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ABSTRACT 
Down-regulation of gene expression by RNA interference (RNAi) has become a powerful tool to investigate gene functions in vivo. In 
this review we examine how RNAi has been used to assess gene function in strawberry fruit, including molecular mechanisms and 
analysis of silenced phenotypes. The down-regulated genes include FaCHS, FaOMT, FaGT1, FaDFR, FaANS, and Fra encoding proteins 
functioning in the flavonoid biosynthetic pathway. A comparison with stably transformed genotypes shows how spatial silencing of gene 
expression in fruit may affect metabolite patterns. 
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INTRODUCTION 
 
Fruit are rich in essential nutrients and are an important part 
of the human diet. Besides, they contain secondary plant 
products that bring benefits to human health (Schreiner and 
Huyskens-Keil 2006). Strawberries, for example are an ex-
cellent source of vitamin C and numerous health-promoting 
metabolites (Agius et al. 2003; Szajdek and Borowska 
2008). To fully exploit the nutritional value of strawberry, 
researchers need access to the entire genetic code (genome) 
of strawberries as well as research tools that will allow 
them to study the roles of the numerous genes and to engi-
neer beneficial agronomic traits such as pathogen resistance, 
drought tolerance, and fruit quality into strawberry crops 
(Yonekura-Sakakibara and Saito 2006). 

An international consortium of researchers has already 
sequenced the genome of the diploid woodland strawberry, 
Fragaria vesca, which has one of the smallest genomes of 
economically significant plants. The 14 chromosomes of the 
genome comprise a total of 206 million base pairs of DNA 
(Shulaev et al. 2008, 2011). In addition to the published F. 
vesca genome sequence, a large set of approximately 
50,000 expressed sequence tags (ESTs) from F. vesca and 

several thousands from the cultivated octoploid strawberry 
F. x ananassa have been deposited in GenBank. Besides, 
microarray experiments monitoring gene transcription acti-
vity during fruit development is available (Aharoni and 
O’Connell 2002). 

But completely sequencing an organism’s genome is 
just the beginning of our understanding of that organism’s 
biology. All of the genes still need to be identified. The 
function of the gene products (functional RNAs and pro-
teins) must be elucidated and the non-coding regulatory 
sequences need to be understood. Determination of the 
gene’s role presents a tremendous challenge, not only 
because of the large number of genes to be examined, but 
also because defining what constitutes a ‘gene’ is itself a 
complex problem (Alonso and Ecker 2006). 
 
FORWARD AND REVERSE GENETICS 
 
Gene function analysis is currently performed by two fun-
damentally different approaches (Tisser and Bourgeois 
2001). Forward genetics seeks to identify mutations that 
produce a certain phenotype. Conversely, reverse genetics 
begins with a candidate gene and analyzes the mutant 
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phenotype that results upon its disruption. The advent of 
whole genome sequencing has led to an increased interest in 
reverse genetic methodologies (Alonso and Ecker 2006). 
Using reverse genetics, it is possible to investigate the func-
tion of all genes in a gene family, something not easily done 
with forward genetics. Further, one can study the function 
of a gene found to be involved in a process of interest in 
another organism, but for which no forward genetic mutants 
have yet been identified. Finally, the vast majority of genes 
have not yet been mutated in most organisms and reverse 
genetics allows their study. The availability of complete 
genome sequences combined with reverse genetics can 
allow every gene to be studied. 

 
RNAi 
 
A key to the characterization of gene function by reverse 
genetics is down-regulation of endogenous genes via post-
transcriptional gene silencing (PTGS). Among different 
types of PTGS, RNA interference (RNAi) denotes a se-
quence-specific gene-silencing mechanism that is initiated 
by the introduction of double-stranded RNA (dsRNA), 
homologous in sequence to the silenced gene, which trig-
gers degradation of mRNA (Filipowicz et al. 2005). RNAi 
utilizes the endonuclease Dicer to generate small interfering 
RNAs (siRNAs) from dsRNA. The RNAi induced silencing 
(RISC) complex then destroys specific target mRNAs based 
on sequence complementarities with the siRNA. RNAi-
based silencing is an excellent strategy for reverse genetics 
in plants (Small 2007). It has become a powerful tool to 
silence the expression of target genes and study their loss-
of-function phenotype, allowing analysis of gene function 
when mutant alleles are not available. 

