of ethylene, activation of proton pump, 
xylem differentiation, synthesis of nucleic acids and pro-
teins, activation of enzymes and photosynthesis (Clouse and 
Sasse 1998; Khripach et al. 1999; Hayat and Ahmad 2003a; 
Yu et al. 2004; Hayat et al. 2007). It has been proposed that 
the changes induced by BRs are mediated through the rep-
ression and/or depression of specific genes (Fellner 2003). 
The treatment rice and tomato plants (Kamuro and Taka-
tsuto 1991), maize (He et al. 1991), cucumber (Katsumi 
1991) and brome grass (Wilen et al. 1995), with BRs im-
proved their capacity of resistance to low temperature. 
Similarly, BRs increased the degree of tolerance, to high 
temperature, in wheat (Kulaeva et al. 1991) and brome 
grass (Wilen et al. 1995). BRs also countered the drought 
stress in sugarbeet (Schilling et al. 1991), moisture stress in 
wheat (Sairam 1994), nickel toxicity in mustard (Alam et al. 
2007), saline stress in chickpea (Ali et al. 2007), cadmium 
stress in chickpea and mustard (Hayat et al. 2007; Hasan et 
al. 2008), aluminium stress in mung bean (Ali et al. 2008) 
and induced seed germination and seedling growth in Euca-
lyptus (Sasse et al. 1995) and rice (Anuradha and Rao 2001), 
under salinity stress. Moreover, BRs activate antioxidative 
enzymatic defense system in rice seedlings, grown under 
salt stress (Nuñez et al. 2003). Furthermore, BRs have been 
successfully employed for economic gains, since treated 
plants develop stress resistance and produce more seeds, at 
harvest (Hayat and Ahmad 2003a; Fariduddin et al. 2004, 
2005; Ali et al. 2008; Hasan et al. 2008). 
 

Cytokinins 
 
In plants, CYT, the N6-substituted adenine-based molecules, 
are mainly synthesized by the addition of an isoprene 
moiety to ATP or ADP. These have been associated diverse 
processes including stem-cell control, vascular differentia-
tion, chloroplast biogenesis, seed development, growth and 
branching of root, shoot and in�orescence, leaf senescence, 
nutrient balance and stress tolerance (Muller and Sheen 
2007). CYT has also been linked to nodulation in legumes, 
interactions with pathogens and circadian rhythms (To and 
Kieber 2008). CYT signal transduction has similarities to 
the two-component system of bacteria (Kakimoto 2003) in 
which a sensor histidine (His) kinase perceives a stimulus 
and autophosphorylates on a conserved His residue in the 
kinase domain (West and Stock 2001). Further, signal is 
transduced via phosphoryl transfer to a conserved aspartic 
acid present on the receiver domain of a response regulator, 
which activates downstream responses (West and Stock 
2001). The cytokinin receptors ARABIDOPSIS HIS 
KINASE 4 (AHK4), AHK2 and AHK3 are hybrid kinases 
similar to HKs in two-component systems. These three 
transmembrane hybrid kinases have an extracellular cyto-
kinin-binding domain and cytoplasmic His transmitter and 
receiver domains (Heyl and Schmulling 2003). 

CYT have also been shown to be an important signal 
travelling from roots to the shoots. Root-produced CYT are 
clearly involved in responses to nutrient deprivation 
(Schachtman and Shin 2007). Because these are produced 
mainly in roots, could be important in drought responses. 
There are evidences that provide information on the CYT 
content of xylem sap changes under drought conditions. In 
grapevines, reduction in zeatin (Z) and zeatin riboside (ZR) 
was found in plants that had been subjected to partial root-
zone drying (Stoll et al. 2000). In sun�ower, xylem sap, 
combined Z and ZR and combined isopentenyladenine and 
isopentenyladenosine concentrations in xylem sap de-
creased under drought-stressed conditions (Hansen and 
Dorf�ing 2003). This suggests that the ABA: CYT ratios in 
xylem sap may play important role in signaling. Increase in 
transpiration rate was observed in transgenic plants that 
overexpressed the isopentenyltransferase, causing the plants 
to produce more CYT after a heat shock treatment. Though 
role of CYT has been reported but strong conclusions are 
premature because the complexity of the CYT pro�les has 
not been fully explored (Davies et al. 2005). 

Role of CYT in plant defence against diseases has also 
been documented (Bari and Jones 2009). Down-regulation 
of genes involved in CYT homeostasis (cytokinin synthases 
and cytokinin oxidases/dehydrogenases) in Plasmodiophora 
brassicae infected Arabidopsis suggests that CYT plays an 
important role in the development of club root disease 
caused by P. brassicae in Arabidopsis (Siemens et al. 2006). 
Transgenic plants overexpressing cytokinin oxidase/dehy-
drogenase genes showed resistance against P. brassicae 
infection suggesting that CYT acts as a key factor in the 
development of club root disease in Arabidopsis (Siemens 
et al. 2006). Modulation in CYT metabolism in Arabidopsis 
after infection with Rhodococcus fascians has also been 
reported (Depuydt et al. 2008). 
 
Auxin 
 
Auxin biology is among the oldest fields of experimental 
plant research because auxins influence virtually every 
aspect of plant growth and development. One of the earliest 
noted auxin effects was phototropism, the curvature of 
stems toward a light source. Some early effects of auxin 
was noted where it promoted rooting from undifferentiated 
callus (Skoog and Miller 1957). Along with the phytohor-
mone CYT, which induces shoot formation, auxin allows 
regeneration of plants from cultured callus (Krikorian 1995). 
Many naturally occurring compounds that exert auxin-like 
effects have been identified and assayed such indole-3-
acetic acid (IAA), an extensively studied endogenous auxin, 
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a chlorinated form of IAA with high auxin activity, 4-Cl-
IAA, (Slovin et al. 1999), indole-3-butyric acid (IBA), iden-
tical to IAA except for two additional methylene groups in 
the side chain, (Zolman et al. 2000) etc. Two main types of 
synthetic plant growth regulators (PGRs) with auxin-like 

