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ABSTRACT 
The ubiquitin proteasome system (UPS) effectively and efficiently controls the abundance of regulatory proteins, removes abnormal 
proteins and regulates the activity of signalling proteins. This allows for control of regulatory networks and adaptation to external stimuli. 
Plants utilize the UPS to alter their proteome, to modulate cellular activity and thus cope with unfavourable growth conditions. Recent 
studies demonstrated that the UPS plays a critical role in abiotic stress tolerance. Using the model research plant Arabidopsis thaliana, E3 
ubiquitin ligases, the substrate-recruiting component of the ubiquitination pathway, have been identified as regulators of salinity, cold, 
heat and drought stress tolerance. E3 ubiquitin ligases also play a central role in regulating the signalling pathway initiated by the stress 
phytohormone abscisic acid. These studies establish a direct link between ubiquitination and plant response to environmental stresses. 
This work has been extended to other model plants and provides a strategy for enhancing plant stress tolerance utilizing the regulatory 
enzymes of the UPS. This review focuses on the recent progress in understanding the role of the UPS in abiotic stress tolerance and 
discusses strategies for improving stress tolerance by targeting E3 ubiquitin ligases. 
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INTRODUCTION 
 
As sessile organisms plants must cope with unfavourable 
conditions such as water scarcity (drought), temperature 
fluctuations (heat or chilling), high salt conditions (salinity), 
radiation (high intensity ultra-violet light), heavy metal 
toxicity, oxidative stress and nutrient deprivation in soil. 
Understanding how plants adapt to the changing environ-
ment is of great interest as abiotic stresses cause significant 
crop losses each year and, thus, threaten the sustainability 
of the agricultural industry. Cold, salinity and drought are 
three key abiotic stresses which adversely affect plant 

growth and productivity and are among the principle causes 
of reduction in crop yield. To this end, deciphering the 
underlying genetic and molecular mechanisms for abiotic 
stress perception, transduction and tolerance remains an 
intensely studied area of research. 

In response to environmental stimuli plants alter their 
cellular milieu to mitigate any adverse effects that may re-
sult from exposure to abiotic stresses. This is accomplished 
via signal transduction events leading to changes in gene 
expression which facilitates various physiological and cel-
lular responses (Fig. 1). Stress responses tend to be con-
trolled by a large number of genes, which has made under-
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standing the molecular basis of stress tolerance a difficult 
process. Generally, stress-responsive genes can be grouped 
into two categories (Wang et al. 2003; Bhatnagar-Mathur et 
al. 2008). The first category includes signalling proteins 
which relay the stress signal and transcription factors that 
regulate gene expression. The second category consists of 
gene products such as osmoprotectants and antioxidants that 
function to alleviate stress. For example, one of the main 
effects of cold stress is damage to the plant cell membrane 
(Steponkus 1984). In response to colder temperatures, plants 
modulate lipid composition so as to stabilize the cell mem-
brane (reviewed in Mahajan and Tuteja 2005). 

Engineering stress tolerant plants can target either of 
these two groups of stress-responsive genes. However, the 
multigenic nature of stress responses has made improving 
stress tolerance by traditional breeding methods a difficult 
process (Bohnert et al. 1995; McKersie et al. 1999; Vinocur 
and Altman 2005). Compared to altering the expression of a 
single stress-related gene, targeting transcription factors 
may be a more useful approach as it would allow for the 
control of multiple downstream stress-responsive genes 
(Chinnusamy et al. 2005; Bhatnagar-Mathur et al. 2008). A 
number of genes that respond to different stresses utilize the 
same transcription factor. Therefore, modulating the ex-
pression these transcription factors may enhance tolerance 
to multiple stresses. Other potential targets for engineering 
plants with enhanced stress tolerance are protein modifiers. 
Post-translational modification of stress-responsive sig-
nalling proteins and transcription factors by phosphoryla-

tion, farnesylation, sumoylation or ubiquitination is impor-
tant for the regulating the expression of stress-responsive 
genes. Ubiquitination, for example, has been repeatedly 
shown to be involved in both biotic and abiotic stress res-
ponse (for a recent review on ubiquitination and biotic 
stress see Dreher and Callis 2007). The ubiquitin-protea-
some system (UPS) allows for rapid and efficient responses 
to abiotic stresses by regulating hormone biosynthesis and 
perception and the abundance of signalling proteins parti-
cularly transcription factors (Fig. 1) (Stone and Callis 2007). 
In this review we emphasize the role of the UPS in abiotic 
stress response and the potential of targeting the system as 
an approach to developing plants with enhanced stress tol-
erance. 

 
THE UBIQUITIN PROTEASOME SYSTEM 
 
Post-translationally modifying proteins via the attachment 
of one or more ubiquitin molecules is an extremely re-
sourceful way to regulate protein abundance, cellular loca-
tion and activity. Ubiquitin is a very stable, highly con-
served, ubiquitously expressed molecule which can be 
linked to other proteins as well as itself, via one of seven 
lysine residues, producing structurally diverse polyubiquitin 
chains. The major function of ubiquitination is to selec-
tively target proteins for proteasomal degradation, however 
recent studies have greatly expanded the cellular role of 
ubiquitination. The attachment of a single ubiquitin mole-
cule to a target protein (monoubiquitination) has been 
shown to be sufficient to act as a signal for membrane pro-
tein internalization, vesicle sorting, DNA repair and gene 
silencing (Sun and Chen 2004; Mukhopadhyay and Riez-
man 2007). The attachment of a polyubiquitin chain to a tar-
get protein (polyubiquitination) has varying consequences 
depending upon which lysine residue of ubiquitin is used to 
produce the chain. The function of two types of polyubi-
quitination, lysine 48 (lys48) and lysine 63 (lys63) linked 
chains, have been extensively studied. Proteins modified by 
the attachment of a lys48 polyubiquitin chain are targeted 
for degradation by the 26S proteasome, a large ATP-depen-
dent protease complex consisting of a 20S catalytic core 
capped on either end by a 19S regulatory particle. Lys63 
polyubiquitination has been implicated in non-proteolytic 
functions such as endocytosis, protein kinase activation and 
DNA damage repair (Sun and Chen 2004; Mukhopadhyay 
and Riezman 2007). However, lys63 polyubiquitination can 
also serve as a signal to target proteins to the 26S protea-
some for degradation (Saeki et al. 2009). 

