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ABSTRACT 
Pathogens, mainly fungus, were after fruit set, the most common cause of fruit abortion in Talbotiella. The measurement of stigmatic 
pollen load demonstrates that there is no shortage in the quantity of pollen flow within Talbotiella populations. However, germination of 
pollen grains on stigmatic surface of the species and growth of pollen tube down the style to fertilize ovules are inhibited by fungal 
hyphae. Air sampling at 3 populations of Talbotiella using 3 agar media was carried out to find out the prevalence of fungi. A total of 26 
fungal species belonging to 17 genera was observed. The genera Aspergillus, Penicillium and Cladosporium recorded highest number of 
species. Penicillium aurantiogriseum and Fusarium verticilloides were the dominant species within Talbotiella populations. Fusarium 
verticilloides was found to mainly occupy the stigmatic surface of the Talbotiella species. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
Talbotiella gentii, a rare endemic species in Ghana, is under 
severe threat of extinction (Swaine and Hall 1981) therefore 
requires immediate conservation measures to prevent the 
few remaining populations from extinction. Though Talbo-
tiella is a non-timber product in Ghana, it produces excel-
lent charcoal of very high market demand therefore the spe-
cies is preferentially exploited for charcoal. Periodic bush 
fires and farming activities have also contributed to the loss 
of Talbotiella populations. Little progress has been made in 
conservation of Talbotiella partly due to lack of information 
on its reproduction and genetic diversity. Information on the 
genetic diversity of the few isolated Talbotiella populations 
remaining will suggest which populations are more hetero-
geneous that could be targeted for ex situ conservation. To 
date, no integrated plan for conservation of Talbotiella has 
been developed though the Forestry Commission has made 
some effort to reduce its exploitation for charcoal and fuel-
wood. Records of Talbotiella are shown in Fig. 1. 

The number of flowers initiated by plants normally ex-
ceeds the final number of mature fruits (Stephenson 1981; 
Bustan and Goldschmidt 1998) and fruit mortality due to 
internal (e.g. Nichols and Walmsley 1965; Udovic and Aker 
1981; Pías and Guitían 2006) and external (e.g. Louda 
1982; Arnold et al. 2003) factors can be a major drawback 
in plant reproduction. Results from reproductive studies of 
Talbotiella revealed that flowers and developing fruits are 
infested with spores and hyphae of fungi (Dompreh, unpub-
lished). Pollen germination on the stigmatic surface may 
therefore be inhibited by fungal infection and could be the 
cause of pollination failure, low seed set or premature fruit 
abortion in T. gentii. Fungal spores which land on plants can 
infest flowers and leaves causing plant diseases or limiting 
light penetration and photosynthetic activities. Fungal infec-
tion may also inhibit fruit and seed development resulting in 
premature fruit and ovule abortion. 

Flowers are considered excellent microbial habitats 
(Brysch-Herzberg 2004; Ngugi and Scherm 2006). They 

produce various types of nutrient-rich secretions (nectar, 
stigmatic exudates, and pollen exudates) that may serve as a 
substrate for colonization and infection by plant pathogens 
and saphrophytes. Plants produce flowers in exposed or 
elevated positions to facilitate pollen and /or seed dispersal. 
In out-crossing plants, increased height favours pollen dis-
persal by wind and insect pollinators (Carromero and Ham-
rick 2005; Rocha et al. 2005), therefore flowers are easily 
infested with fungal pathogens if present in the air. Flowers 
serve as a pathway for infection of the developing seeds and 
fruits, with associated benefits of nutrient supply for the 
fungus. Nectar is rich in nutrients and would therefore 
favour colonization and infection by plant pathogens and 
saprophytes (Brysch-Herzberg 2004; Ngugi and Scherm 
2006). Thus, flower-infecting fungi can readily take advan-
tage of the resources allocated to host reproduction. Flower-
infecting fungi, by sporulating on the plant inflorescence, 
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Fig. 1 Records of Talbotiella populations in Ghana. Filled dots = extant 
populations, empty dots = extinct populations. 
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are also in an ideal position to facilitate their dispersal (Clay 
1991; Antonovics 2005; Ngugi and Scherm 2006). The de-
position of fungal spores on stigmatic surfaces of flowers 
may affect pollen performance by either physically redu-
cing the amount of stigmatic surface area available for pol-
len germination since spores compete with pollen for ger-
mination space and /or by inhibiting pollen germination and 
tube growth down the style through chemical process. 

