Current Use of Native Medicinal Species Recorded by European Naturalists in the 19th Century along the Royal Road, Minas Gerais, Brazil

Aparecida C. P. Santos¹ · Marciano Quinelato¹ · Cristiane F. F. Grael² · Christopher W. Fagg³ · Maria G. L. Brandão⁴,⁵*

¹ Universidade Federal de São João Del Rei, Departamento de Ciências Naturais, São João Del-Rei, Minas Gerais, Brazil
² Universidade Federal dos Vales do Jequitinhonha e Mucuri, Departamento de Farmácia, Diamantina, Minas Gerais, Brazil
³ Universidade de Brasília, Departamento de Botânica e Faculdade de Ceilândia, Brasília, DF, Brazil
⁴ Universidade Federal de Minas Gerais, DATAPLAMT - Museu de História Natural e Jardim Botânico e
 ⁵ Faculdade de Farmácia, Belo Horizonte, Minas Gerais, Brazil

Corresponding author: * mbrandao@ufmg.br

ABSTRACT
Medicinal plants are widely used as home remedies both by rural and urban inhabitants of Brazil but the intermixing of cultures has led to introduction of several exotic species into popular medicine. The continuous destruction of botanically rich native ecosystems has also contributed to a gradual loss of knowledge about native medicinal plants. In this study, we have gathered information about the actual use of native species in three municipalities along the Royal Road, visited by European naturalists in the 19th century. Local informers (one woman and nine men, ages ranging from 60 to 95 years old) were interviewed about their native medicinal plant knowledge. A total of 69 native species were recommended for use by the informers within the studied area, 36 (52%) had been previously observed by the European naturalists but only 17 (24.6%) are used now for the same purpose as they had been in the past.

INTRODUCTION
The Brazilian flora represents one of the world’s richest sources of material for pharmacological use, owing to an astonishing mega-diversity. Despite this abundant flora and escalating intellectual development, Brazil remains only a supplier of raw botanical material for international market (Barreiro and Bolzani 2009). The pilocarpine extracted from the leaves of jaborandi (Pilocarpa spp.), the alphabisabolol taken from the candeia wood (Vanillosmopsis erytropappa), the rutine obtained from favela fruits (Dimorphandra mollis), the ipê-roxo bark (Tabebuia avellanedae) and the copalba (Copaifera spp.) balsam are examples of natural products obtained from Brazilian native plants that are almost exclusively used by international pharmaceutical corporations (Nogueira et al. 2010).

For decades several native medicinal species have been used by pharmaceutical companies in Brazil to create commercial products. These companies are represented by small laboratories that evaluate their products on the basis of traditional formulas. However, very often these preparations may not meet the minimal standards of the WHO recommendations for products for traditional use (Brandão et al. 2010). Since 1995, the Governmental Health Agencies of Brazil, following the recommendations of WHO, established a series of regulations in order to improve the quality of commercial herbal products (Carvalho et al. 2008). Some effort has been made by the companies to develop standardized phyto-medicines from native species with proof of quality, safety and efficacy, but only a few successful examples can be mentioned. Acheflan® is one of those rare examples – it is produced with essential oil obtained from Cordia verbenaceae, a native species used in Brazilian traditional medicine to treat inflammations (Calixto 2005). Valorization of the plants is also considered one of the most important strategies for the conservation of native vegetation biomes, especially in developing countries (Newmann and Cragg 2007; Li and Vederas 2009; Nepstadt et al. 2009). Given this situation, there is an urgent need to investigate what is being done by the pharmaceutical companies and to promote studies on their ecology and conservation. Medicinal plants are widely used as home remedies by both rural and urban Brazilians, due to the high cost of industrialized drugs. However, intermixing of cultures (Native, African and European) over several centuries has led to introduction of several exotic species into the popular medicine (Dean 1996). The accelerating destruction of Brazil’s botanically rich native ecosystems has also contributed to a gradual loss of knowledge about native plants used in traditional medicine, including those found in the Atlantic Forest and in areas of the Amazon, where recent occupation is taking place (Begossi et al. 2002; Brandão et al. 2004; Shanley and Rosa 2005; Bussman and Sharon 2006). The threat to conservation highlights the urgent need to accrue information on the past and present uses of medicinal plant species and to promote studies on their ecology and conservation.