The covalent attachment of ubiquitin to a target protein 
involves an enzymatic cascade mediated by three enzymes, 
E1 (ubiquitin activating enzyme), E2 (ubiquitin conjugating 
enzyme) and E3 (ubiquitin ligase) (Fig. 2). The conjugation 
cascade is initiated by E1 which activates the ubiquitin 
molecules by forming an E1-ubiquitin thioester intermedi-
ate. The activated ubiquitin is then transferred to the E2 
forming an E2-ubiquitin intermediate via a thioester linkage. 
The E3 enzyme mediates the transfer of ubiquitin from the 
E2-ubiquitin intermediate to the target protein. Ubiquitin 
attachment is facilitated by the formation of an isopeptide 
bond between the carboxyl terminus of ubiquitin and an 
internal lysine residue on the target protein. 

Plant genomes examined so far contain two or more E1 
enzymes, tens of E2s and a large number of E3s (Table 1). 
A single E1 is able to produce enough activated ubiquitin 
for the entire system (Pickart 2001a). The Arabidopsis 
genome contains two E1 encoding genes that share a similar 
expression pattern and E2 interaction specificity (Hatfield et 
al. 1997). E2s are characterized by the presence of a 
conserved core domain (UBC domain) which contains the 
cysteinyl residue required for accepting the ubiquitin mole-
cule from the E1 (Pickart 2001a; Wu et al. 2003; Kraft et al. 
2005). The UBC domain also facilitates interaction with the 
ubiquitin ligase. In addition to the UBC domain, a few E2s 
contain an amino and/or carboxyl-terminal extension which 
may mediate E3 ligase interaction specificity (Jentsch 1992; 

Abiotic stress
drought, salinity, cold/heat

Signal perception
e.g. receptors, ion channels

Signal transduction
e.g. kinases, phosphatases

Expression of stress-responsive/tolerance genes
e.g. osmoprotectants, detoxifying genes, chaperones

Signal molecules
e.g. Ca 2+, InsP

Physiological response

Stress Tolerance  

Transcription factors 

Hormone biosynthesis 
e.g. ABA 

Ubiquitination

 
Fig. 1 A generic signal transduction pathway for response to abiotic 
stresses. Stresses such as cold, drought and salinity activate downstream 
signaling components via generation of second messengers such as cal-
cium or accumulation of stress hormones. The signaling pathway target 
transcription factors that regulate the expression of stress-responsive 
genes. The expression of these genes leads to stress tolerance allowing the 
plant to survive unfavourable conditions. Protein ubiquitination may 
modulate the stress-responsive mechanism by regulating, hormone bio-
synthesis, the level or activity of components of the signaling pathway and 
the abundance of transcription factors. 
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Kraft et al. 2005). There are usually dozens of E2s; the 
Arabidopsis genome for example contains 37 E2 encoding 
genes (Table 1) (Kraft et al. 2005). The specificity of the 
ubiquitination pathway is governed mainly by the substrate-
recruiting E3 ubiquitin ligases. The Arabidopsis genome is 
predicted to encode for over 1300 E3s which can be sub-
divided into distinct groups depending on their mode of 
action and subunit composition (Table 1). The abundance 
and diversity of E3 ligases allows the ubiquitination path-
way to regulate the activity of a large number of proteins. 

 
E3 UBIQUITIN LIGASES 
  
Ubiquitin ligases can be classified into three groups based 
on the presence of either a Homology to E6-Associated 
Carboxy-Terminus (HECT), U-box or Really Interesting 
New Gene (RING) E2 binding domain (Table 1). The 
HECT-type E3s are the smallest group with only seven 
members in Arabidopsis (Downes et al. 2003). Unlike the 
other groups of E3s, the HECT-type E3s form a E3-ubi-
quitin intermediate prior to the transfer of ubiquitin to the 
target protein (Scheffner et al. 1995) (Fig. 2). The U-box-
type and RING-type E3 ligases facilitate transfer of the 
ubiquitin molecule directly from the E2-ubiquitin inter-

mediate to the target protein (Fig. 2). The Arabidopsis 
genome contains 61 U-box-type and 476 RING-type E3s 
(Azevedo et al. 2001; Stone et al. 2005; Yee and Goring 
2009). The RING and U-box proteins can be divided into 
thirty and five different groups, respectively, based on 
domain composition and organization (Azevedo et al. 2001; 
Stone et al. 2005). The diversity of the RING E3s is further 
reflected in variations within the RING domain itself (Stone 
et al. 2005). The RING domain uses an octet of cysteine 
and histidine amino acids as metal ligand residues to co-
ordinate two zinc ions in a cross brace structure essential 
for E3 ligase activity (Freemont 1993). Five modified 
RING domains have been identified which have variability 
in the positioning of key metal ligand residues within the 
RING domain (Stone et al. 2005). The variability does not 
seem to affect function as E3 ligase activity has been 
demonstrated for a number of the modified domains. 

Though the majority of E2-binding RING domains are 
found in monomeric E3 proteins, RING domain-containing 
proteins are also components of multi-subunit E3 ligases 
such as the Cullin based RING E3 ligases (CRLs) (Smalle 
and Vierstra 2004) (Fig. 2). Three types of CRLs have been 
described in plants, each utilizing a different Cullin subunit 
(CUL1, CUL3a/3b or CUL4), which functions as a scaffold 

 
Fig. 2 The ubiquitination pathway. ATP-dependent activation of ubiquitin by the E1 (ubiquitin activating enzyme), is followed by transfer to the E2 
(ubiquitin conjugating enzyme). The E2-ubiquitin intermediate then interacts with the E3 (ubiquitin ligase) and jointly transfers ubiquitin to the substrate. 
HECT-type E3 ligases form a intermediate with ubiquitin prior to transfer of ubiquitin to the substrate, while U-box and RING E3 ligases, including 
CRLs, facilitate direct transfer of ubiquitin to the substrate. CRLs are grouped into three categories according to substrate recognition protein; F-box, 
BTB, and DWD. The cycle is repeated to generate a polyubiquitin chain. 