 
TRANSIENT ASSAYS 
 
Commonly, reverse genetics is carried out by generation 
and evaluation of stable transgenic plants that show higher 
or lower transcript levels for the gene of interest (Folta and 
Dhingra 2006). This process is labor-intensive, time-con-
suming, and usually takes several months depending on the 
plant species used. In addition, transgene expression in 
transgenic plants often varies significantly due to insert 
position and other effects, thus complicating data analysis. 
Transient assays such as biolistic transient transformation, 
polyethylene glycol mediated transformation and electro-
poration provide a convenient alternative to stable transfor-
mation. In plants, the most widely used method, commonly 
named agroinfiltration, makes use of Agrobacterium tume-
faciens to deliver transgenes into cells (Hellens et al. 2005). 
Compared to the generation of stably transformed plants, 
agroinfiltration is more rapid, and samples can be analyzed 
a few days after inoculation. Agroinfiltration has been used 
successfully in many different applications, including the 
analysis of disease resistance genes, plant promoters and 
transcription factors (Yang et al. 2000; Santos-Rosa et al. 
2008). 

GENE FUNCTION ANALYSIS IN STRAWBERRY 
 
A collection of characterized protein-coding genes of Fra-
garia, including genes involved in fruit softening, pigment 
and aroma formation shows that functional genomics in 
strawberry is mainly confined to in silico prediction and 
gene expression analysis (Table 1). Although informative, 
these types of data alone are typically not sufficient to 
define the function of a gene, as by its very nature this 
information is largely correlative. Only in a few cases more 
reliable methods such as the testing of recombinant proteins 
for catalytic activity and reverse genetics approaches were 

nosGUS35S i nosGUS35S nosGUS35S ii

nostarget gene target genei35S nostarget gene target genei35S

pBI-Intron
control construct carrying the glucuronidase gene separated by an intron

pBI-(target gene)i
intron-containing construct encoding a self-complementary ‘hairpin’ RNA (ihpRNA)

of a partial sequence of the gene of interest 

A

B

 
Fig. 1 Constructs used for RNAi-mediated transient gene silencing in ripening strawberry fruit. Control construct (A) and ihpRNA constructs (B). 

A 

B 

Fig. 2 Agroinfiltration of strawberry fruit and ripening of agroinfil-
trated fruits. Fruits are infiltrated with a suspension of Agrobacterium 
tumefaciens harboring ihpRNA-encoding constructs (A). After agroinfil-
tration the fruits remain attached to the plant until full maturity (B). 
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Table 1 Functionally characterized structural genes in Fragaria. 
Gene Enzyme Putative function Method Reference 

Enzyme coding genes 
FaEG3 endo-�-(1,4)-glucanase softening, cellulose degradation antisense Mercado et al. 2010 
Facel1/2 endo-�-(1,4)-glucanase no effect on firmness antisense Palomer et al. 2006 
Facel1/2 endo-�-(1,4)-glucanase softening, cellulose degradation antisense Woolley et al. 2001 
Facel1/2 endo-�-(1,4)-glucanase softening, cellulose degradation expression analysis Harpster et al. 1998; Llop-Tous et al.

1999 
FaEG1/3 endo-�-(1,4)-glucanase softening, cellulose degradation expression analysis Trainotti et al. 1999 
FaBG2-1/2/3 �-1,3-glucanase pathogenesis-related expression analysis Khan et al. 2003; Shi et al. 2006 
FaXyl1 �-xylosidase softening, hemicellulose 

degradation 
expression analysis Martinez et al. 2004; Bustamante et 

al. 2009 
FaXyl1 �-xylosidase softening, hemicellulose 

degradation 
expression analysis; 
recombinant protein testing

Bustamante et al. 2006 

FaAra1/2/3 �-L-arabinofuranosidase softening, hemicellulose 
degradation 

expression analysis Rosli et al. 2009 

FaPE1 to 4 pectin methyl esterase softening, pectin degradation expression analysis Castillejo et al. 2004 
FaPE1 to 4 pectin methyl esterase elicitation of defense responses overexpression Osorio et al. 2008 
FaplA/B pectate lyase softening, pectin degradation expression analysis Medina-Escobar et al. 1997; 