Historical research can play an important role in recovering valuable ethnopharmacological data regarding the use of plants (Medeiros 2010). Much of the available information about the use of native medicinal plants in Brazil has been compiled by European naturalists that traveled throughout the country in the 19th century. The data recorded in their books served as important source of information about the use of plants – at that time the native flora was yet conserved and the use of plants was done with Bra-
The contributions made by these naturalists to the knowledge of the Brazilian flora are incalculable – hundreds of new plants were discovered and innumerable new genera were described based on the material that they collected. Several naturalists traveled widely in the Southwest Province of Minas Gerais, and have recorded both the biological and mineral richness of the region (Brandão et al 2008). In this paper, we have gathered information about the current use of medicinal plants in three municipalities along the Royal Road, visited by the European naturalists in 19th century, and compared their current use with data recorded by them.

MATERIALS AND METHODS

Ethnopharmacological literature survey

Historical data about the use of plants were obtained in books written by three European naturalists who traveled throughout the Royal Road in the 19th century: the Frenchman A Saint-Hilaire (1779-1853; Saint-Hilaire 1975), the German KF von Martius (1794-1868) and the Austrian Johann E Pohl (1782-1834; Pohl 1976). The species described by A Saint-Hilaire and J.E. Pohl in their books were confirmed by consulting their original botanical collections in Natural History Museums in Paris and Vienna respectively; species mentioned by von Martius were verified on the website www.florabrasiliensis.cria.org.br. English names for each species and their families’ placement were updated using data from the Missouri Botanical Garden’s website Tropicos (www.mobot.org). Correlated pharmacological studies were searched for in Science finder. Data about the use of the plants in the conventional medicine was searched in the Brazilian Official Pharmacopoeia (Brandão et al. 2009).

Field work

Field work was conducted in Santa Cruz de Minas, São João Del-Rei and Tiradentes, three municipalities along the Royal Road, in the Brazilian southwest State of Minas Gerais (Fig. 1). The studied area is located between the mountains named Serra de São José and Serra do Lenheiro (21° 03’ to 21° 63’ latitude, 44° 11’ to 44° 28’ longitude). The climate of the region is tropical, with mean temperature ranging from 15 to 22°C and presenting two defined seasons (a hot humid summer and a cold dry winter) with annual average precipitation around 1500 mm. According to the 2007 census, the total population recorded in Santa Cruz de Minas was 7,347 inhabitants, with 81,918 in São João del Rei and 5,759 in Tiradentes, of which 80% of the total population was in the urban areas (IBGE 2007). Only 3% of the population was older than 60 years at the time of the census. São João del Rei is a well-structured city with 46 hospitals and other health centres, two Universities and several cultural Programs. Santa Cruz de Minas and Tiradentes are smaller and have two and five health services, respectively.

This study was performed with the collaboration of ten local informers (one woman and nine men, ages ranged from 60 to 95 years old) indicated by the community as experts on the use of native medicinal plants. They are retired and live in urban areas but had activities co-related with agriculture, such as farming, in the past. Voucher specimens of the plants used were deposited in

RESULTS AND DISCUSSION

The current use of native medicinal plant species was verified in three municipalities along the historical Royal Road (RR), in the Brazilian southwestern State of Minas Gerais (Fig. 1). Minas Gerais State includes a spatial and cultural diversity within its territory (which has an area approximately the size of France) and, in contrast to Rio de Janeiro and São Paulo, it maintains strong regional and cultural traditions. RR is considered today a union of three routes that effectively preserve the cultural and historical traceability in the history of Brazil (which has an area approximately the size of France) and, in contrast to Rio de Janeiro and São Paulo, it maintains strong regional and cultural traditions. RR is considered today a union of three routes that effectively preserve the cultural and historical traceability in the history of Brazil (which has an area approximately the size of France) and, in contrast to Rio de Janeiro and São Paulo, it maintains strong regional and cultural traditions.