Table 1 Comparison of ubiquitination enzymes gene families in Arabidopsis, rice and poplar. 
 Arabidopsis Rice* Poplar** References 
E1 2 6 6 Hatfield et al. 1997; Du et al. 2009b 
E2 37 49 70 Smalle and Vierstra 2004; Du et al. 2009 
E3      

HECT 7 8 7 Kraft et al. 2005; Du et al. 2009b 
U-box 61 77 93 Kraft et al. 2005; Zeng et al. 2008; Du et al. 2009b 
RING 476 378 399 Kraft et al. 2005; Du et al. 2009 

Cullin RING Ligase (CRL) 
BTB 80 149 81 Gingerich et al. 2005; Gingerich et al. 2007; Du et al. 2009b 
F-box 600-700 687 320 Kuroda et al. 2002; Gagne et al. 2002; Jain et al. 2007; Yang et al. 2008a
DWD 85 78 nr Lee et al. 2008 
* Numbers for rice E1, E2, RING and HECT E3 were taken from http://bioinformatics.cau.edu.cn/plantsUPS (Du et al. 2009b). 
** With the exception of the F-box proteins (Yang et al. 2008a), numbers for the poplar E1, E2 and E3 family of ubiquitin ligases retrieved from 
http://bioinformatics.cau.edu.cn/plantsUPS (Du et al. 2009b). 
nr, number of DWD proteins in poplar was not reported. 
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that interacts with the E2 binding RING protein and a 
substrate-recruiting protein (Schwechheimer and Villalobos 
2004; Hotton and Callis 2008). Families of substrate-
recruiting proteins utilized by the CRLs include the F-box, 
Broad complex Tramtrack Bric-a-Brac (BTB) and DDB1 
binding WD40 (DWD) motif containing proteins (Table 1). 
The Skp1-Cullin-F-box (SCF)-type CRL, for example, con-
tains CUL1, RBX1a/b RING protein, ASK1/Skp1 adaptor 
protein that facilitates interaction with the substrate-re-
cruiting subunit, a F-box protein of which there are over 
700 in the predicted Arabidopsis proteome (Gagne et al. 
2002; Lechner et al. 2006) (Fig. 2). The diversity of sub-
strate-recruiting subunits and the ability to utilize one of 
three Cullin proteins makes the CRL group the largest class 
of ubiquitin ligases. 

 
THE UBIQUITIN-PROTEASOME SYSTEM AND 
ABSCISIC ACID SIGNALLING 
 
The plant hormone abscisic acid (ABA) functions in adap-
tive response to environmental stresses. Salinity, drought 
and cold stress causes the accumulation and increased bio-
synthesis of ABA (Cutler and Krochko 1999; Taylor et al. 
2000). ABA regulates seed maturation and prolongs seed 
dormancy to ensure that seeds germinate under favourable 
conditions. Immediately following germination, ABA sus-
pends the growth of young seedlings exposed to stresses 
such as cold, salinity or drought. Seedling development is 
slowed until better environmental conditions arise. As 
plants mature further, stress-induced accumulation of ABA 
directs various protective responses that help ameliorate 
stress induced damage (Finkelstein et al. 2002; Himmel-
bach et al. 2003). A well-studied ABA-mediated event is the 
regulation of stomatal closure in response to drought stress. 
Under drought conditions, ABA prevents transpirational 
water loss by promoting the efflux of potassium ions from 
guard cells which causes loss of turgor pressure leading to 
stomatal aperture closure (MacRobbie 1998; Hetherington 
2001; Himmelbach et al. 2003). 

ABA-mediated responses, such as growth arrest of early 
seedlings exposed to stress conditions, require changes in 
expression of a large subset of genes. Transcriptional analy-
ses of ABA-responsive genes identified over 1350 genes 
that are either up- or down-regulated in response to ABA 
(Hoth et al. 2002; Seki et al. 2002). Changes in gene ex-
pression generated by cold, drought and high salinity are 
mediated by ABA-responsive transcription factors such as 
the basic leucine zipper (bZIP) transcriptional activators, 
which interact with the ABA-regulatory elements (ABRE) 
found in the promoter of stress-responsive genes (Hattori et 
al. 2002; Narusaka et al. 2003). The ABA-responsive trans-
cription factors activate a subset of genes that function 
together to enhance stress tolerance. The UPS regulates 
ABA-responsive transcription by modulating the abundance 
of these transcription factors. 

The observation that ABA promotes the accumulation 
of the short-lived Abscisic Acid Insensitive 5 (ABI5), a 
bZIP transcription factor that functions as a positive regu-
lator of ABA responses, provided evidence for the involve-
ment of the UPS in regulating ABA signalling (Uno et al. 
2000; Lopez-Molina et al. 2003; Smalle and Vierstra 2004). 
Ubiquitinated ABI5 accumulates in seedlings treated with 
proteasome inhibitors and ABI5 is stabilized in rpn10-1, 
which has a defect in RPN10, a non-ATPase subunit of the 
19S regulatory particle (Lopez-Molina et al. 2003; Smalle 
et al. 2003). ABA signalling results in ABI5 phosphoryla-
tion, a dramatic increase in ABI5 protein levels and seed-
ling growth arrest. Interestingly, ABA is able to induce 
ABI5 protein accumulation and seedling growth arrest only 
within a short period of time following germination (Lopez-
Molina et al. 2001). These observations, along with the fact 
that ABI5 protein accumulation is also induced by salt and 
drought stress, suggests that ABA-dependent stabilization 
of ABI5 serves as an early developmental checkpoint to 
delay growth during adverse environmental conditions. 

Under favourable growth conditions the UPS is required to 
maintain low levels of ABI5, thus permitting growth. 

Other ABA-responsive transcription factors are also 
regulated by the UPS. The B3 transcription factor ABI3 
plays a central role in mediating ABA-dependent responses 
(Finkelstein and Lynch 2000). ABI3 function is required for 
desiccation tolerance, maintaining seed dormancy, plastid 
development and vegetative to reproductive phase transition 
(Rohde et al. 2000; Finkelstein et al. 2002). ABI3 protein is 
unstable in most stages of plant development and degrada-
tion of ABI3 can be blocked by proteasome inhibitors 
(Lopez-Molina et al. 2001, 2002; Zhang et al. 2005). 
Although there is no direct evidence for UPS-mediated 
degradation, preliminary evidence suggests that ABI4 and 
ABA-responsive ABRE Binding Factor 2 (ABF2) trans-
cription factors may also be regulated by the UPS. Similar 
to ABI5, ABI4 is very unstable but unlike ABI5 treatment 
with ABA does not result in the accumulation of ABI4 
protein (Finkelstein et al. 2011). However, treatment with 
proteasome inhibitors stabilizes the protein in transgenic 
plant constitutively expressing ABI4. Evidence for UPS 
regulation of ABF2 is based on ABF2 interaction with Arm 
Protein Repeat Interacting with ABF2 (ARIA), a BTB pro-
tein which may function as a component of a CRL E3 ligase 
complex (Kim et al. 2004). 