Benitez-Burraco et al. 2003 
Fapl pectate lyase softening, pectin degradation antisense Jimenez-Bermudez et al. 2002; 

Sesmero et al. 2007; Santiago-
Domenech et al. 2008; Sesmero et 
al. 2009 

FaplC pectate lyase softening, pectin degradation cosuppression Youssef et al. 2009 
FcPG1, FcPL1 polygalacturonase, pectate lyase softening, pectin degradation expression analysis Figueroa et al. 2008 
FaPG polygalacturonase softening, pectin degradation antisense Garcia-Gago et al. 2009, Quesada et 

al. 2009 
SpG, FaPG polygalacturonase softening, pectin degradation expression analysis Redondo-Nevado et al. 2001; 

Villarreal et al. 2008; Villarreal et al.
2009 

FaChi2-1/2-2 chitinase pathogenesis-related expression analysis Khan and Shih 2004 
Faßgal1/2/3 �-galactosidase softening expression analysis, 

recombinant protein testing
Trainotti et al. 2001 

FaCCR cinnamoyl CoA reductase firmness expression analysis Salentijn et al. 2003 
FaCAD cinnamyl alcohol dehydrogenase firmness expression analysis Salentijn et al. 2003 
FaCAD1/2 cinnamyl alcohol dehydrogenase firmness expression analysis, 

recombinant protein testing
Blanco-Portales et al. 2002 

GalUR D-galacturonic acid reductase L-ascorbate biosynthesis overexpression Agius et al. 2003; Hemavathi et al. 
2009 

FaGLDH L-galactono-1,4-lactone L-ascorbate biosynthesis expression analysis Oliveira do Nascimento et al. 2005
SAAT alcohol acyl-CoA transferase aroma, fruit ester formation expression analysis, 

recombinant protein testing
Aharoni et al. 2000 

FcAAT1 alcohol acyl-CoA transferase aroma, fruit ester formation expression analysis Gonzalez et al. 2009 
FvAAT alcohol acyl-CoA transferase aroma, fruit ester formation recombinant protein testing, 

overexpression 
Beekwilder et al. 2004 

FaAAT alcohol acyl-CoA transferase aroma, fruit ester formation expression analysis Carbone et al. 2006 
FaNES1 S-nerolidol/S-linalool synthase aroma, mono- and sesquiterpene 

formation 
recombinant protein testing Aharoni et al. 2004 

FaNES1 S-nerolidol/S-linalool synthase aroma, mono- and sesquiterpene 
formation 

overexpression Aharoni et al. 2004; Yang et al. 2008

FaPIN pinene synthase aroma, monoterpene formation recombinant protein testing Aharoni et al. 2004 
FaPHy pinene hydroxylase aroma, monoterpene formation recombinant protein testing Aharoni et al. 2004 
Fapdc1/3 pyruvate decarboxylase aroma expression analysis Moyano et al. 2004 
FaADH alcohol dehydrogenase aroma sequence similarity Wolyn and Jelenkovic 1990 
FaOMT O-methyltransferase aroma, furanone formation antisense Lunkenbein et al. 2006c 
FaOMT O-methyltransferase aroma, furanone formation expression analysis, 

recombinant protein testing
Wein et al. 2002 

FaQR quinone (enone) oxidoreductase aroma, furanone formation expression analysis, 
recombinant protein testing

Raab et al. 2006; Klein et al. 2007 

FaSDH sorbitol dehydrogenase sugar metabolism expression analysis Sutsawat et al. 2008; Duangsrisai et 
al. 2007 

FaS6PDH sorbitol-6-phosphate 
dehydrogenase 

sugar metabolism expression analysis Duangsrisai et al. 2007 

FagpS, 
FagpL1/2 

ADP-glucose pyrophosphorylase starch biosynthesis expression analysis Park and Kim 2007 

FagpS ADP-glucose pyrophosphorylase starch biosynthesis antisense Park et al. 2006 
FaCHS chalcone synthase pigment formation antisense Lunkenbein et al. 2006b 
FaCHS chalcone synthase pigment formation transient RNAi Hoffmann et al. 2006 
FaCHS, 
FaDFR 

chalcone synthase, 
dihydroflavonol 4- reductase 

pigment formation expression analysis Li et al. 2003 

FaDFR dihydroflavonol 4-reductase pigment formation expression analysis Moyano et al. 1998 
FaDFR dihydroflavonol 4-reductase pigment formation expression analysis, 

recombinant protein testing
Almeida et al. 2007 
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Table 1 (Cont.) 
Gene Enzyme Putative function Method Reference 

