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ABSTRACT 
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of a few important pathogens that threaten the pig industry 
worldwide. The disease caused by PRRSV is a major source of economic loss for pork producers. PRRSV infects pigs through the 
mucosal surface of the respiratory tract. Therefore, the production of an oral vaccine to induce specific mucosal immune response may 
represent the most effective approach to preventing PRRSV infection. As the production of safe subunit vaccines in systems such as 
mammalian, bacterial or insect cells is either impossible or too expensive, plants become a promising bioreactor. In the past several years, 
we have investigated the possibility of application of plants for the development of a low cost, orally administered, plant-based vaccine 
against PRRSV. We used the cholera toxin B subunit (CTB) of Vibrio cholerae as an adjuvant and the PRRSV GP5 or its neutralizing 
epitope (GP5-NE) as a vaccine antigen. We found GP5 or the CTB-GP5 fusion protein was no detectable in transgenic tobacco plants, 
though large amounts of corresponding RNA were evident. The expression level of CTB-GP5-NE in transgenic plants was in the range of 
0.003 to 0.087% of total soluble proteins. The plant-derived CTB-GP5-NE was biologically active. To increase the yield of the CTB-GP5-
NE recombinant protein in plant hosts, we developed a Soybean mosaic virus-based viral expression system. In this research review, we 
summarize our research progress and discuss challenges and future prospects of the development of a plant-based PRRSV vaccine. 
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INTRODUCTION 
 
Porcine reproductive and respiratory syndrome is the most 
important infectious viral pathogen that threatens the pork 
industry worldwide (Albina 1997). It is caused by Porcine 
reproductive and respiratory syndrome virus (PRRSV). The 
disease was first found in the USA and then quickly spread 
widely throughout major pig-producing countries (Wens-
voort et al. 1991; Albina 1997; Gagnon and Dea 1998; 
Jiang et al. 2008). Now, the infection has become endemic. 
Since its discovery, tremendous efforts have been made to 
control PRRSV. To date, there is no drug therapy for 
PRRSV infection. The virus is mainly controlled by needle 
injection of vaccines which include either killed/deactivated 

PRRSV or attenuated/modified live vaccines. However, 
there are several problems associated with current vaccines 
(Ostrowski et al. 2002). Dead PRRSV vaccines have proved 
to be poorly effective in prevention of both infection and 
disease (Nielsen et al. 1997). Modified/attenuated live vac-
cines generally provide at best partial protection against 
clinical disease but do not prevent infection (Ostrowski et al. 
2002). Moreover, live PRRSV vaccines can revert to viru-
lence, causing serious safety concerns (Botner et al. 1997; 
Madsen et al. 1998; Rowland et al. 1999). Therefore, a new 
generation of vaccines against PRRSV is urgently deman-
ded by the pork industry. 

PRRSV is a member of the artervirus family. Like other 
arterviruses, PRRSV is an enveloped virus that has a single-
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stranded, positive-sense RNA genome that is 14.5 kb in 
length. The virus produces viral proteins including the rep-
licase, four membrane glycoproteins, i.e., GP2a, GP3, GP4 
and GP5, the unglycosylated membrane protein P2b, the 
matrix (M) protein, and the nucleocapsid protein N in in-
fected cells (Wensvoort et al. 1991; Yoon et al. 1994; Del-
putte and Nauwynck 2004). PRRSV infects pigs through 
the mucosal surface of the respiratory tract (Ostrowski et al. 
2002). After infection, large amounts of nonneutralizing 
antibodies (NNA) soon appear, while a low titre of neut-
ralizing antibodies (NAs) is detectable not sooner than 3 
weeks post-infection. NAs are believed to play a critical 
role in protection against PRRSV infection (Yoon et al. 
1994; Pirzadeh and Dea 1998). Previous studies have 
shown that monoclonal antibodies (MAbs) recognizing the 
viral GP5 protein neutralize PRRSV more effectively than 
those recognizing the other viral proteins (Weiland et al. 
1999), suggesting that GP5 is the primary target for NAs to 
deactivate the virus. Furthermore, Ostrowski et al. (2002) 
identified a GP5 neutralizing epitope that is associated with 
PRRSV neutralization. Thus, the induction of NAs against 
GP5 neutralizing epitopes (GP5-NE) is critical for the con-
trol of PRRSV. 