Airborne pathogenic and saprophytic fungi may be of 
different types (species) and the level of pathogenic effect 
on host plants may differ from species to species. Some of 
the most common airborne fungi belong to the genera Alter-
naria, Aspergillus, Cladosporium, Penicillium, Candida, 
Rhodotorula, Trichoderma, Cephalosporium and Chaeto-
mium. Fungal spores in air, whether pathogenic or not, 
compete with pollen grains for space and nutrients on stig-
matic surface, inhibiting pollen germination and may be 
limiting seed set in Talbotiella. 

In the present study, aeromycoflora within the popula-
tions of T. gentii were sampled, isolated, cultured on agar 
media and identified. Fungi on the stigmatic surface (patho-
genic or non pathogenic) surface of flowers of Talbotiella 
were also isolated and identified. Comparison of fungal in-
fection rates with pollen germination may offer an expla-
nation for differences in fruit abortion rates in Talbotiella. 

 
MATERIALS AND METHODS 
 
Study site 
 
Three populations (Yongwa, Sapawsu and Hotel) were selected for 
the aeromycoflora studies in Talbotiella. Yongwa is about 17.5 and 
16.2 km from Sapawsu and Hotel, respectively. Selection of these 
sites was based on the level of pathogenic fungal infestation of the 
Talbotiella flowers recorded in a reproduction experiment by 
Dompreh (unpublished) and the concurrent rates of fruit abortion 
in T. gentii. The study was carried out during the peak of flowering 
period of Talbotiella. 
 
Sampling of aeromycoflora at the three 
populations 
 
Five 9-cm diameter replicate Petri dishes of three media dichloran-
glycerol agar (DG-18; Hocking and Pitt 1980), potato dextrose 
agar (PDA; Merck 2002), oxytetracycline glucose yeast extract 
agar (OGYE; Mossel et al. 1970) appropriate for the development 
of different fungal groups, and also to increase the chance of cap-
turing many spores, were exposed to open air for 5, 10, 15, and 20 
min at the three sampling sites. In all, 20 replicates (4 × 5) of Petri 
dishes per population were used. Dishes were covered, sealed with 
Sellotape and transported to University of Ghana, Legon mycol-
ogy laboratory for isolation and identification. Samples were taken 
at a height of 1.5 m above the ground level in the middle of the 
populations and in addition five Petri dishes were placed 10, 20 
and 30 m from all the three populations. Dishes were incubated at 
28-30°C for up to 7 days and checked periodically. The resultant 
colonies at the end of the period were counted and identified. 

Counted colonies were expressed as colony forming units per plate 
per hour (cfu/p/h). 
 
Identification of fungi 
 
The species of fungi isolated were identified by their morpholo-
gical, colour and other cultural characteristics using standard and 
reference texts and identification manuals (Thom and Raper 1945; 
Smith 1960; Von Arx 1970; Barnett and Hunter 1972; Raper et al. 
1973; Neergaard 1983; Klich and Pitt 1988; Samson and Reenen-
Hockstra 1988; Samson et al. 2007). 
 
Isolation and identification of fungi on stigmatic 
surface of flowers of Talbotiella 
 
Two methods were employed using the modified method of Limo-
nard (1966) and Tempe (1967). (i) A single flower with its stig-
matic surface was placed on sterile Whatman No.1 filter paper in a 
9-cm diameter sterile Petri dish moistened with 5-10 ml of sterile 
distilled water. Thirty replicates (10 from each population) were 
used. (ii) A single flower with its stigmatic surface was placed on 
three solid media (PDA, DG-18, and OGYE), for each population 
(total sample = 30). In both methods, samples were incubated at 
28-32°C in each instance (i and ii) until fungi grew (after 3 days). 
The number of colonies per flower was recorded. The fungi which 
appeared were identified using their cultural, colour and morpho-
logical characteristics. In the case of flowers placed on the filter 
paper only, the species were observed and identified using a bino-
cular stereomicroscope (Leica Zoom, 2000 model, Germany). 
Both flowers and isolated stigmata were studied (data in tables 
come only from the latter). 
 