Enzyme coding genes 
FaF3h flavanone 3-hydroxylase pigment formation candidate gene approach Deng and Davis 2001 
FaFHT flavanone 3-hydroxylase pigment formation expression analysis, 

recombinant protein testing
Almeida et al. 2007 

FaFLS flavonol synthase pigment formation expression analysis, 
recombinant protein testing

Almeida et al. 2007 

FaANS anthocyanidine synthase pigment formation expression analysis, 
recombinant protein testing

Almeida et al. 2007 

FaLAR leucoanthocyanidin reductase pigment formation expression analysis, 
recombinant protein testing

Almeida et al. 2007 

FaANR anthocyanidin reductase pigment formation expression analysis, 
recombinant protein testing

Almeida et al. 2007 

FaFGT anthocyanidin glucosyltransferase pigment formation expression analysis, 
recombinant protein testing

Almeida et al. 2007 

FaGT1 anthocyanidin glucosyltransferase pigment formation expression analysis, 
recombinant protein testing, 
transient RNAi 

Griesser et al. 2008a 

FaGT2 UDP-glucose:cinnamate  
glucosyltransferase 

phenlypropanoid metabolism expression analysis, 
recombinant protein testing, 
antisense 

Lunkenbein et al. 2006a 

FaGT6/7 flavonol glucosyltransferases flavonoid metabolism expression analysis, 
recombinant protein testing

Griesser et al. 2008b 

FaCDPK1 calcium-dependent protein kinase fruit development expression analysis Llop-Tous et al. 2002 
FaACO1/2 1-aminocyclopropane-1-

carboxylic acid oxidase 
ethylene biosynthesis expression study Trainotti et al. 2005 

FaCGS cystathionine �-synthase methionine biosynthesis expression analysis Marty et al. 2000 
Fapmsr methionine sulfoxide reductase repair of proteins and peptides expression analysis, 

recombinant protein testing
Lopez et al. 2006 

FaCCD1 carotenoid cleavage dioxygenase lutein degradation expression analysis, 
recombinant protein testing

Garcia-Limones et al. 2008 

APxSC cyctosolic ascorbate peroxidase gluthathione-ascorbate cycle expression analysis Kim and Chung 1998a, 1998b; Kim 
et al. 2001 

FacpFBP chloroplastic fructose-1,6-
diphosphate 

photosynthesis complementation assay Serrato et al. 2009 

FaPLD phospholipase D alpha membrane deterioration recombinant protein testing Yuan et al. 2005 
FaSTK serine-threonine kinases protein modification sequence similarity Martinez Zamora et al. 2008 

Other protein coding genes 
FaCyf1 phytocystatin cystein protease inhibitor, 

antifungal 
recombinant protein testing Martinez et al. 2005 

FaEtr1/2, 
FaErs1 

ethylene resistant, ethylene 
response sensor 

ethylene receptor expression analysis Trainotti et al. 2005 

FaTCTP translationally controlled tumor 
protein 

fruit ripening expression analysis Lopez and Franco, 2006 

FaPGIP polygalacturonase-inhibiting 
protein 

defense expression analysis Mehli et al. 2004 

FaWRKY1 transcription factor regulator of defense overexpression Encinas-Villarejo et al. 2009 
FaOLP osmotin-like protein pathogenesis-related, stress expression analysis Wu et al. 2001; Zhang and Shih 2007
Fxaltp non-specfic lipid transfer protein stress expression analysis Yubero-Serrano et al. 2003 
FaNBS nucleotide binding site protein resistance sequence similarity Xu et al. 2007 
FaRB7 tonoplast intrinsic protein resistance expression analysis Vaughan et al. 2006 
FaCBF1 cold-induced transcription factor cold acclimation response overexpression Owens et al. 2002 
STAG1 MADS box, AGAMOUS 

homolog 
vegetative, floral, fruit 
development 

expression analysis Rosin et al. 2003 

FaAP1, 
FaLFY 

APETALA1, LEAFY floral identity, floral integrator expression analysis Mouhu et al. 2009 