 
E3 LIGASES AND ABSCISIC ACID SIGNALLING 
 
Efforts to identify stress-responsive genes have uncovered 
several E3 ligases with potential roles in regulating ABA 
signalling. E3 ligases with mRNA levels affected by ABA 
and genes encoding E3 ligases have surfaced in screens for 
mutants with aberrant ABA-related phenotypes. Interaction 
screens used to isolate signalling components that modulate 
ABA-responsive gene expression have also identified E3 
ligases. This section highlights some of the E3 ligases with 
defined roles in ABA signalling. A comprehensive list of E3 
ligases with known and potential roles in ABA signalling as 
well as ABA-independent stress responses can be found in 
Table 2. 

 
Keep on Going (KEG) 
 
KEG is a large multi-domain protein that contains func-
tional RING-type E3 ligase and kinase domains, followed 
by a series of ankyrin repeats and previously unidentified 
HERC2-like repeats (Stone et al. 2006). Both the ankyrin 
and HERC2-like repeats facilitate interactions with sub-
strate proteins (Stone et al. 2006; Gu and Innes 2011). KEG 
is a negative regulator of ABA signalling required for main-
taining low levels of ABI5 in the absence of ABA (Stone et 
al. 2006). Gene disruption of KEG due to T-DNA insertions 
results in ABA hypersensitivity, an accumulation of ex-
tremely high levels of ABI5 and seedling growth arrest 
shortly after germination. In the absence of ABA, KEG is 
thought to target ABI5 for ubiquitination leading to its deg-
radation and suppression of ABI5-dependent post-germina-
tive growth arrest. Loss of ABI5 in the KEG mutant back-
ground only partially rescues the growth-arrest phenotype 
of keg seedlings suggesting that KEG regulates the stability 
of a number of proteins including other ABA-responsive 
transcription factors. 

Recent studies have begun to shed light on the mecha-
nism by which ABA protects ABI5 from degradation by 
KEG. In the presence of ABA, the turnover of KEG protein 
increases significantly (Liu and Stone 2010). The ABA-
induced degradation is dependent on KEG’s own E3 ligase 
domain and on the activity of the 26S proteasome. These re-
sults suggest that KEG protein levels are reduced via ABA-
induced self-ubiquitination and subsequent degradation by 
the 26S proteasome, thus allowing ABI5 level to rise. ABA 
signalling may also modify ABI5 to prevent KEG-mediated 
ubiquitination. This is supported by several studies that 
demonstrate that in the presence of ABA, ABI5 exist in 
multiple migrating isoforms (Lopez-Molina et al. 2001, 
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2002; Smalle and Vierstra 2004). Conjugation of Small 
Ubiquitin-like Modifier (SUMO) to ABI5 by SUMO E3 
ligase SIZ1 (for SAP [scaffold attachment factor, acinus, 
protein inhibitor of activated signal transducer and activator 
of transcription] and Miz1 [Msx2-interacting zinc finger] 
domain), inhibits ABI5 degradation by the proteasome 
(Miura et al. 2009). This suggests that sumoylated ABI5 is 
not a suitable substrate for KEG E3 ligase activity. Sumoy-
lation of ABI5 adds another layer of regulation to ABA 
signalling. Miura et al. (2009) suggests that sumoylation 
results in the accumulation of an inactive form of ABI5, 
upon ABA signalling this pool of ABI5 is desumoylation 
and become activate. The active ABI5 can then mediate 
ABA-dependent responses. 

 
DWD hypersensitive to ABA 1 (DWA1) and DWA2 
 
DWA1 and DWA2 are DDB1 binding WD40 (DWD) pro-
teins that function together as the substrate recruiting com-
ponent of a CUL4 based CRL (Lee et al. 2008) (see Fig. 2). 
Similar to KEG, the DWA1/2 containing CRL has been im-
plicated in regulating ABI5 protein levels (Lee et al. 2010). 
Compared to wild type plants, dwa1, dwa2 and dwa1 dwa2 
seedlings accumulate higher levels of ABI5 protein fol-
lowing ABA treatment and exhibit ABA hypersensitive phe-
notypes. The DWA mutants differ from keg in one signifi-
cant aspect, in the absence of ABA, ABI5 in undetectable in 
dwa1, dwa2 and dwa1 dwa2, whereas all KEG mutants 
accumulate extremely high levels of ABI5. Multiple E3 
ligases targeting a single substrate has been well docu-
mented in other eukaryotic systems. For example, the mam-
malian transcription factor p53 is targeted by RING-type E3 
ligases, Mdm2, COP1 and PirH2 and HECT-type E3 ligase, 
ARF-BP1 (see review Brooks and Gu 2006). Each E3 
ligase may regulate substrate abundance under certain con-

ditions, for example stressed versus unstressed, or within 
specific cellular compartments, for example cytoplasmic 
versus nuclear. KEG and DWA1/2 E3 ligases may function 
together to maintain ABI5 abundance under different cir-
cumstances. KEG may function to repress ABI5 in un-
stressed cells (low ABA), while DWA1 and DWA2 may be 
required to down-regulate ABI5 in stressed cells (high 
ABA). 

 
ABI3-Interacting Protein 2 (AIP2) 
 
AIP2, a RING-type E3 ligase, was isolated as an interactor 
of ABI3 via a yeast two hybrid screen (Kurup et al. 2000). 
AIP2 is a negative regulator of ABA signalling involved in 
ubiquitinating and targeting ABI3 for degradation by the 
26S proteasome (Zhang et al. 2005). aip2-1 plants accumu-
late high levels ABI3 compared to wild-type and are hyper-
sensitive to exogenous ABA. Overexpression of AIP2 leads 
to reduced ABI3 protein levels, decrease in seed viability 
and a prolonged vegetative growth period (Zhang et al. 
2005). AIP2 is ubiquitously expressed and transcript abun-
dance increases upon ABA application in seedlings (Zhang 
et al. 2005). The increase in AIP2 transcript correlates with 
a decrease in ABI3 protein levels. These results suggest that 
AIP2 functions to keep ABI3 levels low (Lopez-Molina et 
al. 2002; Zhang et al. 2005). 