Data analysis 
 
All statistical analyses were performed on MINITAB version 15. 
Analysis of variance (ANOVA) was performed to compare the dis-
tance from Talbotiella populations on fungal infestation and also 
test for normality of the data before used for analysis. A t-test was 
used to discriminate between the means at P < 0.05. 
 
RESULTS 
 
The highest mean count of air-borne fungal colonies (389 ± 
2.1 cfu/p) from three populations was recorded for Yongwa 
with 20 min exposure on PDA followed by Sapawsu. Con-
sistent differences among sites, at all exposure times were 
recorded (Table 1). A total of 26 fungal species in 17 genera 
was recorded. The genera Aspergillus, Penicillium and Cla-
dosporium recorded highest number of colonies. Penicil-
lium aurantiogriseum and Fusarium verticilloides were the 
dominant species within Talbotiella populations (Table 2). 
Isolation of fungi from stigmatic surfaces revealed Fusa-
rium verticilloides as dominant species forming 91.74% of 
the total fungi isolated from stigmatic surfaces of Talbo-
tiella (Table 3). ANOVA showed no significant effect (P = 
0.08) of distance from Talbotiella population on the total 
number of fungal colonies isolated on the three media. Most 

Table 1 Total number of colonies of aeromycoflora isolated by the Plate exposure method at the indicated exposure intervals within populations of 
Talbotiella at Yongwa, Sapawsu and Hotel in 2006 (N = 60, ± s.e.). 

Mean no. of colonies isolated per plate after (min) exposure Site Medium 
5 10 15 20 

Yongwa PDA 50 ± 0.2 58 ± 0.3 194 ± 1.1 389 ± 2.1 
 OGYE 18 ± 0.4 84 ± 0.5 91 ± 2.8 108 ± 2.3 
 DG18 26 ± 0.2 64 ± 0.7 98 ± 1.9 221 ± 2.6 
 Total 94 206 383 718 
Sapawsu PDA 22 ± 1.2 49 ± 0.9 192 ± 2.1 309 ± 3.2 
 OGYE 39 ± 2.3 47 ± 0.5 62 ± 1.6 89 ± 2.3 
 DG18 35 ± 0.9 54 ± 1.0 132 ± 0.6 257 ± 109 
 Total 96 150 386 655 
Hotel PDA 17 ± 0.7 28 ± 1.7 173 ± 2.3 261 ± 2.8 
 OGYE 27 ± 1.5 50 ± 1.2 75 ± 1.4 101 ± 1.3 
 DG18 21 ± 0.8 53 ± 2.2 168 ± 4.1 227 ± 1.2 
 Total 65 131 416 589 
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species had no clear relationship with distance, except F. 
verticilloides and S. brevicaulis that decreased with distance 
from Talbotiella populations (Fig. 2). Even though total 
fungal spore concentration in air was not significantly af-
fected by distance from Talbotiella populations (P = 0.08), 
concentration of Fusarium verticilloides (Fig. 3E-G) and 
Scopulariopsis brevicaulis in air decreased significantly 
with distance from Talbotiella populations (P = 0.000). 
Fungi were found on all parts of flowers of Talbotiella (Figs. 
3H-L). Style and ovary were infested by several species in 
addition to Fusarium verticilloides but the stigmatic surface 
was mainly infested with F. verticilloides (Figs. 3E, 3F). 
 
DISCUSSION 
 
The open Petri-dish, nutrient plate, plate exposure or sedi-
mentation method have been widely used by investigators 
(Gravesen 1978; Snealler 1979; Sen and Asan 2001; Sen et 
al. 2010; Yassin and Almouqatea 2010) to isolate air-borne 
fungal spores due to their practical usage and low cost. 

However, these methods give only a rough approximation 
of the counts (Pelczar et al. 1993) and their reliability could 
be affected by the size and shape of the spore and air tur-
bulence. Very small spores might never settle therefore the 
plate was left out longer in order to counteract the air tur-
bulence effect. Though the concentration of fungal spores 
in air in Talbotiella stands differed from one site to another, 

Table 2 Mean number of colonies per plate (N=30) of individual fungal species isolated by three media (data pooled) at different exposure times within 
three populations (Yongwa, Sapawsu and Hotel) of Talbotiella in 2006. 