FaH4 histone H4 flowering process expression analysis Kurokura et al. 2006 
Fanjjs4 low molecular weight heat shock 

protein 
seed maturation, fruit ripening expression analysis Medina-Escobar et al. 1998 

FaExp1 to 6 expansin cell wall proteins softening, cell wall disassembly expression analysis Civello et al. 1999; Dotto et al. 2006; 
Figueroa et al. 2009 

Fcor1/2/3 cold-regulated protein cold acclimation response expression analysis Ndong et al. 1997; Zalunskaite et al. 
2008 

FABP1 auxin-binding protein auxin perception expression analysis Lazarus et al. 1996 
FapPCM1 plant calmodulin tuberization process, signal 

transduction 
expression analysis Jena et al. 1989 

FaPIP1 plasma membrane intrinsic 
protein 

aquaporin, water channel expression analysis, 
overexpression 

Mut et al. 2008 

FaGAST small protein with 12 cysteine 
residues 

arresting cell elongation expression analysis, 
overexpression 

de la Fuente 2006 

FaZIP Zn- and Fe-regulated transporter mineral uptake expression analysis Shi and Shih 2006 
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used to assign gene functions. Only recently, a fast and easy 
to perform RNAi-based approach has been presented to test 
hypotheses about specific gene functions in strawberry 
(Hoffmann et al. 2006). In this transient assay, an Agrobac-
terium strain carrying a T-DNA expressing an intron-con-
taining construct encoding a self-complementary ‘hairpin’ 
RNA (ihpRNA) transgene (pBI-(target gene)i) is injected 
with a syringe into receptacles of growing strawberry fruits 
still attached to the plant (Figs. 1, 2). The RNA-mediated 
regulation process generally results in sequence-specific in-
hibition of gene expression such as the degradation of com-
plementary endogenous mRNAs. A vector carrying the glu-
curonidase gene (GUS) separated by an intron (pBI-Intron) 
serves as a control (Fig. 1). The general applicability of the 
transient RNAi method has been demonstrated by the 
downregulation of flavonoid biosynthesis genes (Griesser et 
al. 2008a; Muñoz et al. 2010). 

 
FLAVONOID PATHWAY 
 
Flavonoids are a major class of plant secondary metabolites 
that serves a multitude of functions. They have key roles in 
signaling between plants and microbes, in male fertility of 
some species, in defense as antimicrobial agents and as 
feeding deterrents, and in UV protection (Winkel-Shirley 
2001). Flavonoids are synthesized from phenylpropanoid 
derivatives by condensation with malonyl-CoA (Fig. 3). 
The reaction is catalyzed by chalcone synthase (CHS) and 
yields naringenin chalcone. In higher plants six major sub-
groups are derived from this first intermediate: the chal-
cones, flavones, flavonols, flavandiols, anthocyanins, and 
condensed tannins (or proanthocyanidins). A seventh group, 
the aurones, is widespread, but not ubiquitous. Much effort 
has been directed at elucidating the flavonoid biosynthetic 
pathway from a molecular genetic point of view and thus it 
has been one of the most intensively studied metabolic sys-
tems in plants. The majority of the enzymes of flavonoid 

biosynthesis are members of three classes of enzymes found 
in all organisms: the oxoglutarate-dependent dioxygenases, 
NADPH-dependent reductases, and cytochrome P450 
hydroxylases. CHS and chalcone isomerase appear to have 
a more limited ancestry. In addition to its flavor, much of 
the popularity of strawberry is due to the attractive red color 
caused by anthocyanin pigments. The major pigment is 
pelargonidin 3-O-glucoside followed by cyanidin 3-O-glu-
coside whereas quercetin and kaempferol 3-O-glucosides 
are the major flavonols (Griesser et al. 2008a). The chemi-
cal composition of the strawberry flavonoids has been stu-
died in detail, but genetic and biochemical information 
about the numerous steps in anthocyanin biosynthesis and 
its regulation is still limited (Almeida et al. 2007). 