 
Salt and Drought Induced RING Finger 1 (SDIR1) 
 
SDIR1 encodes for a membrane bound RING-type E3 
ligase that was first identified, via microarray analysis, as a 
salinity and drought stress-inducible gene (Zhang et al. 
2007). Further research demonstrated that SDIR1 is a posi-
tive regulator of ABA signalling (Zhang et al. 2007). Trans-
genic plants overexpressing SDIR1 are hypersensitive to 

Table 2 E3 ubiquitin ligases with known or predicted roles in ABA signalling, ABA-dependent or independent stress responses. 
E3 Type Species* Function References 
AIP2 RING At Negative regulator of ABA signalling Zhang et al. 2005 
AIRP1 RING At ABA-dependent drought response Ryu et al. 2010 
ARIA CRL At Positive regulator of ABA signalling Kim et al. 2004 
BIRF1 RING Os Response to drought and oxidative stress possibly through reduced ABA sensitivity Liu et al. 2008 
CHIP RING At Response to temperature fluctuations Yan et al. 2003; Luo et al. 2006
CNI1/ATL31 RING At Response to carbon and nitrogen levels during growth phase transition in seedlings Sato et al. 2009 
COP1 RING At Regulation of ABA signalling via HY5 Chen et al. 2008 
DDB1 CRL At Maintains genome integrity under UV stress Molinier et al. 2008 
DOR CRL At Response to drought stress by inhibiting ABA-induced stomatal closure Zhang et al. 2008 
DRIP1/2 RING At Response to dehydration stress Qin et al. 2008 
DSG1 RING Os Regulator of ABA signaling Park et al. 2010 
DWA1/1 CRL At ABA signalling Lee et al. 2010 
FBP7 CRL At Cold temperature tolerance Calderón-Villalobos et al. 2007
GMPOZ CRL Hv Negative regulator of ABA signalling, activator of gibberellin signalling Woodger et al. 2004 
HOS1 RING At Negatively regulates cold responses Dong et al. 2006 
KEG RING At Negative regulator of ABA signalling Stone et al. 2006; 

Liu and Stone 2009 
NLA RING At Response to nitrogen stress Peng et al. 2007 
PUB1 U-box Ca Drought and salinity stress tolerance Cho et al. 2006 
PUB15 U-box Os Response to oxidative stress Park et al. 2011 
PUB22/23 U-box At Drought and salinity stress tolerance Cho et al. 2008 
PUB9 U-box At ABA signaling Samuels et al. 2008 
RFP1 RING Ca ABA dependent response to osmotic stress Hong et al. 2007 
RFP1 RING Gm Cold, salt and drought stress tolerance Du et al. 2009a 
RHA2a RING At Positive regulator of ABA signalling Bu et al. 2009 
RING-1 RING Os Drought and heat tolerance Meng et al. 2006 
Rma1/2/3 RING At Response to drought stress Lee et al. 2009 
Rma1H1 RING Ca Response to drought stress Lee et al. 2009 
SAP5 RING At Salt and dehydration stress Kang et al. 2011 
SDIR1 RING At Response to drought and salt, positive regulator of ABA signalling Zhang et al. 2007 
SDIR1 RING Os Drought tolerance Gao et al. 2011 
XERICO RING At Response to drought stress, increase ABA biosynthesis Ko et al. 2006 
ZF1 RING Zm Drought and salinity tolerance Huai et al. 2009 
ZFP1 RING Ad Drought tolerance, possible role in ABA signalling Yang et al. 2008b 

* Species: Ad - Artemisia desertorum; At - Arabidopsis thaliana; Ca - Capsicum annuum (hot pepper); Gm - Glycine max (soybean); Hv - Hordeum vulgare (barley); Os - 
Oryza sativa (rice); Zm - Zea mays (maize). 
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ABA and high salinity and display enhanced drought tol-
erance. The increased drought tolerance correlates with en-
hanced ABA-mediated stomatal closure. Opposite pheno-
types are observed for sdir1 plants, for example SDIR1 
mutants are less sensitive to salt stress compared to wild 
type. The phenotypes of the SDIR1 overexpressors and 
sdir1-1 mutants mirror those observed for ABI5 overex-
pressing plants and abi5-1 mutant plants, respectively 
(Lopez-Molina et al. 2001). Overexpression of ABI5 in the 
sdir1-1 background is able to rescue the ABA insensitivity 
phenotype of sdir1-1 plants whereas overexpression of 
SDIR1 in an abi5-1 background is unable to rescue the ABA 
insensitivity of abi5-1 plants. This suggests that SDIR1 is 
acting upstream of ABI5 in the ABA signalling pathway 
(Zhang et al. 2007). SIDR1 is a functional E3 ligase in vitro, 
however like most E3 ligases substrates still remain to be 
identified. It is possible that SDIR1 targets negative regu-
lators of ABA signalling for degradation. Another pos-
sibility mentioned by Zhang et al (2007) is that SDIR1 
could activate a positive regulator via monoubiquitination 
which functions to enhance the ABA signalling cascade. 

 
Arabidopsis thaliana Carboxyl Terminus of Hsc70- 
Interacting Protein (AtCHIP) 
 
Mammalian CHIP proteins are chaperone-dependent U-
box-type E3 ligases (Murata et al. 2001). CHIP E3s, via 
their interactions with molecular chaperones, target non-
native and damaged proteins for degradation by the 26S 
proteasome (Meacham et al. 2001; Murata et al. 2001). In 
addition to the U-box domain, the Arabidopsis CHIP con-
tains three tetratricopeptide (TRP) repeats (Yan et al. 2003). 
TRP repeat containing proteins have been implicated in 
stress response in a variety of organisms (Honoré et al. 
1992; Hernandez Torres et al. 1995; Blatch et al. 1997). In 
Arabidopsis, cold, heat, and high salinity all induced ex-
pression of AtCHIP transcripts (Yan et al. 2003). Overex-
pression of AtCHIP renders plants sensitive to ABA and 
temperature fluctuations (Yan et al. 2003; Luo et al. 2006). 
AtCHIP overexpressors produce fewer seeds than wild type 
at high temperatures and growth is severely delayed at low 
temperatures. 