Mean number (Mean ± SE) of individual species at the three populations studied for (min) Fungi recorded 
Yongwa Sapawsu Hotel 

Aspergillus alutaceus 5 10 15 20 5 10 15 20 5 10 15 20 
A. flavus 1.8 ± 0.5 4.4 ± 0.9 7.1 ± 0.3 8.9 ± 0.2 4.1 ± 0.6 8.2 ± 0.7 9.4 ± 06 10.2 ±.4 1.2 ± 0.6 3.2 ± 0.5 4.1 ± 0.9 5.3 ±.13
A. niger 3.9 ± 0.3 5.3 ± 0.4 8.4 ± 1.7 10.2 ± 1.2 - - - - 0.8 ± 0.7 1.1 ± 0.9 2.8 ± 0.9 3.1 ± 0.4
A. sulphurous 2.2 ± 0.2 3.1 ± 0.2 3.7 ± 0.3 4.9 ± 0.5 0.4 ± 0.2 0.7 ± 0.1 0.9 ± 0.2 2.4 ± 0.6 0.35 ± 0.5 1.2 ± 0.4 1.3 ± 0.4 2.6 ± 0.3
Alternaria sp. 0.3 ± 0.1  0.5 ± 0.2 1.8 ± 0.1 4.1 ± 0.2 - - - - - - - - 
Absidia cylindrospora 6.3 ± 0.2 7.9 ± 1.2 11.5 ± 0.9 14.1 ± 0.3 0.2 ± 0.6 0.4 ± 0.1 1.8 ± 4.1 4.1 ± 0.3 1.2 ± 0.3 3.2 ± 0.5 4.1 ± 0.9 5.4 ± 0.2
Cladosporium herbarum 2.2 ± 1.7 4.2 ± 1.5 6.9 ± 0.8 12.8 ± 0.6 - - - - - - - - 
C. cladosporioides 11.5 ± 0.2 15.5 ± 0.7 19.2 ± 0.5 21.4 ± 0.6 9.3 ± 2.3 14.8 ± 1.9 21.7 ± 1.6 24.8 ± 1.2 4.5 ± 1.2 6.1 ± 1.6 7.9 ± 1.1 11.6 ± 0.7
C. macrocarpum 0.3 ± 0.2 3.8 ± 1.4 5.6 ± 2.1 6.3 ± 0.9 0.4 ± 0.9 6.2 ± 0.3 6.6 ± 1.3 7.3 ± 1.2 - - - - 
Fusarium verticilloides 5.7 ± 0.5 6.2 ± 0.2 7.4 ± 0.4 13.8 ± 0.8 4.9 ± 0.9 8.4 ± 0.6 15.1 ± 0.9 20.4 ± 1.2 0.6 ± 0.5 0.7 ± 0.1 3.4 ± 0.5 9.8 ± 0.9
Helminthosporium sp. 10.3 ± 2.3 33.4 ± 1.2 39.5 ± 0.3 41.1 ± 1.8 25.2 ± 1.8 37.8 ± 1.4 43.4 ± 1.6 55.8 ± 3.4 17.9 ± 1.9 54.8 ± 3.6 64.3 ± 2.4 67.4 ± 2.8
Mucor haemalis 1.4 ± 0.7 1.9 ± 0.9 2.1 ± 1.6 1.2 ± 0.3 - - - - 0.4 ± 0.1 1.6 ± 1.3 1.7 ± 1.1 0.9 ± 0.8
Mycelia sterilia 0.7 ± 0.5 1.3 ± 0.8 2.6 ± 0.3 3.2 ± 0.2 - - - - 1.4 ± 2.3 2.2 ± 0.4 2.7 ± 0.3 4.2 ± 0.7
Penicillium aurantiogriseum - - - - - - - - 6.1 ± 0.2 6.4 ± 0.3 7.3 ± 0.5 14.8 ± 0.2
P. camemberti 13.2 ± 0.7 39.4 ± 1.2 44.6 ± 1.8 51.7 ± 1.8 30.1 ± 1.8 54.6 ± 1.6 59.4 ± 2.3 61.2 ± 1.8 8.1 ± 0.2 12.3 ± 1.3 17.2 ± 0.9 24.6 ± 1.3
P. expansum 3.2 ± 03 3.9 ± 1.6 6.7 ± 0.6 7.5 ± 0.2 1.4 ± 1.6 5.5 ± 0.8 7.3 ± 0.3 9.1 ± 0.1 0.9 ± 0.1 1.2 ± 0.4 1.6 ± 0.7 2.1 ± 0.1
P. glabrum 13.1 ± 2.1 28.4 ± 2.2 45.5 ± 2.5 61.1 ± 1.1 23.0 ± 1.1 48.3 ± 09 55.5 ± 1.5 58.3 ± 1.3 12.6 ± 0.6 16.3 ± 0.4 19.2 ± 0.3 28.2 ± 1.4
Paecilomyces sp. 21.9 ± 0.8 34.7 ± 2.5 43.9 ± 1.5 52.1 ± 1.6 13.9 ± 1.4 19.4 ± 1.3 34.6 ± 0.8 41.2 ± 1.1 8.6 ± 1.3 11.4 ± 0.9 17.3 ± 2.1 39.9 ± 1.7
Pichia sp. - - - - 4.9 ± 0.4 8.6 ± 0.5 13.4 ± 0.6 19.2 ± 0.7 - - - - 
Pullularia pullulans - - - - 10.2 ± 2.5 15.4 ± 1.2 19.8 ± 0.9 31.2 ± 9.8 8.3 ± 1.7 12.4 ± 0.9 18.3 ± 1.3 23.4 ± 1.4
Rhodotorula sp. 9.8 ± 1.4 12.3 ± 1.6 15.3 ± 1.3 21.7 ± 0.9 11.3 ± 0.8 12.4 ± 2.3 18.3 ± 0.6 8.9 ± 0.4 0.6 ± 0.4 9.2 ± 0.2 11.6 ± 0.6 13.1 ± 0.8
Scopulariopsis brevicaulis 0.3 ± 0.2 0.7 ± 0.4 3.6 ± 0.6 8.9 ± 1.4 - - - - - - - - 
S. fusca - - - - 4.3 ± 1.2 9.7 ± 0.3 14.2 ± 1.6 17.9 ± 0.9 3.9 ± 0.5 5.7 ± 0.7 6.6 ± 1.1 8.9 ± 0.7
Syncephalastrum 
racemosum 