 
FaCHS 
 
CHS, the first gene in the flavonoid pathway, was chosen as 
a reporter gene to test the RNAi-induced silencing of gene 
expression in strawberry fruit by agroinfiltration. Reduction 
of the CHS function using antisense technology has led 
immediately to the loss of pigmentation in strawberry fruit 
and is thus easily detectable (Lunkenbein et al. 2006b). To 
find an efficient method for transfection of strawberry fruit 
different procedures were studied using the pBI-Intron vec-

tor with the GUS gene. Agroinfiltration of pBI-Intron gave 
the best results when the injection occurred at least 10 days 
post-pollination. Even after 2 days GUS activity was detec-
table (Hoffmann et al. 2006). Reproducible and efficient 
silencing of the Fragaria x ananassa CHS (FaCHS) gene 
was achieved with the vector pBI-CHSi that was generated 
by inserting a 303-bp fragment of FaCHS in the sense and 
antisense orientation interrupted by an intron in the pBI-
Intron to replace GUS (Fig. 1). Agroinfiltration of pBI-
CHSi resulted in strawberry fruit with white regions, a clear 
sign of impaired anthocyanin accumulation (Fig. 4). Fruits 
infiltrated with Agrobacterium carrying the pBI-Intron con-
trol vector turned completely red like the untreated fruit. 
Suppression of FaCHS was confirmed by semiquantitative 
RT-PCR, enzyme activity assays and metabolite analyses 
(Fig. 5; Hoffmann et al. 2006). FaCHS-silenced receptacles 
produced statistically lower levels of downstream (pelargo-
nidin derivatives) but higher levels of upstream metabolites 
(phenylpropanoid derivatives) than the receptacles agroin-
filtrated with the pBI-Intron control vector. Thus, FaCHS 
was successfully downregulated by agroinfitration of pBI-
FaCHSi and led to a redirection of the intermediates of the 
flavonoid to the phenylpropanoid pathway. 

 
FaOMT 
 
In an study to clarify the biosynthesis of the aroma com-
pound 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) 
from 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) an 
O-methyltransferase (FaOMT) cDNA was obtained by 
screening a strawberry cDNA library, cloned, and heterolo-
gously expressed in Escherichia coli. The FaOMT protein 
catalysed the transfer of the methyl group from S-adenosyl-
L-methionine (SAM), not only to HDMF but also to caffeic 
acid, thereby forming the corresponding O-methyl ethers 
DMMF and ferulic acid (Wein et al. 2002). Stable transfor-
mation of strawberry with the FaOMT sequence in sense 
and antisense orientation, under the control of the cauli-
flower mosaic virus 35S promoter, resulted in a near total 
loss of DMMF, whereas the levels of the other volatiles 
remained unchanged. FaOMT repression also affected the 
ratio of feruloyl 1-O-glucose and caffeoyl 1-O-glucose, in-
dicating a dual function of the enzyme in planta (Lunken-
bein et al. 2006c). To confirm the results obtained with the 
stably transformed strawberry plants and to validate the 
transient RNAi method an ihpRNA-encoding construct of 
FaOMT (pBI-FaOMTi) was agroinfiltrated into ripening 
strawberry fruits. Although, the phenotypes of the pBI-
FaOMTi and pBI-Intron infiltrated fruits were indistingui-
shable (Fig. 4), metabolite analysis showed that the levels 
of DMMF in relation to HDMF was significantly reduced in 
the pBI-FaOMTi injected fruits when compared with the 
fruits injected with the control vector (Fig. 5). Since woun-
ding of the fruit by agroinfiltration resulted in an upregula-
tion of phenylpropanoyl glucose esters (data not shown), 
changes in the levels of feruloyl 1-O-glucose in relation to 
caffeoyl 1-O-glucose were not observed after silencing of 
FaOMT by the transient RNAi approach. 

 
 
 
 

Table 1 (Cont.) 
Gene Enzyme Putative function Method Reference 

Other protein coding genes 
FaMET, 
FaDRM 

DNA methyltransferases methylation of cytosine residues 
in DNA 

expression analysis Chang et al. 2009 

Fra pathogenesis-related protein, 
allergen 

flavonoid biosynthesis expression analysis,  
transient RNAi 

Muñoz et al. 2010 

FaMYB1 transcription factor regulation of pigment 
biosynthesis 

overexpression Aharoni et al. 2001 

FaHyprp hybrid proline-rich protein polyphenol anchoring expression analysis Blanco-Portales et al. 2004 
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FaGT1 
 