activity have been described: 1-naphthalacetic acid (NAA) 
and 2,4-D-related compounds. Both compounds exert 
auxin-like influences, including root elongation inhibition 
and lateral root promotion. The auxin group of compounds 
is synthesized from tryptophan using both tryptophan (Trp)-
dependent and Trp-independent routes. Multiple IAA 
biosynthetic pathways may contribute to the regulation of 
IAA production. A detailed account of auxin biology and 
biochemistry has been reviewed by Woodward and Bartel 
(2005). Auxin rapidly and transiently induces accumulation 
of at least three families of transcripts: SMALL AUXIN-UP 
RNAs (SAURs), GH3-related transcripts and AUXIN/ 
INDOLE-3-ACETIC ACID (Aux/IAA) as reviewed by Guil-
foyle (1999) and Hagen and Guilfoyle (2002). Most of the 
genes in these three families are primary/early response 
genes which mean that they are activated rapidly after auxin 
treatment and that the protein synthesis is not required for 
their activation. At least one promoter DNA sequence that is 
involved with the auxin regulation of primary/early auxin 

response genes is the TGTCTC or auxin response element 
(AuxRE). The auxin response elements allow binding of 
auxin response factors (ARFs) which are transcription fac-
tors and could be transcriptional activators or repressors 
(Tewari et al. 2003). The identification of the auxin res-
ponse sequence element led to the isolation of first ARF1 
from Arabidopsis (Ulmasov et al. 1997). The auxin sig-
naling is one of the most complicated pathways in plant 
signaling. Though lot of research has gone into auxin sig-
naling still it is not well characterized. The molecular and 
biochemical studies of several auxin resistant mutants have 
positioned the SCFTIR1 ubiquitin-ligase complex as a central 
regulator of auxin signaling (Quint and Gray 2006). The 
picture on the role of MAP kinases mediated auxin sig-
naling is getting little bit clearer. 

Though auxins have long been considered as the phy-
tohormone responsible for plant growth and phototropism 
recent evidences indicate that it may have a direct/indirect 
role in plant stress management as well. Some of the recent 
works in this direction are reviewed. Auxin responsive GH3 
genes have been shown to play role in plant defence res-
ponse in Arabidopsis. The GH3-5 may be acting as bi func-
tional modular for SA and auxin signaling during pathogen 
infection (Zhang et al. 2007). Over expression of another 
gene of this class, GH3-8 resulted in enhanced resistance to 
Xanthomonas in rice which causes bacterial blight disease. 
Interestingly this resistance was independent of SA and JA 
signaling (Ding et al. 2008). Treatment of Arabidopsis 
plants with an SA analog BTH resulted in the repression of 
several auxin responsive genes (Wang et al. 2007). SA is 
known to be the most responsive molecule in pathogen 
infection. Very recently it was shown that over expression 
of OsGH3.1 in rice caused auxin biosynthesis and auxin 
signaling inhibition genes induced and repressed, respec-
tively. OsGH3.1 over expression did also activate a signi-
ficant number of defense-related genes and genes related to 
cell wall morphogenesis and loosening (Domingo et al. 
2009). Interference with auxin signaling or its transport 
compromises resistance of Arabidopsis plants to the necro-
trophic fungi P. cucumerina and B. cinerea (Llorente et al. 
2008). Further, periwinkle shoots infected with different 
‘Candidatus Phytoplasma’ when treated with IAA and IBA 
showed recovery. It was concluded that auxin mediates 
phytoplasma infection and can be used to eliminate 
phytoplasma in vitro conditions (�urkovi� et al. 2008). Ellis 
et al. (2005) showed that ARF1 and ARF2 genes regulate 
floral organ senescence and abscission in Arabidopsis. The 
HR programmed cell death initiated by a bacterial type III 
secretion system dependent proteinaceous elicitor harpin 
(from Erwinia amylovora) can be reversed till very late in 
the process by the PGR auxin (Gopalan 2008). NPK1 is a 

mitogen-activated protein kinase kinase kinase identified in 
Nicotiana tabacum and plays important roles in cytokinesis 
and auxin signaling transduction and responses to multiple 
stresses. Expression analysis of OsNPKL genes under abi-
otic stresses suggests that the stress-responsive genes are 
mainly from the same subgroup. Especially interesting is 
that all the clustered genes are induced by drought, salt, or 
cold stress (Hu et al. 2008). 
 
NON-HORMONAL GROWTH REGULATORS AND 
THEIR ROLE IN STRESS 
 
Plants respond and adapt to the continuous environmental 
fluctuations with appropriate physiological, developmental 
and biochemical changes to cope with these stress condi-
tions. There is biological evidence suggesting that plants 
use a general and conserved response mechanism to deal 
with abiotic stress. PGRs (auxins, CYT, GAs, ABA and ET) 
are known to influence plant development in general and 
floral development, fruit set, fruit ripening and senescence 
in particular (Srivastava and Handa 2005). Other growth 
regulators such as polyamines (PAs), SA, BRs and JA are 
becoming known as signaling molecules in diverse plant 
processes (Mattoo and Handa 2004; Srivastava et al. 2007). 
Furthermore, the use of ions for osmotic adjustment may be 
energetically more favorable than biosynthesis of organic 
osmolyte under osmotic stresses; many plants accumulate 
organic osmolytes to tolerate osmotic stresses. These com-
pounds fall into several groups - amino acids (e.g. proline), 
quaternary ammonium compounds (GB), polyols and 
sugars (mannitol, dononitil, trehalose, sucrose, fructan, etc.). 
This part of review deals with the possible role of non hor-
monal PGRs in abiotic stress tolerance. 
 