Over the last decade, the application of transgenic 
plants producing edible therapeutic proteins or vaccine anti-
gens against human and animal diseases has become a pro-
mising approach (Carrillo et al. 1998; Castanon et al. 1999; 
Yuki et al. 2001; Yusibov et al. 2002; Kim and Langridge 
2003; Ma et al. 2004; Wigdorovitz et al. 2004; Dus Santos 
et al. 2005; Pogrebnyak et al. 2005; Li et al. 2006; Golov-
kin et al. 2007; Jiang et al. 2007; Nochi et al. 2007; Sharma 
et al. 2008; Wang et al. 2008a; Skarma and Sharma 2009). 
It has been shown that after oral administration, the plant-
produced antigen proteins have access to the mucosal cells 
and induce antigen-specific immune response in both sys-
temic and mucosal compartments. This provides a safe 
method for inducing protective immune responses without 
injection-related hazards (Pogrebnyak et al. 2005). Thus, 
the plant system offers practical, biochemical, economic 
and safety advantages compared with conventional systems 
for the production of antigens (Kermode 2006; Streatfield 
2006; Wang et al. 2008). PPRSV establishes its infection 
via mucosal routes. Production of oral vaccines to induce 
specific mucosal antibody response may represent the most 
effective approach to preventing PPRSV infection (Fig. 1). 
In this mini review, we summarize our progress in deve-
loping a pant-based vaccine against PRRSV and highlights 
future prospects for this research. 
 
EXPRESSION OF CHOLERA TOXIN B, AN 
ADJUVANT PROTEIN IN TRANSGENIC PLANTS 
 
Induction of mucosal immunity by oral route of immuniza-
tion with plant-derived antigens is a cost-effective and pro-
mising approach for preventing mucosal infections to treat 
various infectious-immunopathological disorders (Holm-
gren et al. 2003). There are several advantages to using a 
mucosal route of vaccination over a parenteral route. The 

most important one is that the vast majority of infections 
take place or initiate at the mucosal surface. PPRSV is an 
example of infectious pathogens that cause such infections. 
Against such infectious pathogens, the most effective pro-
tection is to induce a topical immunity. To develop a plant-
based, mucosal vaccine against such pathogens, the use of 
an adjuvant is essential to ensure that the vaccine is ef-
fectively delivered into the mucosal site for the induction of 
appropriate mucosal immune response. 

 
Mucosal adjuvants 
 
The two most widely used mucosal adjuvants are the heat 
labile toxin (LT) of enterotoxigenic Escherichia coli and the 
cholera toxin (CT) of Vibrio cholerae (Holmgren et al. 
2003; Rigano et al. 2003; Streatfield 2006). Both LT and 
CT are powerful adjuvants, consisting of a non-toxic homo-
pentamer of B subunits and a single toxic A subunit. The A 
subunit has two protein domains, one responsible for the 
enzymatic activity that ADP-ribosylates the Gc protein of 
adenylate cyclase and the other for the association of the A 
subunit with the B subunit (de Haan and Hirst 2000). The B 
subunit forms a pentamer with five identical monomers that 
binds to GM1 gangliosides on the surface of the mucosal 
epithelial cells and thus target the holotoxin to the mucosal 
lymphoid tissues. Since the A subunit is toxic, the B sub-
units of CT and LT (CTB and LTB) have been extensively 
studied for their function as carrier molecules for foreign 
proteins and their ability to facilitate immune response to 
the co-administered antigens (Holmgren et al. 2003). It has 
been shown that although LTB and CTB are close homo-
logues, sharing as high as 80% identity at nucleotide or 
amino acid levels, they have distinct biochemical and im-
munological differences (Rigano et al. 2003). LTB can bind 
to a wider range of receptors that contain galactose (Gal) 
than CTB, which only binds to sugar-lipid GM1 ganglio-
sides (Zhang et al. 1995; Bowman and Clements 2001). 
Both of them have exhibited a similar adjuvant activity 
(Dertzaugh and Elson 1993; Pascual 2007). However, it 
seems that CTB has been preferred in plant expression sys-
tems as shown in a number of publications (Sun et al. 1994; 
Arakawa et al. 1998; Daniell et al. 2001; Wang et al. 2001; 
Jani et al. 2002; Kim and Langridge 2003; Jani et al. 2004; 
Li et al. 2006; Jiang et al. 2007; Nochi et al. 2007; Sharma 
et al. 2008). 