Anthocyanidin 3-O-glucosyltransferase (GT1) is the en-
zyme that catalyzes the formation of the first stable inter-
mediate in the anthocyanin pathway (Fig. 3). A putative 
glycosyltransferase sequence (FaGT1) was recently cloned 
from strawberry fruit cDNA (Griesser et al. 2008a). In vitro 
assays showed that the recombinant FaGT1 transferred glu-
cose from the donor UDP-glucose to anthocyanidins and, to 
a lesser extent, to flavonols, generating 3-O-glucosides. To 
elucidate the in planta function of FaGT1, A. tumefaciens 
cells carrying an ihpRNA-encoding construct of a partial 
FaGT1 sequence (pBI-FaGT1i) were injected into ripening 
strawberry fruits. This led to significant downregulation of 
FaGT1 mRNA levels that correspond to reduced concentra-
tions of pelargonidin-derived pigments in ripe fruits (Fig. 5). 
The color of the pBI-FaGT1i injected fruit was generally 
less intense and of a different hue compared to the bright 
red fruits of the controls (Fig. 4). Fruits with white regions 
as detected after the infiltration of pBI-FaCHSi were not 
obtained. Significant levels of epiafzelechin, formed by 

anthocyanidin reductase (ANR) from pelargonidin, were 
identified in FaGT1-silenced fruits (Griesser et al. 2008a). 
The result indicates competition of FaGT1 and FaANR for 
the common anthocyanidin substrate and shows that FaGT1 
represents an important branching-point enzyme because it 
is channeling the flavonoid pathway to anthocyanins. 

 
FaDFR 
 
Dihydroflavonol 4-reductase (DFR) catalyzes the last com-
mon step in the flavonoid biosynthesis pathway leading to 
anthocyanins and proanthocyanidins (Fig. 3; Almeida et al. 
2007). A putative FaDFR gene was cloned from strawberry 
cDNA and studied by combining biochemical and molecu-
lar approaches (Moyano et al. 1998; Almeida et al. 2007). 
To test the in vivo function of FaDFR by reverse genetics a 
pBI-FaDFRi construct was agroinfiltrated into strawberry 
fruits. The pBI-FaDFRi vector consisted of an ihpRNA en-
coding construct of a partial FaDFR sequence. Fruits infil-
trated with pBI-FaDFRi showed a less intense color than 
the color fruits and produced significantly lower levels of 
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pelargonidin derivatives as determined by metabolite analy-
sis (Figs. 4, 5). Surprisingly, the concentrations of cyanidin 
derivatives were not affected. Chimeric fruits with white 
regions were not detected. 

 
FaANS 
 
Anthocyanidin synthase (ANS) catalyzes the 2-oxoglutarate 
dependent oxidation of leucoanthocyanidins to the colored 
anthocyanidins (Fig. 3; Nakajima et al. 2001). A FaANS 
gene was cloned from red fruit cDNA with gene specific 
primers designed from published ESTs (Almeida et al. 
2007). Functional characterization of the recombinant 
FaANS protein showed a preference for the substrate leuco-
pelargonidin. The in vivo preference was studied after tran-
sient downregulation of the FaANS transcripts by agroinfil-
tration of a pBI-FaANSi vector into ripening strawberry 
fruits. The pBI-FaANSi fruits showed a similar phenotype 
as the pBI-FaDFRi injected fruits (Fig. 4). Metabolite ana-
lysis confirmed the significant downregulation of the levels 
of pelargonidin and cyanidin derivatives (Fig. 5). Thus, 
FaANS catalyzes the formation of both anthocanidins in 
planta. 

 
Fra 
 
The strawberry fruit allergen Fra a is a member of the Bet 
v1 superfamily named after the major birch pollen allergen 
and is ranked among a subfamily of pathogenesis-related 
proteins (PR-10, Muñoz et al. 2010). Although the aller-
genic properties of Bet v1 and related PR-10 proteins have 
been extensively studied, their biological role in plants 
remained elusive. In a search for strawberry genotypes with 
low Fra a allergen levels it was found that total allergen 
content was always lower in colorless (white) strawberry 
varieties than in red ones (Hjernø et al. 2006). The ripe 
colorless fruits that were tolerated by individuals affected 
by allergy were found to be virtually free from the straw-
berry allergen. Interestingly, several catalytically active pro-
teins of the flavonoid pathway like FaCHS, flavanone 3-
hydroxylase (F3H), and DFR were also reduced. To study 
whether there is a direct link between Fra a expression and 
flavonoid and anthocyanin formation Fra a gene expression 