Polyamines 
 
PAs a group of small aliphatic amines are reported to play 
important role in plant development. PAs, mainly diamine 
putrescine (Put), triamine spermidine (Spd) and tetra amine 
spermine (Spm), are low molecular organic cations that are 
found in a wide range of organisms from bacteria to plants 
and animals. In plants, PAs are involved in various physio-
logical events such as development, senescence and stress 
responses. Production of Put in plants is different from that 
in animals owing to the presence of the arginine decarboxy-
lase (ADC) pathway through arginine in addition to the 
ornithine decarboxylase (ODC) pathway through ornithine. 
Spd is synthesized from Put via spermidine synthase 
(SPDS) with the addition of an aminopropyl moiety pro-
vided by decarboxylated S-adenosylmethionine (dcSAM), 
which is catalyzed by the enzyme of S-adenosylmethionine 
decarboxylase (SAMDC) using S-adenosylmethionine 
(SAM) as a substrate. Similarly, Spm is produced from Spd 
via spermine synthase (SPMS) with the same aminopropyl 
moiety rendered by dcSAM. It has been proposed that PAs 
are a new category of PGRs which are found to be involved 
in a wide range of physiological processes, such as toler-
ance to stresses, embryogenesis, cell division, morphoge-
nesis, and development (Papadakis and Roubelakis-Ange-
lakis 2005; Alcazar et al. 2006; Yang et al. 2007; Kuznetsov 
and Shevyakova 2007; Pang et al. 2007). These are also 
known to accumulate under salt stress conditions in dif-
ferent plant systems, resulting in protective effects, acting 
as free radical scavengers, stabilizing cellular membranes 
and maintaining cellular ionic balance under these condi-
tions. Jiménez-Bremont et al. (2007) reported that in res-
ponse to long-term salt stress the levels Spd and Spm were 
modulated suggesting their role in salt stress. It has been 
suggested that there is a connection between PA metabolism, 
abiotic stress and abscisic acid. The measurement of PAs 
levels in different rice cultivars showed that salt-tolerant 
rice cultivars maintains a high level of higher PAs, e.g. Spd 
and Spm, whereas, salt-sensitive rice cultivars maintains 
only a high level of Put (Basu and Ghosh 1991; Krishna-
murthy and Bhagwat 1989). The salt tolerant cultivars 
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‘AU1’, ‘Co43’, and ‘CSC1’ were effective in maintaining 
high concentrations of Spd and Spm, while the content of 
Put was not significantly altered in the growth stages ana-
lysed when plants were exposed to salinity. The salt sensiti-
vity in rice was associated with excessive accumulation of 
Put and with low levels of Spd and Spm in the shoot system 
of the salt-sensitive cultivars ‘Co36’, ‘CSC2’, ‘GR3’, 
‘IR20’, ‘TKM4’, and ‘TKM9’ under saline conditions 
(Krishnamurthy and Bhagwat 1989). Free and bound PAs 
content in root tonoplast vesicles were closely related to salt 
tolerance of barley plants. It is reported that 200 mM NaCl 
induced reductions in the contents of phospholipids and PAs 
in tonoplast vesicles isolated from barley seedling roots, 
while exogenous Put or Spd (0.5 mM) application partially 
restored this effect, attenuating salt injury in barley seed-
lings (Zhao and Qin 2004). PAs accumulated in Arabidopsis 
wild-type plants (‘Col-0’ and ‘Ler-0’) that were pre-treated 
with 100 mM NaCl before transfer to 125 mM NaCl, but 
not in plants that were directly transferred to 125 mM NaCl 
(Kasinathan and Wingler 2004). On the other hand, the salt 
treatment that induced PA accumulation in wild-type plants 
did not lead to PA accumulation in the spe1-1 and spe2-1 
mutants with reduced activity of ADC (Kasinathan and 
Wingler 2004), demonstrating that decreased PA formation 
due to lower ADC activity lead to reduced salt tolerance. 
Mutlu and Bozcuk (2005) reported the potential role of PAs 
to overcome the adverse effect of salinity. They also repor-
ted an increase of free, acid-soluble bound, and total Spm in 
leaf tissues of sunflower plants subjected to 50, 100, and 
150 mM NaCl. Zapata et al. (2004) observed increased 
levels of polyamines in several plant species such as spi-
nach, lettuce, melon, pepper, broccoli, beetroot and tomato 
under salt stress. They observed that except beetroot, Put 
concentration was lower in seedlings grown under saline 
conditions. However, salinity caused a significant increase 
in Spd and Spm in almost all the plant species studied. This 
meant that the pool of Put was directed to Spd and Spm 
synthesis. The (SpdþSpm) = Put ratio increased with sali-
nity, which would be in agreement with the idea of a 
protective role of higher PAs (Spd and Spm) against salt 
stress. Significant increase in the accumulation of Spm and 
Spd associated with a decrease in Put content in wheat 
cultivars under salinity stress was reported by El-Shinti-
nawy (2000). However, in another study Imai et al. (2004) 
found that 200mM NaCl did not significantly change the 
OsSPDS2 (a SPDS gene) mRNA levels in rice plants. These 
results indicated that endogenous Put also plays an impor-
tant role in salt tolerance in Arabidopsis (Urano et al. 2004). 
In order to differentiate the ionic and osmotic components 
of salt stress, Legocka and Kluk (2005) found that 260 mM 
NaCl and 360 mM sorbitol trigger organ-specific changes in 
PAs levels and in the activity of ADC in Lupinus luteus, a 
drought-tolerant plant. After a shortterm exposure (4 h) of 
seedlings to both stresses, Put and Spd accumulated in roots 
and leaves. Long (24 h) salt and osmotic stress conditions 
produced a decline of Put and Spd in roots, and an increase 
in hypocotyls and leaves. During this period of time, the 
concentration of free Put significantly raised in the leaves 
without increasing ADC activity. This may indicate that 
during longer times of action for both stresses, Put synthe-
sized in roots was carried through hypocotyl to leaves. Also, 
in roots and leaves of Lupinus luteus growing for 24 h on 
salt or sorbitol, a higher level of PAs bound to microsomal 
membranes was observed (Legocka and Kluk 2005). In 
relation to the consequences of water deficiency, it was 
observed that when an oat ADC gene was overexpressed in 
rice, the plants showed improved drought tolerance in terms 
of chlorophyll loss. Wild-type plants of Datura stramonium 
responded to the onset of drought stress by increasing endo-
genous Put levels, but this was not enough to trigger the 
conversion of Put into Spd and Spm, (the agents that are 
believed to protect plants against water deficit (Capell et al. 
2004). The use of difluromethylarginine (DFMA) and �-
difluromethylornithine (DFMO), the biosynthetic inhibitors 
of Put biosynthesis, as well as cyclohexylamine (CHA), 