The stimulant effect of *I. paraguariensis* A. St.-Hil. is well known and is due to its caffeine content. The astringency of *Styphnodendron adstringens* (Mart.) Coville bark is a consequence of the high tannin content, which promotes the anti-diarrheic and anti-ulcer effects (Audi et al. 1999; Martins et al. 2002). The conclusive results of pharmacological studies led to the inclusion of this plant in the recent edition of the *Brazilian Pharmacopoeia*. Demonstrating its importance also in official medicine (Brandão et al. 2009). Other remedies widely used in the region (8 informers) and confirmed by pharmacological studies are the roots and leaves of *Senna occidentalis* (L.) Link as purgative and this effect is due to the presence of anthracene compounds (Nadal et al. 2003).

The use of some species in 19th century was considered important by von Martius and Saint-Hilaire and they have included them in their books specific about medicinal plants: *Plantes Usuelles des Brésiliens* (Saint-Hilaire 1824) and *Systema de Materia Medica Vegetal* (Martius 1854). Remedies using the roots of *Borreria poaya* (A. St.-Hil.) DC. as an expectorant and to treat bronchitis, for example, as well as the roots and leaves from *Boerhavia diffusa* L. to treat liver disorders were already described by Saint-Hilaire and von Martius, respectively. The use of both species for the same purpose is currently recommended by eight informers of the studied area. However, none or few studies have been performed with these species in order to verify the efficacy of the remedies. The same can be observed for the other plants from Table 1 which have their traditional use preserved throughout the centuries.

The Traditional Medicine Division of the WHO recognizes the importance of the century-old plant species, including the Brazilian biodiversity already in the 16th century. The current use of these species shows the importance of these remedies in Brazil throughout the centuries (Brandão et al. 2008; Pisonis 1648). These same species, in addition to another four listed in Table 1 (*Baccharis trimera* (L.) DC., *Buddleja brasiliensis* Jaq. ex Spreng., *Chiococca alba* (L.) Hitchc., *Pelodond radicans* Pohl), have been included in the first Edition of the *Brazilian Pharmacopoeia* published in 1929, due their importance in Brazilian conventional medicine (Brandão et al. 2009). However, the lack of results on pharmacological and