AtCHIP interacts with and monoubiquitinates A3 and 
RCN1, subunits of Protein Phosphatase 2A (PP2A) (Luo et 
al. 2006; Farkas et al. 2007). The attachment of a single 
ubiquitin molecule suggests that the function of the modi-
fication is non-proteolytic. Analysis of the steady state 
levels of A3 and RCN1 provides support for this hypothesis. 
A3 and RCN1 protein levels are not altered in AtCHIP 
overexpressing plants, instead higher PP2A activity is ob-
served under cold conditions suggesting that AtCHIP acti-
vates PP2A under cold stress which may lead to an altered 
ABA response. Cold-induced up-regulation of PP2A acti-
vity may account for the reduced growth phenotype ob-
served for cold-treated AtCHIP overexpressing plants (Luo 
et al. 2006). 

 
Constitutively Photomorphogenic 1 (COP1) 
 
Light perceived by phytochromes and cryptochromes regu-
late photomorphogenesis via a set of transcription factors 
that mediate changes in expression of multiple downstream 
genes (Ma et al. 2001; Jiao et al. 2007). COP1, a RING-
type E3 ligase, functions downstream of multiple photo-
receptors to repress light mediated changes in development 
(Wei and Deng 1996). COP1 desensitizes light signalling by 
promoting the degradation of a variety of photomorpho-
genic-promoting factors (Osterlund et al. 2000; Saijo et al. 
2003; Seo et al. 2004). One of the first targets identified for 
COP1 was Elongated Hypocotyl5 (HY5), a bZIP transcrip-
tion factor which functions downstream of a number of 
photoreceptors (Koornneef et al. 1980; Oyama et al. 1997; 
Ang et al. 1998; Osterlund et al. 2000). In the dark, nuclear 
localized COP1 interacts with and promotes the degradation 
of HY5 and COP1 is depleted from the nucleus in the light, 

allowing HY5 proteins levels to increase (Osterlund et al. 
2000). 

Recent studies identified a role for HY5 in ABA sig-
nalling (Chen et al. 2008). Compared to wild type hy5 seed-
lings are less sensitive to ABA-mediated inhibition of seed 
germination, seedling growth and lateral root production 
(Chen et al. 2008). Where stress responses are concerned, 
hy5 seedlings are more susceptible to salt and osmotic 
stresses compared to wild type. HY5 regulates the expres-
sion of a subset of ABA-inducible genes, including ABI5, in 
dry seeds and young seedlings. The transcript levels of 
ABI5 were reduced in hy5 seeds which correlated with the 
down-regulation of ABI5-regulated ABA-inducible late em-
bryogenesis-abundant (LEA) genes (Carles et al. 2002; 
Chen et al. 2008). ABA does not influence the stability of 
HY5 but instead promotes the binding of HY5 to the ABI5 
promoter which suggests a mechanism whereby ABA can 
induce the expression of ABI5. HY5 abundance is greatest 
during early seedling development, which is not only con-
sistent with its role in promoting photomorphogenesis but 
also correlates with the developmental window within 
which ABI5 regulates growth under stress conditions 
(Hardtke et al. 2000; Lopez-Molina et al. 2001). The integ-
ration of light control of seedling development and ABA 
signalling may allow seeds and young seedlings to better 
sense and adapt to its environment. 

 
E3 LIGASES IN ABIOTIC STRESS TOLERANCE 

 
DREB2A-Interacting Protein 1 (DRIP1) and DRIP2 
 
Numerous drought-inducible genes contain the dehydration 
responsive element (DRE) in their promoters (Baker et al. 
1994; Yamaguchi-Shinozaki and Shinozaki 1994). Many of 
these genes are downstream targets of the transcription fac-
tor Dehydration-responsive Element Binding Protein 2A 
(DREB2A) which interacts with the DRE via an ERF/AP2 
binding domain (Stockinger et al. 1997; Liu et al. 1998). 
The ability of DREB2A to regulate gene expression is influ-
enced by its stability. Under favourable growth conditions, 
DREB2A protein is unstable due to the presence of the 
negative regulatory domain, a serine and threonine-rich 30–
amino acid region (Sakuma et al. 2006a). Deletion of the 
negative regulatory domain increases DREB2A stability 
and overexpression of a DREB2A mutant lacking the nega-
tive regulatory domain (DREB2A-CA) renders plants more 
tolerant of drought and high temperature stresses (Sakuma 
et al. 2006a, 2006b). The negative regulatory domain may 
contain a degron, an amino acid sequence that serves as a 
signal for degradation. Temperature and hormone respon-
sive degrons have been identified in plants and other eu-
karyotes (Dohmen et al. 1994; Dreher et al. 2006; Nishi-
mura et al. 2009). In plants for example, binding of growth 
hormone auxin to its receptor, Transport Inhibitor Response 
1 (TIR1), the substrate recruiting F-box subunit of SCFTIR 
CRL, promotes the ubiquitination and rapid degradation of 
the Auxin/Indole-3-Acetic Acid (AUX/IAA) transcriptional 
repressor proteins. Auxin accelerates the degradation of 
AUX/IAAs and this relives its inhibitory effect on Auxin 
Response Factors (ARFs) which acts as transcriptional 
activators of auxin-responsive genes (Tiwari et al. 2004; 
Dharmasiri et al. 2005; Tan et al. 2007). Mutational analy-
sis of the conserved domain II region, found in most 
AUX/IAA proteins, show that the domain regulates protein 
stability and contains a transferable auxin-inducible degron 
(Dreher et al. 2006; Nishimura et al. 2009). Similarly, the 
negative regulatory domain may function as a degron that 
facilitates the degradation of DREB2A under favourable 
growth condition. The DREB2A degron would be made un-
available to the degradation machinery under stress con-
ditions, thus allowing DREB2A protein to accumulate and 
regulate the expression of stress-responsive genes. 