biosynthetic inhibitor of Spd and Spm biosynthesis, sup-
ported the role of PAs in mediating the differential sensi-
tivity of chickpea Barley seedlings treated with Spd prior to 
a water deficit period, reverted the increase in catalase and 
guaiacol peroxidase activities produced by this stress, sug-
gesting that PAs are able to influence the activity of H2O2-
scavenging enzymes, moderating this signal molecule level 
(Kubis 2003). In the Arabidopsis genome, eight genes in-
volved in PA biosynthesis have been recently identified 
(two genes for ADC, two genes for SAMDC, two genes for 
SPDS and two genes for SPMS) and their expression pro-
files were analyzed in response to different abiotic stress 
conditions (Urano et al. 2003). Yamaguchi et al. (2006) 
reported that an Arabidopsis double knock out plant that 
cannot produce Spm showed higher sensitivity to high salt. 
This mutant was also later found to be sensitive to drought 
and the mutant phenotype could be cured by the addition of 
Spm but not by Spd (Yamaguchi et al. 2007) The genes 
involved in Spm and Spd synthesis have also been found to 
be regulated by salinity and abcissic acid (Jiménez-Bremont 
et al. 2007). By using patch clamp techniques to protoplasts, 
it was found that polyamines affect K+/Na+ homeostasis 
(Zhao et al. 2007). This could be one of the mechanism by 
which polyamines could help in salinity tolerance in plants. 
Regulation of PAs biosynthesis has also been reported in 
plants under drought stress. In cacao, expression pattern of 
five genes encoding enzymes involved in polyamines bio-
synthesis were studied in response to drought and correlated 
with the levels of Put, Spm and Spd (Bae et al. 2008). In 
many studies overexpression of these genes has also been 
shown to confer stress tolerance in plants (Groppa and 
Benavides 2008). There is evidence of cross-talk of PA with 
NO. Exogenous addition of PA has been shown to induce 
the production of NO although the mechanism for this is 
still not understood and needs more experiments (Yamasaki 
and Cohen 2006). 
 
Salicylic acid 
 
SA is a common plant-produced phenolic compound that 
can function as a plant growth regulator. SA has been 
known to be present in some plant tissues for quite some 
time, but has only recently been recognized as a potential 
plant growth regulator. SA is synthesized from the amino 
acid phenylalanine. The role of SA in biotic and abiotic 
stress tolerance has been well documented. In plants, SA 
biosynthesis occurs via the shikimate-phenylpropanoid 
pathway, where, phenylalanine is first converted to trans-
cinnamic acid (t-CA) by phenylalanine ammonia lyase. Two 
pathways for the formation of salicylic acid have been re-
ported in plants. t-CA is either hydroxylated to O-coumaric 
acid before oxidation of the side chain, or the t-CA side 
chain is shortened to benzoic acid, which is in turn hyd-
roxylated to SA. It has been reported that the exogenous 
application of SA influence several developmental and 
physiological processes in plants such as seed germination, 
transpiration rate, stomatal closure, membrane permeability, 
growth and photosynthesis (Hayat and Ahmad 2007). Guo 
et al (2009) hypothesized that SA may accelerate the cell 
death of cadmium (Cd)-stressed roots to avoid Cd uptake by 
plants or may play positive roles in protecting the stressed 
roots from Cd-induced damage. They found that SA pre-
treatment in rice plants elevated the enzymatic and non-
enzymatic antioxidants, and the concentrations of GSH and 
NPT in roots and shoots, hence leading to alleviation of the 
oxidative damage as indicated by the lowered H2O2 and 
MDA levels. SA pretreatment also mitigated the Cd-
induced growth inhibition in both roots and shoots and 
increased transpiration compared with non-SA-pretreatment 
under Cd exposed rice plants. The SA-enhanced Cd toler-
ance in rice can be attributed to SA-elevated enzymatic and 
non-enzymatic antioxidants and NPT, and to SA-regulated 
Cd uptake, transport and distribution in plant organs. Other 
workers also reported that SA can alleviate Cd induced 
growth inhibition in Hordeum vulgare (Metwally et al. 

9



Plant Stress 4 (Special Issue 1), 1-18 ©2010 Global Science Books 

 