10.8 ± 0.9 11.3 ± 1.6 12.3 ± 1.3 12.9 ± 1.3 6.8 ± 1.4 7.1 ± 1.6 7.8 ± 0.3 8.7 ± 1.5 - - - - 

Trichoderma viride 1.2 ± 0.4 2.7 ± 0.2 3.6 ± 0.6 5.9 ± 1.7 - - - - - - - - 
Yeast indet - - - - 0.9 ± 0.4 1.4 ± 0.3 1.6 ± 0.2 1.8 ± 0.3 - - - - 
Total colonies 4.3 ± 1.2 5.7 ± 0.4 6.6 ± 0.6 7.8 ± 1.1 - - - - 1.9 ± 0.2 2.7 ± 0.4 2.9 ± 0.6 3.1 ± 10.8
 124.4 226.6 297.9 371.6 151.3 258.9 330.8 345.4 79.35 151.7 194.3 268.4 
 

Table 3 Isolation of contaminating fungi on stigmatic surface of flower of 
Talbotiella at three populations (Yongwa, Sapawsu and Hotel) in 2006. In-
fection was measured 2-6 days after flower opening to expose the stigma.
Site Days after 

flower opening 
Total no. of 
colonies 

% occurrence of 
F. verticilloides 

Yongwa 2 5 100 
 4 9 100 
 5 12 91.7 
 6 15 86.7 
Sapawsu 2 2 100 
 4 7 100 
 5 14 85.7 
 6 19 73.7 
Hotel 2 4 100 
 4 6 100 
 5 11 81.8 
 6 16 81.3 
 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35

Distance from Talbotiella  populations (m)

F.
ve

rt
ic

ill
oi

de
s

Sapawsu

Yongwa

Volta Hotel
F. verticilloides

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

Distance from Talbotiella populations (m)

S
. b

re
vi

ca
ul

is
 c

ol
on

ie
s 

is
ol

at
ed

(c
fu

/p
/h

)

Yongwa

Sapawsu

Volta Hotel

S. brevicaulis

S. brevicaulis

Fig. 2 Effect of distance from Talbotiella populations (Yongwa, Sapaw-
su and Hotel) on Fusarium verticilloides and Scopuriopsis brevicaulis 
spores in air after 20 min of exposure time of media (pooled results). 