The fluctuation in DREB2A abundance in response to 
growth conditions and the fact that DREB2A accumulates 
upon inhibition of the 26S proteasome proteolytic activity 
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provides evidence for regulation by the UPS (Qin et al. 
2008). Two RING-type E3 ligases, DREB2A Interacting 
Protein 1 (DRIP1) and DRIP2, were identified via a yeast 
two hybrid screen as interactors of DREB2A (Qin et al. 
2008). DRIP1 is capable of mediating DREB2A ubiquiti-
nation in vitro and DREB2A protein is more stable in drip1-
1 plants compared to wild-type. These results suggest that 
DREB2A protein is normally maintained at low levels 
through ubiquitination and subsequent degradation by the 
26S proteasome. Disruption of either DRIP1 or DRIP2 
alone did not produce any significant changes in stress tol-
erance or developmental phenotypes. However, DRIP1 
DRIP2 double mutants displayed enhanced drought tol-
erance which coincided with a significant increase in the 
expression of a number of drought stress-responsive genes, 
specifically genes regulated by DREB2A (Qin et al. 2008). 
Conversely, overexpression of DRIP1 delayed the expres-
sion of DREB2A-regulated drought-responsive genes. These 
results suggest that DRIP1 and DRIP2 may function redun-
dantly to maintain low levels of DREB2A under non-
stressed conditions. 

 
High Expression of Osmotically Responsive Gene 
1 (HOS1) 
 
HOS1 and Inducer of CBF/DREB1 expression 1 (ICE1), 
were identified in a series of genetic screens aimed at iso-
lating mutants that affect the expression of cold-inducible 
genes (Ishitani et al. 1998; Chinnusamy et al. 2003). ICE1, 
which encodes a MYC transcription factor, controls the ex-
pression of cold-responsive genes such as C-Repeat (CRT) 
3/dehydration responsive element (DRE) binding proteins 
1A (CBF3/DREB1A). The expression of ICE1, which is nor-
mally constitutive, is upregulated in response to cold tem-
peratures. Overexpression of ICE1 leads to increased ex-
pression of CBF3 under cold but not warm temperatures 
and also enhances cold tolerance (Chinnusamy et al. 2003). 
HOS1, a RING-type E3 ligase, negatively regulates cold 
responses. Increase in HOS1 expression results in a reduc-
tion in transcript accumulation of CBF1, CBF2 and CBF3 
as well as several other stress-responsive genes such as 
cold-regulated 15 (COR15), COR47 and RD29A (Xiong et 
al. 2002; Dong et al. 2006). Accordingly, transgenic HOS1 
overexpressing plants were less tolerant of cold tempera-
tures (Dong et al. 2006). 

HOS1 has been shown to interact with and ubiquitinate 
ICE1 both in vitro and in vivo (Dong et al. 2006). Cold 
treatment promotes the reduction of ICE1 protein levels. 
The cold-induced reduction of ICE1 protein levels can be 
blocked by addition of proteasome inhibitors suggesting 
that cold promotes HOS1-mediated ubiquitination and deg-
radation ICE1. The effect of ICE1 elimination is reduced 
expression of CBF3 along with other cold stress-responsive 
genes. Dong et al (2006) proposes that ICE1 maybe post-
translationally modified in response to cold (before ubi-
quitination) and this active form of ICE1 switches on target 
gene expression. HOS1 may recognize and ubiquitinate the 
activated form of ICE1 and attenuate the cold response 
signal. This suggestion is supported by the fact that cold 
responsive genes are only transiently induced in response to 
cold (Chinnusamy et al. 2003; Dong et al. 2006). 

 
Plant U-box 22 (PUB22) and PUB23 
 
U-box-type E3 ligases, PUB22 and PUB23, were initially 
identified as homologs of Capsicum annuum (hot pepper) 
PUB1 (CaPUB1) (Cho et al. 2006). Similar to CaPUB1, the 
expression of Arabidopsis PUB22 and PUB23 increases in 
response to cold, drought and salt stresses but not upon 
ABA treatment (Cho et al. 2008) Overexpression of either 
PUB22 or PUB23 render plants more sensitive to drought 
and salt stresses (Cho et al. 2008). The pub22 pub23 double 
mutant, which is phenotypically similar to wild-type under 
favourable growth conditions, is highly resistant to drought 
and salt stress. Both PUB22 and PUB23 may function 

together to regulate ABA-independent stress signalling. 
RPN12a, a non-ATPase subunit of the 19S regulatory 

particle, was identified as an interactor of PUB22 and 
PUB23 (Baumeister et al. 1998; Cho et al. 2008). Both 
PUB22 and PUB23 are able to ubiquitinate RPN12a in vitro 
and in vivo. Cytosolic gel filtration analysis show that 
RPN12a elutes in a protein complex with a molecular mass 
(800–900 KDa) consistent with the size of the 19S regu-
latory particle (Peng et al. 2001; Cho et al. 2008). However, 
RPN12a elutes with a wider range of protein complexes 
(200 to 900 KDa) in transgenic plants that overexpress 
PUB22 or PUB23. Interestingly, in drought stressed plants 
RPN12a exhibits the same elution pattern as the PUB22 or 
PUB23 overexpressing plants (Cho et al. 2008). The non-
ATPase subunit of the 19S regulatory particle is thought to 
direct specific proteins to the 26S proteasome complex for 
degradation (Smalle and Vierstra 2004). During drought 
stress, PUB22/23 ubiquitination of RPN12a may cause its 
dissociation from the 19S regulatory particle, which would 
affect the function of the proteasome and the degradation of 
specific proteins. Whether or not PUB22 or PUB23 medi-
ated ubiquitination of RPN12a is stress dependant is not 
currently known. 

 
Ring membrane-anchor 1 Homolog 1 (Rma1H1) 
 