2003), Glycine max (Drazic and Mihailovic 2005) and in 
Oryza sativa (Guo et al. 2007). Szepesi et al. (2005) found 
that pretreatment of tomato seeds with 10-7 M SA decreased 
the osmotic stress-induced reduction in relative water con-
tent. SA pretreatments also reduced K+ contents of leaves 
under salt and non-ionic osmotic stress. SA decreased the 
Na+/K+ ratio in the roots and increased it significantly in the 
leaves in comparison to the NaCl-treated plants. It has been 
reported that SA improved the photosynthetic performance 
of plants under stress conditions, and chlorophyll a fluores-
cence gave insight into the ability of plant to tolerate envi-
ronmental stresses (Ananieva et al. 2002). It has been 
reported that at low photosynthetic light intensity (165 
μmol m-2 s-1) the effective quantum yield was only slightly 
affected in NaCl-treated tomato samples, but it was signifi-
cantly reduced under non-ionic osmotic stress (Szepesi et al. 
2005). This was partially overcome when the plants were 
pretreated with SA. SA pretreatment might improve the 
gross rate of carbon assimilation during osmotic stress. 
Gunes et al. (2007) reported that exogenous application of 
SA increased plant growth of maize significantly both in 
saline and non-saline conditions. Under salinity stress, lipid 
peroxidation and membrane permeability decreased by SA 
treatment. SA has also received much attention due to its 
role in plant responses to various other abiotic stresses such 
as ozone, UV-B, heat stress, drought, oxidative stress, salt 
and osmotic stress (Hayat and Ahmad 2007). SA is con-
sidered to serve as a signal in the induction of expression of 
genes (Metraux 2001). The application of SA has been 
found to increase tolerance of wheat and maize seedlings to 
salinity (Arfan et al. 2007; Gunes et al. 2007), water deficit 
(Bezrukova et al. 2001), of tomato and bean plants to low 
and high temperature (Senaratna et al. 2003) as well as of 
heavy metals of rice plants (Choudhury and Panda 2004). 
The SA pathway, thus considered to be a key factor in 
inducing tolerance. This acid is phenol, ubiquitous in plants 
generating a significant impact on plant growth and deve-
lopment, photosynthesis, transpiration, ion uptake and 
transport. It also plays a role in thermogenesis in lily, 
induces flowering in a range of plants, controls ion uptake 
by roots and stomatal conductivity (Raskin 1992). SA has 
been found in signal regulation and gene expression in the 
course of leaf senescence in Arabidopsis (Morris et al. 
2000), inhibitor of fruit ripening (Srivastava and Dwivedi 
2000). Borsani et al. (2001) showed an evidence for a role 
of SA in the oxidative damage generated by NaCl and os-
motic stress in Arabidopsis seedlings. Szepesi et al. (2005) 
reported that SA pretreatment decreased catalase activity in 
the roots and leaves of tomato, but the activity of other en-
zymes associated with the antioxidative defense, superoxide 
dismutase, peroxidase, ascorbate peroxidase and glutathione 
reductase exhibited different changes at 10-7 M SA or 10-4 M 
SA. The activity of these enzymes decreased compared to 
the control in the leaves of tomato plants at 10-7 M SA pre-
treatment, while at 10-4 M concentration their activity was 
enhanced. Salt tolerance induced by 10-4 M SA was 
associated with the activation of the oxidative defense 
mechanisms and with the accumulation of osmolytes. Shim 
et al. (2003) reported a significant and dose-dependent in-
crease in SA content in the NaCl-treated leaves of rice seed-
lings. They negatively correlated this increase in SA content 
with catalase activity and concluded that the formation of 
SA could be induced by salt stress. Mahajan et al. (2006) 
have earlier reported that the CBL and CIPK genes from 
pea were induced in response to SA and wounding. Pan et 
al. (2006) reported that SA application reduced leaf injury 
in pea caused by heat stress and induced the synthesis of 
heat shock proteins (Hsp70 and Hsp17.6). Several SA-
responsive genes are known to regulate by basic/leucine 
zipper-type transcription factors of the TGA family. TGA 
factors interact with NPR1, a central regulator of many SA 
induced defense responses including SA/JA antagonism. An 
ATPaseC gene from Pennisetum was found to be upregu-
lated by SA and its promoter was found to bind nuclear fac-
tors to TGA cis elements (Tyagi et al. 2005). Ndamukong et 

al. (2007) reported that glutaredoxin acts as regulatory pro-
tein of SA-dependent signaling pathways. Koo et al. (2007) 
reported that overexpression of SA carboxyl methyltrans-
ferase reduces SA-mediated pathogen resistance in Arabi-
dopsis thaliana. Their results indicated that in the absence 
of SA, methyl salicylate alone cannot induce a defense res-
ponse, yet it serves as an airborne signal for plant-to-plant 
communication. Recently, Wang et al. (2007) reported that 
SA inhibits pathogen growth in plants through repression of 
the auxin signaling pathway. It may be said that SA could 
be used as a potential growth regulator in abiotic stress 
tolerance. 
 
DEVELOPMENTALLY REGULATED GENES AND 
THEIR ROLE IN STRESS 
 
In plants, as in other organisms many developmental pro-
cesses and responses to different stress stimuli are under the 
regulation of complex gene regulatory network. Many 
genes that are known to be regulated developmentally are 
also responsive in certain stress conditions. 
 
Heat shock proteins 
 
In tomato it has been shown recently that a class of small 
Heat stress proteins (sHSPs) is expressed during zygotic 
embryogenesis and in normal temperature without any 
external stress. In plants the developmental regulation of 
HSP is related to only a specific class of Hsps. Most of 
class1 sHSPs that are developmentally present in seeds also 
respond to stress not only in vegetative tissues but also in 
seeds. 

It was shown by differential analyses that the cis-regu-
latory HSE (heat shock response elements) that are in-
volved in heat stress response are also involved in develop-
mental responses (Waters 1996). This suggested the involve-
ment of Heat shock responsive transcription factors in the 
developmental responses also. However later experiments 
showed that the mutageneis of HSE in sunflower promoter 
completely abolished heat stress response but only weakly 
reduced the experession in dessicating embryos. Another 
sunflower promoter Ha hsp 17.6 G1 promoter does not res-
pond to stress but is transcriptionally activated by Hsfs in 
developing embryos. These observations suggested that the 
developmental regulation of genes by Hsfs using the HSE 
may be different in mechanism from that of Heat stress res-
ponse (Carranco et al. 1997). 

The plant co-chaperones FK506 binding proteins 
(FKBS) function in protein folding, signal transduction and 
chaperone activity (Aviezer-Hagai et al. 2007). In Arabi-
dopsis the expression of two large FKBS (ROF1 and ROF2) 
has been shown to be regulated in a developmental specific 
manner and also by heat stress. The ROF1 has been shown 
to bind HSP90, and the expressions of ROF2 and AtHSP90-
3 and expressions of ROF1 and AtHSP90-1 coincides. The 
promoter regions of ROF and HSP90 share many elements 
known to mediate heat shock and other stress stimuli. The 
study suggests that ROF and HSP form protein complexes 
that are functional in vivo and affect development and stress 
responses. 
 