22



The African Journal of Plant Science and Biotechnology 5 (1), 20-25 ©2011 Global Science Books 

 

there was no clear difference in the composition of species 
isolated on the three media from the three populations stu-
died. Penicillium aurantiogriseum and Fusarium vertical-
loides were the most frequently encountered fungi in the 
three populations studied (Table 2). In the literature, Asper-
gillus and Penicillium species have been reported as com-
mon fungal genera all over the world (Pasanen et al. 1993) 
and Penicillium has also been found to dominate most 
regions in terms of numbers (Rosa et al. 1988). Pepeljnjak 
and Šegvi� (2003) similarly reported high numbers of Cla-
dosporium, Penicillium and Alternaria in the air of all three 
climatic regions in Croatia, while Fusarium was the most 
prevalent fungal genera on plant samples especially in the 
modest continental climate. 

The high numbers of Aspergillus, Penicillium, Fusa-
rium, Alternaria, Cladosporium and Pullaria species recor-
ded in all the populations studied may be attributed to their 
ability to grow in various substrata and weather conditions. 
Though weather conditions were not taken into considera-
tion in this study, Aspergillus species have been found to 
dominate humid environments (Lacey 1991) therefore in-

vestigation into the influence of weather conditions on fun-
gal densities in Talbotiella populations may be important. 
Di-Giorgio et al. (1996) and Oliveira (2008) found that 
various meteorological factors affect type and concentra-
tion of air-borne fungi. Corden and Millington (2001), 
Awad (2005) found a positive correlation between Alter-
naria counts and maximum temperature. Falling raindrops 
wash out solid materials including airspora which leads to 
cleaner air (Cari�anos et al. 2001). 

The highest record of fungal colonies was recorded on 
PDA (389 ± 3.2 cfu/p) and DG18 (227 ± 1.2 cfu/p), thus 
confirming the usefulness of these two media (Table 1). 
OGYE supported least growth of fungal species belonging 
to eight genera. None of the three media was selective for 
different fungal groups. 

The deposition of fungal spores on stigmatic surfaces 
of Talbotiella may affect pollen performance in two ways 
(1) physical interference (2) chemical interference. In phy-
sical interference, the stigmatic surface area available for 
pollen germination is reduced. Pollen therefore competes 
for germinating space. In chemical interference, pollen is 
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Fig. 3 Fungal colonies (A) 5 min, (B) 10 min, (C) 15 min, (D) 20 min exposure time on PDA agar medium; (E) F. verticilloides isolates from stigmatic 
surface from Yongwa, (F) from Sapawsu and (G) from Hotel on PDA agar medium. (H) fungal growth on flower of Talbotiella from Yongwa, (I) 
Sapawsu and (J) Hotel on Whatman’s no. 1 filter paper, (K) fungal growth on stigma and style and (L) on the ovary of Talbotiella on Whatman’s no. 1 
filter paper. 

23



Isolation and identification of fungi in stand and on stigmatic surface of Talbotiella gentii. Dompreh et al. 
 

 

weakly bound to the stigmatic surface and tube growth is 
also chemically inhibited. According to Bedinger (1992) 
and Heslop-Harrison (1992), in order for pollen to be suc-
cessful, the pollen grain must bind to the stigmatic surface, 
take up water, germinate and grow down the stylar tissue. 
However, fungal spores also need water to germinate and 
conjugate (Fisher and Holton 1957; Ruddat and Kokontis 
1988; Day and Garber 1988) which could interfere with the 
binding of pollen to the stigmatic surface. Spores inter-
fering with pollen may lead to dehydration and germination 
failure of pollen. 