 
Expression of CTB in transgenic plants 
 
To test if CTB is expressible in our expression system, we 
cloned the CTB gene into a plant transformation vector, i.e., 
pCaMterX, under the control of the double 35S promoter 
(Wang et al. 2008a). The plant expression vector containing 
the gene cassette of 35S-35S-promoter::CTB::Nos-termina-
tor was transformed into non-nicotine and low-alkaloid 
Nicotiana tabacum cv. 81v9 (Wang et al. 2008a). Eighteen 
transgenic tobacco lines were generated. The presence of 
the CTB gene in the putative transgenic lines was con-
firmed by PCR. Abundant CTB mRNAs were detected in 
total RNA isolated from these transgenic lines by Northern 
blot. Western blot analysis showed that CTB formed a pen-
tamer in transgenic plants. Quantitative enzyme-linked im-
munosorbent assay (ELISA) showed that the expression 
level of the CTB protein varied from 0.001 to 0.15% of the 
total soluble protein (TSP) in leaf tissues of transgenic 
plants with an average of about 0.08% (Fig. 2). GM1-
ELISA binding assay indicated that CTB in the protein ex-
tracts from transgenic plants efficiently bound to the muco-
sal GM1 receptor, suggesting the plant-produced CTB pro-
tein is biologically active. These results are consistent with 
several recent reports (Li et al. 2006; Jiang et al. 2007; 
Sharma et al. 2008). 

To optimize our expression system, we tested different 
promoters (Nos and tCUP), deleted unnecessary sequence 
in the transformation vector, added Alfalfa mosaic virus 
(AMV) leader sequence before the start codon, and in-
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Fig. 1 The development of plant-based edible vaccines. 
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cluded KDEL (ER retention signal) before the stop codon. 
We found that the double 35S promoter with the AMV 
leader sequence and ER retention signal helped increase the 
CTB yield by approximately 30%. This optimized system 
was suitable for the expression of a vaccine antigen against 
PRRSV as was successfully adapted for the production of 
recombinant human interleukin-13 in transgenic plants 
(Wang et al. 2008a, 2008b). 
 