SNF1- kinases and wall-associated kinases 
 
The Sucrose Non-Fermenting-1 like kinases are involved in 
adaptation of metabolism to environmental conditions such 
as nutrition, energy and stress. It was shown by Radchuk et 
al. (2006) that SNRK-1 kinases in pea interacts with the 
ABA signal transduction and is a key regulator in control-
ling developmental programming associated with the switch 
from prestorage to maturation. 

The plant cell wall associated kinases (WAK) and 
WAK-like kinases (WAKL) are a family of receptor like 
kinases genes that encode transmembrane proteins with a 
serine/threonine kinase domain and an extracellular region 
containing epidermal growth factor like repeats. Studies 
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have shown that some members are responsive in defence 
and heavy metal response whereas some members are in-
volved in plant development and cell elongation. 
 
Aquaporin genes 
 
Aquaporin genes are a class of major intrinsic proteins and 
are involved in water transport, by making channels across 
the plasma membrane. One of the subclass of Aquaporin 
genes are the PIP genes or plasma membrane intrinsic pro-
tein that are mainly targeted to the plasma membrane. A 
large number of these genes are expressed in plants in 
developmental and tissue specific manner. In cotton plants 
three aquaporin genes GhPIP1;1 GhPIP2;1 and GhPIP2;2 
have been shown to be involved in the development of roots 
(Li et al. 2009). The expression of these genes increases 
during early root development and then declines thereafter. 
These genes were also shown to be regulated by different 
stress treatments like NaCl, cold, and PEG. Under drought 
stress the GhPIP;1 and GhPIP2;1 expression was upregu-
lated unlike that in AtPIP genes, suggesting that these genes 
may be facilitating water transport during drought stress by 
forming special water channels. 
 
MAP kinases 
 
MAP kinases play important roles in plant growth and 
development. In many instances these genes are also shown 
to be responsive of environmental stress stimuli like drought, 
salt, cold, etc. (Mishra et al. 2006). Two rice MAP kinases 
OsMSRMK3 (multiple stress responsive) and OsWJUMK1 
(wound- and JA-uninducible) were shown to be upregulated 
by diverse stress responses and were also shown to be deve-
lopmentally upregulated (Agarwal et al. 2002). sMSRMK3 
and OsWJUMK1 encode 369 and 569 amino acid polypep-
tides having the MAPK family signature and phosphory-
lation activation motifs TEY and TDY, respectively. Steady 
state mRNA analyses of these MAPKs with constitutive 
expression in leaves of two- week-old seedlings revealed 
that OsMSRMK3 was up-regulated upon wounding (by cut), 
JA, SA, ET, ABA, H2O2, protein phosphatase inhibitors, 
chitosan, high salt/sugar, and heavy metals, whereas, 
OsWJUMK1 not induced by either wounding, JA or SA, 
showed up-regulation only by H2O2, heavy metals, and cold 
stress (12°C). The expression of these genes increased with 
panicle development in rice seedlings, suggesting their role 
in development also. Apart from this study there have been 
other reports about the role of MAPK in developmental res-
ponses, too. 

In Arabidopsis MAPK 9 is shown be involved in ET 
biosynthesis and salt stress (Xu et al. 2009). Expression of 
active MKK9 protein in transgenic plants induces the 
synthesis of ET and camalexin through the activation of the 
endogenous MPK3 and MPK6 kinases. As a consequence, 
transcription of multiple genes responsible for ET biosyn-
thesis, ET responses, and camalexin biosynthesis is coordi-
nately up-regulated. The activation of MKK9 inhibits hypo-
cotyl elongation in the etiolated seedlings. MKK9-mediated 
effects on hypocotyl elongation were blocked by the ET 
biosynthesis inhibitor, aminoethoxyvinylglycine, and ET 
receptor antagonist, Ag(+). Expression of active MKK9 
protein enhances the sensitivity of transgenic seedlings to 
salt stress, whereas loss of MKK9 activity reduces salt sen-
sitivity indicating a role for MKK9 in the salt stress res-
ponse. 

In a recent study C1 subgroup MAP kinase cDNA, 
PsMPK2, was isolated from Pisum sativum. PsMPK2 is 
expressed in vegetative (root and leaf) and reproductive 
(stamen, pistil and fruit) organs. Expression of PsMPK2 in 
Arabidopsis thaliana shows that mechanical injury and 
other stress signals as ABA, JA and H2O2 increase its kinase 
activity, extending previous results indicating that C1 
subgroup MAPKs may be involved in the response to stress 
(Ortiz-Masia et al. 2008). 
 

Transcription factors 
 
In Arabidopsis a bZIP transcription factor bZIP60 was iden-
tified in ER mediated stress response (Iwata et al. 2008). 
When compared with wild-type Arabidopsis plants, homo-
zygous bZIP60 mutant plants show a markedly weaker 
induction of many ER stress-responsive genes. The bZIP60 
protein resides in the ER membrane under unstressed con-
dition and is cleaved in response to ER stress caused by 
either tunicamycin or DTT. The N-terminal fragment con-
taining the bZIP domain is then translocated into the nuc-
leus. In Arabidopsis, expression of the bZIP60 gene and 
cleavage of the bZIP60 protein are observed in anthers in 
the absence of stress treatment, suggesting that the ER 
stress response functions in the normal development of 
active secretory cells. 