Many fungi produce enzymes that degrade cell walls to 
aid in penetrating host tissue (Cooper 1983; Keon et al. 
1987). Some fungal metabolites are also toxic to plant cells 
if present in sufficient concentrations (Kono et al. 1981). 
Compatible fungal mating types may fuse upon landing on 
the stigmatic surface resulting in growth of hyphae through 
the flower into the plant and may affect ovules or seed 
development if fertilization has occurred. This may explain 
low seed set in Talbotiella. 

Similar work by Thomas et al. (1994) on avocado trees 
and Marr (1998) on Silene acaulis suggested that floral 
pathogens may interfere with pollen function. They ob-
served poor fruit set in Avocado trees, even during seasons 
when conditions were favourable for fertilization and fruit 
production where about 80% of the styles from open pol-
linated flowers were colonized by a variety of fungi asso-
ciated with about 90% of flower abortion. 

In Talbotiella, Fusarium verticilloides appeared to be 
the main fungus interfering with pollen germination (Table 
3, Fig. 3) but it is not known whether this species produced 
toxins on stigmatic surface to inhibit pollen germination. 
Fusarium verticilloides produces fusaric acid (5-butylpico-
linic acid) which is a mycotoxin (Stoll et al. 1957; Veson-
der et al. 1981; Mutert et al. 1990) and could inhibit pollen 
germination on the stigmatic surface. Another mycotoxin 
known to be produced by Fusarium verticilloides is monili-
formin (Kriek et al. 1977; Steyn 1978). Fusarium vertical-
loides has been described as a species complex composed 
of six different biological species, frequently termed mating 
populations (Leslie 1991, 1995). 

Some of the populations of Talbotiella are located near 
farming communities and some of the isolated fungal 
spores may be associated with agricultural practices. Ac-
cording to Booth (1971), Fusarium verticilloides and Fusa-
rium sacchari, are common maize pathogens in most maize 
producing areas of the world. Marasas et al. (1979) found 
that both species occur commonly in maize seed in South 
Africa. Sreeramulu and Ramalingam (1961) also noted that 
crop harvest coincides with increased concentration of 
fungi particularly Alternaria species. Though one of the 
main agents of removing spores from exposed spore mass 
into the air is wind velocity (Sreeramulu 1961; Aylor 1986, 
2003), spores are also transmitted by pollinators that visit 
diseased plants and transport spores to healthy plants 
(Baker 1947; Roy 1994; Marr 1997). As Jennersten (1988), 
Alexander (1990), Roche et al. (1995), Shykoff and Bucheli 
(1995) and Cunningham (2000) fungal spores are trans-
mitted by pollinators, and floral infection is the most com-
mon mode of disease transmission. A majority of flowers 
receive pollen and spores together during pollination there-
fore pollen and spores may interact and may be one of the 
modes of transmission of diseases in Talbotiella popula-
tions. Studies on Silene latifolia, S. dioica and S. acaulis 
have shown that seed set is lower in healthy flowers re-
ceiving both fungal spores and pollen together compared 
with flowers receiving only pollen (Alexander 1987; Carls-
son 1995; Marr 1997; Curran et al. 2009). 

Concentrations of Fusarium verticilloides and Scopu-
lariopsis brevicaulis in air decreasing significantly with 
distance from Talbotiella populations suggests that Fusa-
rium verticilloides are associated with Talbotiella but the 
type of association may requires further investigation. 
Populations of Talbotiella are infested with spores of fungi 
belonging to 17 genera. The spores infect all parts of 

flowers of Talbotiella but the stigmatic surface was mainly 
infested with Fusarium verticilloides. Fusarium vertical-
loides may physically and chemically affect pollen perfor-
mance on stigmatic surface and may also interfere with 
normal fertilization and seed development. They may also 
be contributing to fruit abortion in Talbotiella. 
 
Conservation implications 
 
Though populations of Talbotiella are infested with many 
fungal spores, the alarming rate of infestation of the stig-
matic surface by Fusarium verticilloides requires further 
investigation to determine the potential pathogenic impact 
on pollination and fruit set in Talbotiella in order to apply 
better conservation strategies to prevent Talbotiella from 
extinction. 
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