PRODUCTION OF PRRSV ANTIGENS IN 
TRANSGENIC PLANTS 
 
Selection of a PRRSV antigen for expression 
 
With the availability of an optimized expression system and 
an adjuvant, the next step was to select a proper antigen to 
express in plants. As briefly described in introduction, 
PRRSV produces 9 viral proteins (Fig. 3). Three of them 
are major structural proteins including the envelope glyco-
protein GP5 (25 kDa), the non-glycosylated membrane 
protein M (18 kDa) and the nucleocapsid protein N (14 
kDa) (Mardassi et al. 1996; Delputte and Nauynck 2004; 
Kheyar et al. 2005). These structural proteins are closely 
associated. GP5 and M proteins form heterodimers (Mar-
dassi et al. 1996). After infection, these structural proteins 
can induce the production of large amounts of nonneut-
ralizing antibodies (NNA) and a low titer of neutralizing 
antibodies (NAs). It is NAs that play a critical role in pro-
tection against PRRSV infection (Yoon et al. 1994; Pirza-
deh and Dea 1998). Previous studies have shown that cir-
culating antibodies in PRRSV-infected pigs responsible for 
viral neutralization in cell cultures are mainly directed 
against GP5 (Gonin et al. 1999). Genetic immunization of 
pigs with a DNA vector expressing GP5 induces the pro-
duction of low titers of neutralizing antibodies to PRRSV 
(Pirzadeh and Dea 1998). Extensive analyses using mice as 
an animal model suggest that PRRSV GP5 in principle is a 
major target for NAs to deactivate the virus (Weiland et al. 

1999). Furthermore, Ostrowski et al. (2002) identified the 
neutralizing epitope (BA) and nonneutralizing epitopes 
(NNE) in the GP5 protein (Fig. 3). All these findings indi-
cate that induction of NAs against GP5 is crucial for the 
control of PRRSV. GP5 logically becomes the first choice 
of the oral vaccine antigens. 

 
Expression of the full-length GP5 protein 
 
The full-length GP5 (a kind gift from C. Gagnon, INRS-
Institut Armand-Frappier, Laval, Canada) or its fusion with 
CTB was cloned and inserted into our optimized vector. A 
number of transgenic tobacco plants were generated. Though 
high levels of GP5 mRNA were evident in transgenic plants 
by Northern blot, the GP5 or CTB-GP5 recombinant protein 
was hardly detectable by Western blot, suggesting a very 
low level of the GP5 recombinant protein in transgenic 
plants. These results are consistent with findings resulting 
from an earlier independent study in transgenic tobacco and 
alfalfa by J. Brandle et al. (pers. comm.). The low GP5 ac-
cumulation was not improved by transformation of a codon-
optimized synthesis GP5 gene (J. Brandle, pers. comm.). 
The full-length GP5 seems recalcitrant to accumulation in 
transgenic plants. It is not clear if this is due to a possible 
abortion of translation, a very short turn-over time, or the 
toxicity of GP5 in plant cells. 

 
Expression of the partial G5 protein 
 
As discussed above, GP5 consists of NA and NNA epitopes. 
It is the NA epitope that induces the production of NAs 
which effectively deactivate PRRSV. Partial GP5 cDNA 
fragments from three representative Canadian PRRSV iso-
lates, each of which contains 147 nucleotides encoding a 
neutralizing epitope (GP5-NE), were synthesized and 
cloned into the optimized expression vector to constitute the 
following cassette: 35S-35S::AMV-leader-sequence::CTB-
(GP5-NEa)-(GP5-NEb)-(GP5-NEc)-(KDEL)::Nos-termina-
tor. This vector was transformed into tobacco plants. The 
quantification of the recombinant protein with ELISA indi-
cated that the expression level of CTB-GP5-NE was in the 
range of 0.003 to 0.087% of TSP from transgenic tobacco. 
Further, GM1-ELISA binding assay confirmed that the 
plant-produced CTB-GP5-NEabc was biologically active. A 
transgenic tobacco line expressing the highest level of 
CTB-GP5-NEabc is ready for animal feeding test. 
 
VIRUS-DIRECTED EXPRESSION OF GP5 IN 
PLANTS 
 
Plant viruses have the ability to produce and accumulate 
high levels of viral proteins in infected plants. Thus, plant 
viruses have great potential to be developed into an ex-
pression vector for the production of heterologous proteins 
in plants (Gleba et al. 2004). Indeed, during the past few 
years, several viral vectors have been reported (Masuta et al. 
2000; Mor et al. 2003; Beauchemin et al. 2005; Lindbo 
2007; Sainbury et al. 2008). In some cases, expression 
levels of the recombinant protein can reach as high as 10% 
of TSP (Dohi et al. 2006). These viral vectors were not 
adapted for our research due to either limited host ranges or 
safety concerns. 