RING finger proteins comprise a large family and play 
key roles in regulating growth/developmental processes, 
hormone signaling and responses to biotic and abiotic 
stresses in plants. Expression of rice OsBIRF1 was up-regu-
lated in rice seedlings after treatment with benzothaidiazole, 
SA, l-aminocyclopropane-1-carboxylic acid and JA, and 
was induced differentially in incompatible but not 
compatible interactions between rice and Magnaporthe 
grisea, the causal agent of blast disease. Transgenic tobacco 
plants that constitutively express OsBIRF1 exhibit en-
hanced disease resistance against tobacco mosaic virus and 
Pseudomonas syringae pv. tabaci and elevated expression 
levels of defense-related genes, e.g. PR-1, PR-2, PR-3 and 
PR-5. The OsBIRF1-overexpressing transgenic tobacco 
plants show increased oxidative stress tolerance to exoge-
nous treatment with methyl viologen and H2O2, and up-
regulate expression of oxidative stress-related genes. Re-
duced ABA sensitivity in root elongation and increased 
drought tolerance in seed germination were also observed in 
OsBIRF1 transgenic tobacco plants. Furthermore, the trans-
genic tobacco plants show longer roots and higher plant 
heights as compared with the wild-type plants, suggesting 
that overexpression of OsBIRF1 promotes the plant growth. 
The study showed that OsBIRF1 has pleiotropic effects on 
growth and defense response against multiple abiotic and 
biotic stresses (Liu et al. 2008). 
 
miRNA 
 
Important developmental processes in both plants and ani-
mals are partly regulated by genes whose expression is 
modulated at the post-transcriptional level by processes 
such as RNA interference (RNAi). Dicers, Argonautes and 
RNA-dependent RNA polymerases (RDR) form the core 
components that facilitate gene silencing and have been 
implicated in the initiation and maintenance of the trigger 
RNA molecules, central to process of RNAi. A genome 
wide analysis of rice Dicer-like, Argonaute and RDR gene 
families including gene structure, genomic localization and 
phylogenetic relatedness among gene family members and 
microarray-based expression profiling of these genes during 
14 stages of reproductive and 5 stages of vegetative 
development and in response to cold, salt and dehydration 
stress was carried out (Kapoor et al. 2008). This investiga-
tion has identified 23 rice genes belonging to DCL, Argo-
naute and RDR gene families that could potentially be in-
volved in reproductive development-specific gene regula-
tory mechanisms. These data provide an insight into proba-
ble domains of activity of these genes and a basis for further, 
more detailed investigations aimed at understanding the 
contribution of individual components of RNA silencing 
machinery during reproductive phase of plant development. 
In Medicago 15 new miRNAs were identified and their 
expression was shown to be differentially regulated in 
different plant growth stages and in response to heavy metal 
stresses (Hg, Cd, and Al) (Zhou et al. 2008). 
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HMG and histones 
 
High mobility group (HMG) proteins of the HMGB family 
are small and relatively abundant chromatin-associated pro-
teins that are involved in the regulation of transcription and 
other DNA-dependent processes. Analysis of Arabidopsis 
mutant plants lacking the HMGB1 protein, transgenic 
plants overexpressing HMGB1 and mutant plants that were 
transformed with the HMGB1 genomic region (comple-
mentation plants) revealed that despite the presence of 
several other HMGB proteins, the lack and overexpression 
of HMGB1 affect certain aspects of plant growth and stress 
tolerance and it has a marked impact on the transcriptome, 
suggesting that HMGB1 has (partially) specialized func-
tions in Arabidopsis (Lildballe et al. 2008). Both the ab-
sence and overexpression of HMGB1 caused shorter pri-
mary roots and affected the sensitivity towards the geno-
toxic agent methyl methanesulfonate. The overexpression 
of HMGB1 decreased the seed germination rate in the pre-
sence of elevated concentrations of NaCl. The complemen-
tation plants that expressed HMGB1 at wild-type levels did 
not show phenotypic differences compared to the control 
plants. Transcript profiling by microarray hybridization re-
vealed that a remarkably large number of genes were 
differentially expressed (up- and down-regulated) in plants 
lacking HMGB1 compared to control plants. Among the 
down-regulated genes, the gene ontology category of stress-
responsive genes was overrepresented. Neither microscopic 
analyses nor micrococcal nuclease digestion experiments 
revealed notable differences in overall chromatin structure, 
when comparing chromatin from HMGB1-deficient and 
control plants. 

In another study of HMGB proteins in Cucumis it was 
demonstrated that transgenic Arabidopsis plants overex-
pressing CsHMGB showed retarded germination compared 
with the wild-type plants when grown under high salt or 
dehydration stress conditions (Jang et al. 2008). Germina-
tion of the transgenic plants was delayed by the addition of 
ABA, implying that CsHMGB affects germination through 
an ABA-dependent way. The expression of CsHMGB had 
affected only the germination stage, and CsHMGB did not 
affect the seedling growth of the transgenic plants under the 
stress conditions. These results suggest that ectopic expres-
sion of a CsHMGB in Arabidopsis modulates the expression 
of several germination-responsive genes, and thereby af-
fects the germination of Arabidopsis plants under different 
stress conditions. 

Arabidopsis GCN5 is a major histone acetyltransferase. 
The mutation of the gene induces pleiotropic effects on 
plant development, and affects the expression of a large 
number of genes. GCN5 was shown to interact specifically 
with a phosphatase 2C protein (AtPP2C-6-6). GCN5 phos-
phorylated by activities in cellular extracts could be dephos-
phorylated by AtPP2C-6-6 in vitro. Analysis of T-DNA 
insertion mutants revealed a positive role of AtPP2C-6-6 in 
salt induction of stress-inducible genes, while the gcn5 
mutation seemed to have no effect on the induction but 
showed up-regulation of a subset of the stress-inducible 
genes under non-induced conditions. In addition, the gcn5 
mutation seriously reduced acetylation of histone H3K14 
and H3K27, whereas the T-DNA insertions of the AtPP2C6-
6 gene enhanced the acetylation of these lysine residues 
(Servet et al. 2008). 
 
Other genes 
 
The plant enzyme 4-coumarate:coenzyme A ligase (4CL) is 
part of a family of adenylate-forming enzymes present in all 
organisms. Expression patterns of a conserved set of Arabi-
dopsis and poplar 4CL-like acyl-CoA synthetase (ACS) 
genes were assayed. Expression analysis revealed conserved 
developmental and stress-induced expression patterns of 
Arabidopsis and poplar genes. Evolutionary and gene ex-
pression data, combined with in vitro and limited in vivo 
protein function data, suggest that angiosperm ACS en-

zymes play conserved roles in octadecanoid and fatty acid 
metabolism, and play roles in organ development, for exam-
ple in anthers Fasciclin-like arabinogalactan proteins (FLAs), 
a subclass of arabinogalactan proteins (AGPs), are usually 
involved in cell development in plants. Recently, in cotton 
the expressions of the GhFLA genes were shown to be 
regulated in fiber development and in response to phytohor-
mones and NaCl (Huang et al. 2008). 