Hot pepper Rma1H1 was identified as a dehydration-indu-
cible gene, which encodes for an endoplasmic reticulum 
(ER)-membrane associated RING-type E3 ligase (Park et al. 
2003; Lee et al. 2009). Overexpression of hot pepper 
Ram1H1 in Arabidopsis enhances drought stress tolerance 
(Lee et al. 2009). To further evaluate the role of Ram1H1 in 
stress tolerance, Arabidopsis PIP2;1, a plasma membrane 
aquaporin that is down-regulated by drought stress, was 
selected as a potential target for Rma1H1 (Tyerman et al. 
1999; Jang et al. 2004; Alexandersson et al. 2005). Trans-
fection experiments using Arabidopsis protoplasts demons-
trated that Rma1H1 modulates PIP2;1 protein levels (Lee et 
al. 2009). Co-transformation of PIP2;1 and Rma1H1 into 
protoplast resulted in lower PIP2;1 protein levels compared 
to when PIP2;1 is introduced alone. The Rma1H1 depen-
dent reduction of PIP2;1 can be inhibited by treatment with 
proteasome inhibitors. These results and the fact that 
Rma1H1 is able to ubiquitinate PIP2;1 in vivo indicate that 
PIP2;1 protein stability is regulated by the UPS. In addition 
to regulating PIP2;1 abundance, Rma1H1 also influences 
PIP2;1 localization. PIP2;1 is localized mainly at the plasma 
membrane, however in the presence of Rma1H1, PIP2;1 is 
mostly found at the ER membrane. Hot pepper Rma1H1 has 
three Arabidopsis homologs, Rma1, Rma2 and Rma3 (Lee 
et al. 2009). Similar to Rma1H1, Rma1 overexpression 
reduces PIP2;1 levels and inhibits its trafficking from the 
ER to the plasma membrane in protoplasts. During drought 
stress, Rma1H1 and its Arabidopsis counterparts Rma1 may 
function to inhibit aquaporin trafficking and mediate pro-
teasomal degradation of PIP2;1 to reduce water loss. 

 
UTILIZING THE UPS TO GENERATE PLANTS WITH 
ENHANCED STRESS TOLERANCE 
 
Plant tolerance of adverse growth conditions such as cold, 
drought and high salinity involves developmental, physiolo-
gical and biochemical changes, which limit damage, re-
establish homeostasis and facilitate repair of damaged sys-
tems. Adaptability to the changing environment influences 
growth and production, thus it is important to understand 
the regulatory mechanisms involved in stress tolerance. The 
identification of E3 ubiquitin ligases which play a regu-
latory role in abiotic stress tolerance establishes a direct link 
between the UPS and various stress response mechanisms. 
The UPS may function downstream of perception of exter-
nal stimuli to ensure fast, efficient and effective cellular res-
ponses to environmental stresses. The UPS enables plants to 
alter their proteome in order to ensure cellular adaptations 
essential for growth and survival. 
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Recent advances in our understanding of the role of the 
UPS in stress tolerance provide opportunities to exploit this 
important and versatile pathway to improve plant tolerance 
of abiotic stresses. Plant stress tolerance may be enhanced 
by manipulating components of the UPS, in particular the 
substrate-recruiting E3 ubiquitin ligases. The potential use-
fulness of this approach is illustrated by the RING-type E3 
ligase SDIR1. Overexpression of SDIR1, a positive regu-
lator of ABA signalling, in crop plants successfully in-
creased drought stress tolerance (Zhang et al. 2008; Gao et 
al. 2011). After 28 days of exposure to drought conditions 
followed by 10 days of rewatering 60% of transgenic 
tobacco plants overexpressing Arabidopsis SDIR1 survived, 
compared to only 30% of control plants (Zhang et al. 2008). 
Improved drought tolerance observed for the transgenic 
plants may be due to increased efficiency in ABA-mediated 
stomatal closure. The rice SDIR1 gene, OsSDIR1, was re-
cently identified and shown to function similarly to the 
Arabidopsis SDIR1 (Gao et al. 2011). OsSDIR1 is also a 
functional membrane bound RING-type E3 ligase. Trans-
genic rice plants overexpressing OsSDIR1 displayed en-
hanced drought tolerance. For example, at the seedling 
stage, the survival rate for transgenic rice plants, following 
six days of drought treatment and one day of rewatering, 
was reported to be over 90%, whereas none of the control 
plants survived (Gao et al. 2011). As observed with Arabi-
dopsis, the increased drought tolerance correlated with an 
increase in stomata closure. Under favourable growth con-
ditions transgenic overexpressing OsSDIR1 rice plants grew 
slower that control plants at the seedling stage, exhibiting 
shorter aerial organs and roots. This growth delay is an un-
wanted effect; however growth and seed set of the trans-
genic rice plants was comparable to that of control plants 
once they were transferred to soil (Gao et al. 2011). As 
SDIR1 can function as a drought tolerant gene in both di-
cotyledons and monocotyledons it may prove to be a useful 
candidate for engineering drought tolerant crops. As this 
area of research develops, additional ubiquitin ligases that 
regulate abiotic stress responses will be identified, expan-
ding the list of suitable candidates that maybe used to gene-
rate plants with enhanced stress tolerance. 

The utility of the UPS to enhance stress tolerance also 
hinges on the identification of target proteins of the E3 
ligase in question. Manipulation of E3 ligases will have 
varying consequences on plant stress tolerance depending 
on the function of the target protein. For example, down-
regulation of an E3 ligase would result in an accumulation 
of its substrate which would lead to increased stress tol-
erance if the substrate was a positive effector of the res-
ponse pathway. If the substrate is a stress-responsive trans-
criptional activator, this would lead to increased expression 
of all downstream stress-responsive genes. An additional 
advantage would be if the target transcription factor is 
utilized by the promoter of genes that respond to different 
stresses, this may lead to enhanced tolerance to multiple 
stresses. Similar predictions can be made for other potential 
E3 ligase substrates that are components of stress response 
signalling pathways such as a kinase, phosphatases as well 
as hormone biosynthetic or catabolic enzymes. How target 
proteins function to alleviate the effects of stress will also 
influence whether or not a particular E3 ligase is a suitable 
candidate for manipulation. DREB2A, a target of DRIP1 
and DRIP2 RING-type E3 ligases, is suggested to alleviate 
the effects of adverse growth conditions by slowing or 
delaying plant growth. Overexpression of a stable form of 
DREB2A or down-regulation of DRIP1 and DRIP2, which 
stabilizes DREB2A protein, significantly enhances drought 
tolerance (Sakuma et al. 2006a, 2006b; Qin et al. 2008). 
However, stabilization of DREB2A produces an undesired 
delayed growth phenotype under favourable growth con-
ditions. The fact that DREB2A overexpression negatively 
affected plant growth and development under non-stressed 
conditions limits the potential of targeting DRIP1 and 
DRIP2 for enhancing plant stress tolerance. Lack of know-
ledge of target identity and function limits understanding 

the full effects of manipulating the ubiquitin ligase of inter-
est. Thus, in addition to identifying E3 ligases with roles in 
regulating stress responses, substrate identification is criti-
cal to furthering our understanding of the role of the UPS in 
stress tolerance and to engineering plant tolerance to abiotic 
stresses. 
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