in strawberry fruit was downregulated by RNAi targeted to 
Fra a. Fruits infiltrated with pBI-Fraa1ei and pBI-Fraa3i, 
representing two isoforms of Fra a, consistently showed 
white regions similar to the chimeric pBI-FaCHSi pheno-
type (Fig. 4). However, metabolite analysis revealed that in 
fruits infiltrated with pBI-Fraa1ei and pBI-Fraa3i cons-
tructs, all metabolites of the anthocyanin biosynthesis path-
way showed lower levels than the controls (Muñoz et al. 
2010). Quantitative PCR (qPCR) analysis confirmed the 
efficient downregulation of Fra a isoforms (Fig. 6). Besides, 
Fra a seems to have a regulatory function because the 
FaCHS and phenylalanine ammonia lyase (FaPAL) expres-
sion levels were significantly reduced in the pBI-Fraa1ei 
and pBI-Fraa3i-injected fruits. The results demonstrate a 
clear link between Fra a expression and flavonoid forma-
tion. The study clearly shows that the Fra a allergen has a 
functional role in the flavonoid pathway. 
 
CONCLUSION 

 
The large amount of sequence information that has been 
generated for Fragaria, and the implementation of high-
throughput gene expression analyses have resulted in an in-
creased interest in reverse genetic methodologies. One ap-
proach to generate an impaired phenotype is the down-
regulation of target genes and even gene families by RNAi 
which is triggered by dsRNA. The dsRNA can be delivered 
to plants either transiently or stable by integrating dsRNA-
producing transgenes. The transient RNAi approach permits 
rapid and highly efficient gene function discovery and 
validation and can be carried out in a high-throughput mode 
with thousands of individual plants. The recently developed 
transient RNAi method in Fragaria is suitable for analyzing 
genes that are highly expressed during strawberry fruit 
development as was demonstrated for FaCHS, FaOMT, 
FaGT1, FaDFR, FaANS and Fra. 
 
ACKNOWLEDGEMENTS 
 
This work has been supported by funds from DFG SCHW 634/10-
2 and DAAD D/07/13484. 
 
 

pBI-Intron pBI-FaCHSi pBI-FaOMTi pBI-FaGT1i     pBI-DFRi pBI-FaANSi pBI-Fra a1ei
(control)

 
Fig. 4 Collection of phenotypes. Fruits were agroinfiltrated with the constructs referred to in the first line and remained attached to the plants until 
harvest. The color change in comparison to the fruits injected with the control vector pBI-Intron indicate impaired pigment formation, except for pBI-
FaOMTi. 
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Fig. 5 Effect of gene silencing. Effects caused by various ihpRNA encoding constructs (pBI-FaCHSi, pBI-FaGT1i, pBI-FaANSi, pBI-FaDFRi, and pBI-
FaOMTi) on selected metabolite levels (pelargonidin 3-O-glucoside, cyanidin-3-O-glucoside, 4-hydroxy-2,5-dimethyl-3(2H)-furanone/2,5-dimethyl-4-
methoxy-3(2H)-furanone (HDMF/DMMF ratio) and caffeoyl 1-O-glucose/feruloyl 1-O-glucose ratio). Box plot graphs were designed for the peak areas 
of selected compounds. A horizontal line in the boxes indicates the medians and boxes the interquartile range. Whiskers extend to 10th and 90th percentiles. 
Outliers are displayed by black dots. Wilcoxon–Mann–Whitney U-test was used for non-parametric analysis of intergroup comparison. 
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Fig. 6 Relative gene expression levels determined by qPCR. Relative 
transcription levels of Fra a 1e and FaPAL normalized to the interspacer 
gene were determined in fruits agroinfiltrated with pBI–Intron, pBI–
Fraa1ei, pBI–Fraa3i, and pBI–CHSi (adapted from Muñoz et al. 2010). 
Statistically significant values in comparison with the values for pBI–
Introns are marked with an asterisk (P = 0.05). The statistical analysis was 
performed by paired t-test function. 
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