Another group of proteins that are involved in develop-
ment and stress responses are Phospholipase D (PLD) PLD 
encoding genes constitute a large gene family that is present 
in higher plants. There are 12 members of the PLD family 
in A. thaliana and several of them have been functionally 
characterized, recent genome-wide analysis in rice identi-
fied 17 PLD members in different chromosomes. Expres-
sion pattern analysis indicates that most PLD-encoding 
genes are differentially expressed in various tissues, or are 
induced by hormones or stress conditions, suggesting the 
involvement of PLD in multiple developmental processes. 
Transgenic studies have shown that the suppressed expres-
sion of rice PLD beta 1 results in reduced sensitivity to 
exogenous ABA during seed germination. Further analysis 
of the expression of ABA signaling-related genes has re-
vealed that PLD beta 1 stimulates ABA signaling by acti-
vating SAPK, thus repressing GAmyb expression and 
inhibiting seed germination (Li et al. 2007). 

In a genetic screen for mutants with altered drought 
stress responses, an ABA-overly sensitive mutant, the abo 1 
mutant, which showed a drought-resistant phenotype was 
identified (Chen et al. 2006). The abo1 mutation enhances 
ABA-induced stomatal closing and increases ABA sensiti-
vity in inhibiting seedling growth. abo1 mutants are more 
resistant to oxidative stress than the wild type and show 
reduced levels of transcripts of several stress- or ABA-
responsive genes. The mutation also differentially modu-
lates the development and growth of adjacent guard cells. 
Map-based cloning identified ABO1 as a new allele of 
ELO2, which encodes a homolog of Saccharomyces cerevi-
siae Iki3/Elp1/Tot1 and human IkappaB kinase-associated 
protein. Iki3/Elp1/Tot1 is the largest subunit of Elongator, a 
multifunctional complex with roles in transcription elonga-
tion, secretion, and tRNA modification. 

Cryptochromes (CRYs) are blue light receptors impor-
tant for plant growth and development. A recent study iden-
tified two CRY genes, TaCRY1a and TaCRY2, from the 
monocot wheat (Xu et al. 2009). The expression of 
TaCRY1a was most abundant in seedling leaves and barely 
detected in roots and germinating embryos under normal 
growth conditions. The expression of TaCRY2 in germi-
nating embryos was equivalent to that in leaves and much 
higher than the TaCRY1a counterpart. Treatment of seed-
lings with high salt, PEG and ABA up-regulated TaCRY2 in 
roots and germinating embryos. The transgenic Arabidopsis 
plants over-expressing TaCRY1a and TaCRY2 showed high-
er sensitivity to high salt, osmotic stress and ABA treatment 
during germination and post-germination development, and 
they displayed altered expression of stress/ABA responsive 
genes. The primary root growth in transgenic seedlings was 
less tolerant of ABA. 

There are three iron superoxide dismutases in Arabidop-
sis thaliana: FE SUPEROXIDE DISMUTASE1 (FSD1), 
FSD2, and FSD3. Myuoga et al. (2008) showed that FSD2 
and FSD3 play essential roles in early chloroplast develop-
ment, whereas, FSD1, which is found in the cytoplasm, 
does not. An fsd2-1 fsd3-1 double mutant had a severe albino 
phenotype on agar plates, whereas fsd2 and fsd3 single 
knockout mutants had pale green phenotypes. Chloroplast 
development was arrested in young seedlings of the double 
mutant. The mutant plants were highly sensitive to oxida-
tive stress and developed increased levels of ROS during 
extended darkness. Furthermore, transgenic Arabidopsis 
plants overexpressing both the FSD2 and FSD3 genes 
showed greater tolerance to oxidative stress induced by 
methyl viologen than did the wild type or single FSD2- or 
FSD3-overexpressing lines. It was proposed in the study 
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that heteromeric FSD2 and FSD3 act as ROS scavengers in 
the maintenance of early chloroplast development by pro-
tecting the chloroplast nucleoids from ROS. 
 
CONCLUSIONS AND FUTURE PROSPECTIVES 
 
The conclusions which can be drawn from the studies en-
compassed in this review are as follows: 
1. Stress is an unavoidable and integral part in the plant 
growth, development and evolution. Though it causes great 
deal of losses towards the yield in crop plants the recent 
studies in this respect are providing leads to develop sus-
tainable varities. 
2. The stress signal is sensed by various hormonal, non 
hormonal and developmental tools of the plants and dis-
sipated/transduced in the system to overcome variety of 
stress. 
3. SA, JA and ET are the major signaling molecules for 
biotic stress, whereas, ABA, Ca2+ and ET evoke signal res-
ponse in abiotic stress. 
4. Most hormone including GAs, CYT, auxin and BRs 
besides the ones mentioned above enter into a cross talk 
during any stress and adjust their levels/activities through 
various mechanisms such as activating/deactivating various 
protein kinases in order to enable plants manage stress. 
5. Various transcription factors appear to play most impor-
tant task by way of activating/repressing target genes to 
help produce metabolites, enzymes, osmolytes, osmoprotec-
tants and other chaperon molecules which provide protec-
tion to cell components. 

The major challenge before plant scientists is to identify 
some or few central regulator which can be used stably or 
transiently to manage stress response without altering nor-
mal metabolism of the plant. High throughput analysis in-
cluding microarray, transcriptomics, metabolomics, reverse 
genetics etc supported by a high quality bioinformatics 
should answer some of these questions related to stress res-
ponse. A good transformation system of major crop plants 
needs to be developed in order to produce stress resistant 
transgenic varieties. 
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