Table 1

<table>
<thead>
<tr>
<th>Species/Family/Popular Names (Voucher specimen)</th>
<th>Number of healers (n=10) cited use and historical reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aristolochia cymbifera Mart. & Zucc. / Aristolochiaceae / jarrinha (A.C.P.S. 18367)</td>
<td>(10) febrifuge (Martius, 1824)</td>
</tr>
<tr>
<td>Baccharis trimera (Less.) DC. / Asteraceae / carqueja (A.C.P.S. 2055)</td>
<td>(10) tonic, febrifuge (Martius, 1824)</td>
</tr>
<tr>
<td>Boerhavia diffusa L. / Nyctaginaceae / erva-tostão (A.C.P.S. 10299)</td>
<td>(8) liver disorders (Martius, 1824)</td>
</tr>
<tr>
<td>Borreria poaya (A. St.-Hil.) DC. / Spermacoceaceae / poaia-roxa (A.C.P.S. 3902)</td>
<td>(8) expectorant and bronchitis (Saint-Hilaire, 1824)</td>
</tr>
<tr>
<td>Buddleja brasiliensis Jaq. ex Spreng. / Loganiaceae / babascos (A.C.P.S. 11073)</td>
<td>(10) diuretic and wound healing (Martius, 1824)</td>
</tr>
<tr>
<td>Byrsonima verrucosa (L.) DC. / Malpighiaceae / murici-cascudo (A.C.P.S. 17228)</td>
<td>(7) astringent (Saint-Hilaire, 1975)</td>
</tr>
<tr>
<td>Chiococca alba (L.) Hitchc. / Rubiaceae / caíca (A.C.P.S. 18867)</td>
<td>(7) ‘depurative’, diuretics (Martius, 1824)</td>
</tr>
<tr>
<td>Croton antisyphiliticus Mart. / Euphorbiaceae / perdiz (A.C.P.S. 16438)</td>
<td>(6) Wound healing (Martius, 1824); diuretics (Saint-Hilaire, 1975, Martius, 1824)</td>
</tr>
<tr>
<td>Dorstenia brasiliensis Lam. / Moraceae / carapí (A.C.P.S. 16991)</td>
<td>(7) Febrifuge, emmenagogue (Martius, 1824)</td>
</tr>
<tr>
<td>Ilex paraguariensis A. St.-Hil./ Aquifoliaceae / congona-dourada (A.C.P.S. 19023)</td>
<td>(10) Stimulant (Martius, 1824)</td>
</tr>
<tr>
<td>Lantana camara L./ Verbenaceae / chumbinho (A.C.P.S. 11658)</td>
<td>(6) rheumatism (Martius, 1824)</td>
</tr>
<tr>
<td>Pilicourea rigida Kunth / Rubiaceae / congona-bate-caixa (A.C.P.S. 18178)</td>
<td>(6) diuretics and rheumatism (Martius, 1824)</td>
</tr>
<tr>
<td>Pelotodon radicans Pohl / Lamiaceae / hortelão (A.C.P.S. 16802)</td>
<td>(8) Bronchitis (Martius, 1824)</td>
</tr>
<tr>
<td>Senna occidentalis (L.) Link/ Fabaceae / fedegoso (A.C.P.S. 16822)</td>
<td>(6) ‘depurative’ and wound healing (Martius, 1824)</td>
</tr>
<tr>
<td>Solanum cernuum Vell./ Solanaceae / panacéia (A.C.P.S. 18187)</td>
<td>(1) Stimulant (Pohl, 1976)</td>
</tr>
<tr>
<td>Stachytarpheta cayennensis (Rich.) Vahl / Verbenaceae / gervão (A.C.P.S. 16622)</td>
<td>(10) astringent, anti-diarrheic and anti-ulcers (Martius, 1824); Pohl, 1976)</td>
</tr>
</tbody>
</table>

* Included in Brazilian Official Pharmacopoeia (Brandão et al. 2009)
toxicological studies led to exclusion of them from official medicine.

Despite being considered a local-level study our results indicate that few native plant species are still being used in the same manner as the past in that region and efforts are need to preserve this traditional knowledge. The study also points to an urgent need for pharmacological and toxicological studies of the native medicinal species, as well as studies on their ecology and conservation.

ACKNOWLEDGEMENTS

To all the local informers and to Eduardo van den Berg (UFLA) for herbarium facilities. Research grants and fellowships from Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico (CNPq).

REFERENCES

Mariãus CPF (1854) Systema de Materia Medica Vegetal, Eduardo e Henrique Laemmert, Rio de Janeiro, 284 pp

Pisonis G (1648) Historiae Naturalis & Medicae. De Arboribus, Fruticibus & Herbis Medicinalibus, ac Alimentoibus in Brasilia, Elsevier, Amsterdam, 1287 pp

Pohl JE (1975) [1832] Viagem ao Interior do Brasil, Itatiaia, Belo Horizonte; EDUSP, São Paulo, 420 pp

Saint-Hilaire A (1824) Plantes Usuelles des Brasiliens, Grimbert Libraire, Paris, 392 pp

Saint-Hilaire A (1875) [1830] Viagem pelas províncias do Rio de Janeiro e Minas Gerais, Itatiaia, Belo Horizonte; EDUSP, São Paulo, 378 pp