To boost the GP5 expression level and domesticate leg-
ume plants as host plants that are major pork feed for pro-
teins, we initiated the development of a Soybean mosaic 
virus (SMV)-based vector for the production of GP5. Two 
Canadian SMV isolates were collected. Their viral genome 
(about 9.5 kb) was completely cloned and sequenced 
(Gagarinova et al. 2008). A full-length virus strategy was 
used to construct the SMV expression vector. A yellow fluo-
rescent protein (YFP) was inserted into the junction of P1 
and HC-Pro. Strong YFP signals were found in the plants 
infected by this clone. GP5, GP5-NEabc, CTB-GP5 and 
CTB-GP5-NEabc were inserted in the SMV viral vector. 
Currently, expression levels of GP5 in soybeans infected 
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with these SMV-GP5 derivatives are being evaluated. 
 
PRODUCTION OF GP5 USING OTHER PLANT 
SYSTEMS 
 
In addition to the constitutive, nuclear expression and viral 
expression vector systems described above, other plant sys-
tems may also be adapted for the expression of GP5 in plant 
hosts. These include tissue-specific expression such as 
cereal seeds (Hood et al. 2003; Nochi et al. 2007), inducible 
expression such as chemical inducible systems (Padidam 
2003), plant cell suspension cultures (Fischer et al. 1999), 
and chloroplasts (Grevich and Daniell 2005). Among them, 
the chloroplast system has attracted more and more atten-
tion (Daniell et al. 2005). Transgenic chloroplasts allow the 
high-yield production of vaccine antigens of interest. It has 
been reported that in transgenic tobacco chloroplasts, bio-
logically active CTB account for as high as 4% of TSP 
(Daniell et al. 2001). In the case of a rotavirus VP6 protein, 
the expression level in transgenic tobacco chloroplasts 
varies from 0% to 3% of TSP, dependent on the promoter 
used (Birch-Machin et al. 2004). It seems that the vaccine 
accumulation in chloroplasts largely depend on its regula-
tory sequences and the toxicility of the vaccine (Daniell et 
al. 2005). It would be interesting to determine if transgenic 
chloroplasts allow the accumulation of high levels of GP5. 
 
CONCLUSION REMARKS AND FUTURE 
DIRECTIONS 
 
Over the last decade, a number of proof-of-principle studies 
have been conducted to test plants as new bioreactors for 
vaccine production. Some of the subunit vaccines investi-
gated to date have been exceptionally successful and moved 
forward for clinical trials and scale-up production on the 
commercial basis. However, overall there are still several 
major limitations preventing from the commercialization of 
the plant-produced vaccines. A major technical bottleneck is 
the low yield of certain antigen proteins, especially those of 
viral origin (Wu et al. 2004; Golovkin et al. 2007). To 
overcome this impediment, diverse expression systems such 
as plant virus-directed expression and chloroplast expres-
sion systems have been developed, albeit it is unknown why 
some of antigen proteins accumulate at a high level in one 
expression system but very little in another system. Other 
long-standing challenges include issues of environmental 
impact, biosafety and risk assessment. 

We attempted to use transgenic plants to produce GP5 
as a subunit vaccine against PRRSV. Although the CTB-
GP5-NE was expressible in tobacco plants and the plant-
produced CTB-GP5-NE was biologically active, the expres-
sion level was low. We developed an SMV-based viral 
vector to enhance the expression of GP5 in legume plants. 
Unlike non-food plants such as tobacco, legume plants 
expressing GP5 may directly be fed as edible subunit vac-
cines to pork. Currently we are focused on the enhancement 
of the GP5 production and looking forward to the initiation 
of the animal feeding test. Our study has set a first step 
toward the utilization of plants for the production of subunit 
vaccines against PRRSV. 
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